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Abstract

Background: Macrophage infiltration is prevalent in lung cancer tissues, significantly influencing disease progression and clinical out-
comes. Lung squamous cell carcinoma (LUSC) is often diagnosed at advanced stages, resulting in poor prognosis. Identifying effective
diagnostic biomarkers, particularly those associated with macrophage infiltration, is crucial for early detection and improved treatment
outcomes. This study aims to identify diagnostic markers specifically linked to M1 macrophages in LUSC.Methods: Differential gene
expression analysis and immune cell infiltration assessment were conducted using the limma and CIBERSORT packages. The WGCNA
algorithm was then applied to identify genes in modules related to M1 macrophages. Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analyses were used to investigate the biological functions of M1 macrophage-related dif-
ferentially expressed genes (DEGs). To identify M1 macrophage-associated biomarkers in LUSC, a diagnostic model was developed
using four machine learning algorithms, with validation through nomogram visualization, calibration curves, and external datasets. Fi-
nally, immunohistochemical staining was performed to further confirm the expression of hub genes and the predictive accuracy of M1
macrophage-related biomarkers in LUSC. Results: A total of 143 M1 macrophage-related DEGs were identified, which were involved
in regulating immune response pathways. The support vector machine (SVM) model based on these genes demonstrated exceptional
performance, with area under the curve (AUC) values of 0.995 in the training cohort and 1.000 in three external validation datasets.
Immunohistochemical analysis further confirmed the diagnostic accuracy of Matrix metalloproteinase-7 (MMP7), Reticulon-1 (RTN1),
Zinc finger protein ZIC 2 (ZIC2), Killer cell lectin-like receptor subfamily B member 1 (KLRB1), and C-X-C motif chemokine 13
(CXCL13), yielding an AUC of 0.992. These results highlight the strong diagnostic capability of the 5 hub genes in LUSC. Conclusion:
The study highlights the pivotal role of M1 macrophage-related DEGs in LUSC tumorigenesis. The newly identified 5 hub genes provide
a highly accurate diagnostic tool for LUSC, offering potential improvements for both diagnostic and therapeutic strategies.
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1. Introduction
Lung cancer remains the leading cause of cancer in-

cidence and mortality globally, affecting 185 countries [1].
In 2022, approximately 1,060,600 new lung cancer cases
and 733,300 lung cancer-related deaths were reported in
China [2]. Lung squamous cell carcinoma (LUSC) is the
second most common subtype of non-small cell lung can-
cer (NSCLC), accounting for approximately 30% of all
NSCLC cases [3]. Typically located in the central region of
the lung and originating in the proximal bronchi, LUSC has
a heightened risk of invading larger blood vessels [4]. The
five-year survival rate for LUSC ranges from 73% at stage
IA to 13% at stage IV [5]. Unfortunately, most patients are
diagnosed at advanced stages [6,7]. Consequently, identi-
fying novel biomarkers is essential to improving early diag-
nosis and treatment strategies for LUSC. Furthermore, un-
derstanding the pathogenesis of LUSC could contribute to
improving survival outcomes.

Tumor-infiltrating immune cells (TICs) play a critical
role in LUSC pathogenesis, profoundly influencing clini-
cal characteristics and patient survival rates [8,9]. While
immunotherapy has revolutionized cancer treatment, it still
presents considerable clinical challenges. For patients
with advanced LUSC, the median overall survival (OS) re-
mains only 17.1 months, even with the use of PD-(L)1 in-
hibitors [10]. Although PD-L1 expression serves as a pre-
dictive marker for therapeutic benefit, it is not an infalli-
ble biomarker. Growing evidence suggests that TICs may
serve as indicators of therapeutic response and prognosis in
cancer patients, but their diagnostic value remains insuffi-
ciently explored.

Macrophages are highly adaptable cells capable of
responding to environmental signals and polarizing into
M1 or M2 phenotypes. Tumor-associated macrophages
(TAMs), a major subset of TICs within the tumor microen-
vironment, play pivotal roles in the growth, invasion, and
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metastasis of LUSC [11–13]. M2 macrophages typically
promote tumor progression and suppress anti-tumor im-
mune responses, whereas M1 macrophages can kill tumor
cells through the release of inflammatory cytokines, reac-
tive oxygen species, phagocytosis, and the activation of
other immune cells [14]. In lung cancers, higher densities of
M1 macrophages and lower densities of M2 macrophages
are associated with more favorable clinical outcomes. Re-
cent studies have further elucidated the complex regulation
of M1 macrophages in LUSC. For instance, SIRPG pro-
motes the differentiation of macrophage into M1 phento-
type [15], while mutations in the TTN gene, a higher tumor
mutational burden (TMB), and a more favorable progno-
sis, are linked to significant enrichment ofM1macrophages
[16]. Conversely, NKX2-1 expression is negatively corre-
lated with M1 macrophages infiltration [17], and CHRNA6
expression levels are also correlated with the proportion
of M1 macrophages [18]. These findings collectively un-
derscore M1 macrophages as a crucial anti-tumor compo-
nent in LUSC. Accumulating evidence has demonstrated
the link between TICs and hub genes involved in tumori-
genesis. For instance, elevated Signal-regulatory protein
alpha (SIRPα) and SLC2A1 expression on TAMs corre-
lates with poorer survival and reduced response to adju-
vant immunochemotherapy [19,20]. Despite these insights,
the diagnostic potential ofmacrophage-associated signature
genes, particularly those regulating the beneficial M1 phe-
notype, remains underexplored.

This study analyzed seven Gene Expression Omnibus
(GEO) datasets and identified 143 M1 macrophage-related
differentially expressed genes (DEGs) using the limma,
CIBERSORT, and WGCNA algorithms. These DEGs
were then used to construct a 5-gene diagnostic signa-
ture, derived from the optimal predictive model selected
from four machine learning algorithms: Support Vector
Machine (SVM), Random Forest (RF), Generalized Lin-
ear Model (GLM), and Extreme Gradient Boosting (XGB).
The predictive performance of this signature was validated
through nomogram visualization, calibration curves, deci-
sion curve analysis (DCA), and external validation datasets.
Ultimately, MMP7, RTN1, ZIC2, KLRB1, and CXCL13
were identified as potential diagnostic biomarkers associ-
ated with LUSC-infiltrating M1 macrophages, highlighting
their critical roles in LUSC pathogenesis.

2. Materials and Methods
2.1 Data Collection and Preprocessing

Fig. 1 illustrates the workflow of the bioinformat-
ics analysis. Seven microarray datasets related to LUSC,
including GSE19188, GSE2088, GSE30219, GSE33479,
GSE33532, GSE21933, and GSE8569, were sourced from
the GEO database (https://www.ncbi.nlm.nih.gov/geo/),
with detailed dataset information provided in Supplemen-
tary Table 1. The probe IDs in the series matrix files
were annotated to gene symbols according to the corre-
sponding platform files. For genes with multiple probes,

the expression values were averaged and normalized us-
ing the “limma” package (Version 3.56.2, Bioconductor,
USA, https://www.bioconductor.org/) in R software (Ver-
sion 4.3.1, R Foundation for Statistical Computing, Vienna,
Austria) to minimize discrepancies across datasets. Among
these datasets, GSE19188, GSE2088, GSE30219, and
GSE33479, comprising 150 patients with LUSC and 122
normal controls, were designated as the training dataset.
External validation was performed using three additional
GEO datasets: GSE33532, GSE21933, and GSE8569.

2.2 Differential Expression Analysis

To integrate the datasets (GSE19188, GSE2088,
GSE30219, and GSE33479) into a unified training set,
batch effects were corrected using the Combat function
from the “sva” package (Version 3.48.0, Bioconductor,
USA). DEGs between patients with LUSC and normal con-
trols were identified using the “limma” package. Genes
with a |log2FC| greater than 0.585 and an adjusted p-value
below 0.05 were considered significantly differentially ex-
pressed. Volcano plots and heatmaps were generated to vi-
sualize the DEGs between patients with LUSC and normal
controls.

2.3 Immune Cell Infiltration Analysis

The LM22 signature matrix, which includes 22 types
of immune cells, was employed to estimate the relative
abundances of infiltrating immune cells for each sample in
the merged training dataset through the CIBERSORT algo-
rithm (https://cibersort.stanford.edu). The total proportion
of the 22 immune cell types in each sample was normalized
to 1. The type and distribution of infiltrating immune cells
were analyzed using the “ggplot2” package (Version 3.4.4,
R Foundation for Statistical Computing, Vienna, Austria)
in R software and presented as barplots and boxplots. Sig-
nificant differences in the relative abundances of immune
cell types between patients with LUSC and normal controls
were assessed using the Wilcoxon test, with a p-value <

0.05. Spearman correlation analysis of the 22 immune cell
types in 150 patients with LUSC was conducted using the
“corrplot” package (Version 0.92, R Foundation for Statis-
tical Computing, Vienna, Austria), with significance deter-
mined at a p-value < 0.05.

2.4 Weighted Gene Co-Expression Network Analysis
(WGCNA)

To identify the significant co-expression module as-
sociated with macrophages, the top 50% of genes exhibit-
ing the highest variance were selected for analysis us-
ing the WGCNA package (Version 1.72.1, Bioconductor,
USA), ensuring robust results [21,22]. The optimal soft-
thresholding power was determined using a weighted adja-
cency matrix, which was then converted into a topological
overlapmatrix (TOM).Aminimummodule size of 50 genes
was set to ensure biologically relevant modules. Modules
were assigned distinct colors based on their TOM dissim-
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ilarity measure, calculated as 1 minus the TOM value, us-
ing hierarchical clustering. The eigengenes of each module
were used to represent the overall gene expression profiles
within the module. The significance of each module was
evaluated for its association with corresponding immune
cells. Additionally, gene significance was assessed by eval-
uating the strength of the relationship between individual
genes and immune cells. Higher gene significance values
indicated stronger correlations between specific genes and
immune cells [22]. Ultimately, 567 key genes in the blue
module associated with M1 macrophages were identified.

2.5 Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) Analyses

The R package “VennDiagram” was used to identify
142 overlapping genes between DEGs and blue module-
associated genes. To investigate the biological functions of
these genes, GO functional enrichment and KEGG pathway
analyses were conducted using the R packages “clusterPro-
filer” (Version 4.8.3, Bioconductor, USA), “org.Hs.eg.db”
(Version 3.17.0, Bioconductor, USA), and “enrichplot”
(Version 1.20.3, Bioconductor, USA). Statistical signifi-
cance was determined with an adjusted p-value threshold of
less than 0.05. Results were visualized using bar plots and
circle plots, generated with the “ggplot2” (Version 3.4.4,
R Foundation for Statistical Computing, Vienna, Austria)
and “circlize” (Version 0.4.15, R Foundation for Statistical
Computing, Vienna, Austria) packages in R, respectively.

2.6 Constructing the Predictive Model Using
Machine-Learning Methods

The 142 overlapping genes were then used as in-
put features for four machine learning models: SVM, RF,
GLM, and XGB, aimed at identifying significant predictive
genes associated with LUSC. The 150 LUSC samples were
randomly split into two datasets: a training dataset (60%,
N = 90) and an internal validation dataset (40%, N = 60).
These models were executed with default parameters, and
the “caret” R package (Version 6.0.94, R Foundation for
Statistical Computing, Vienna, Austria) was employed to
optimize model parameters via grid search. The “DALEX”
package (Version 2.4.3, R Foundation for Statistical Com-
puting, Vienna, Austria) was subsequently used to analyze
residual distributions and assess feature importance for the
four models [23]. To evaluate the predictive accuracy of
the models, the internal validation dataset was used for area
under the curve (AUC) analysis via 5-fold cross-validation.
Higher AUC values indicate superior model performance
[24]. The most effective machine learning model was iden-
tified, and the top five variables from this model were de-
termined as key predictive genes linked to LUSC. Finally,
receiver operating characteristic (ROC) curves were gener-
ated using three external datasets (GSE33532, GSE21933,
and GSE8569) to validate the diagnostic value of the sig-
nature derived from the best-performing machine learning
model.

2.7 Development and Estimation of the Nomogram Model

A nomogram model was constructed using the “rms”
package (Version 6.6.0, R Foundation for Statistical Com-
puting, Vienna, Austria) to predict the likelihood of LUSC.
Scores were assigned to five key genes, and their sum
formed the “total score”, which was used as an indicator of
LUSC risk severity. Calibration curve analysis and DCA
were also performed to assess the predictive accuracy and
clinical utility of the nomogram model.

2.8 Validation Analysis Using Independent External
Datasets

The discriminative ability of the predictive model
to distinguish between patients with LUSC and healthy
controls was validated using three independent external
datasets (GSE33532, GSE21933, and GSE8569). ROC
analysis was conducted, and the “pROC” R package (Ver-
sion 1.18.5, R Foundation for Statistical Computing, Vi-
enna, Austria) was employed to generate and visualize the
ROC curves.

2.9 Immunohistochemical Validation of Hub Genes
Expression and the Predictive Performance of M1
Macrophage-Associated Biomarkers

Forty-eight pairs of LUSC tissue samples were col-
lected fromTianjinMedical University Cancer Institute and
Hospital, with approval from the Ethics Committee (No.
bc2023152). Informed consent was obtained from all sub-
jects involved in the study. The study was carried out in
accordance with the ethical guidelines of the Declaration of
Helsinki. Immunohistochemical (IHC) analysis was per-
formed on a cohort of 48 individuals diagnosed with LUSC
following the manufacturer’s protocol (#PV-9000, ZSGB-
BIO, Beijing, China). Tissue sections were dewaxed and
hydrated using a gradient ethanol approach. After antigen
retrieval in citric acid buffer (pH 6.0) with microwave heat-
ing, endogenous peroxidase was blocked for 10 minutes.
Sections were then incubated overnight at 4 °C with pri-
mary antibodies: ZIC2 rabbit polyclonal antibody (1:100,
HA500195, Huabio, Hangzhou, Zhejiang, China), RTN1
rabbit polyclonal antibody (1:50, 15048-1-AP, Proteintech,
Wuhan, Hubei, China), MMP7 rabbit polyclonal antibody
(1:50, 10374-2-AP, Proteintech, Wuhan, Hubei, China),
KLRB1 mouse monoclonal antibody (1:500, 67537-1-
lg, Proteintech, Wuhan, Hubei, China), and CXCL13
rabbit monoclonal antibody (1:50, HA722117, Huabio,
Hangzhou, Zhejiang, China). After washing, sections were
treated with a reaction enhancer and enzyme-linked sec-
ondary antibody (sheep anti-rabbit/mouse IgG) (#PV-9000,
ZSGB-BIO, Beijing, China). Staining was visualized using
DAB chromogen, and counterstaining was performed with
hematoxylin. Digital images at ×20 magnification were
obtained using a BX51 microscope (OLYMPUS, Tokyo,
Japan). The evaluation of ZIC2, RTN1, MMP7, KLRB1,
and CXCL13 staining followed specific scoring criteria: a
positive stained area<5% was scored 0; 5%–25% received
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Fig. 1. Identified differentially expressed genes (DEGs) between normal and lung squamous cell carcinoma (LUSC) individuals
from four Gene Expression Omnibus (GEO) datasets. (A) Principal component analysis (PCA) of four GEO datasets before batch
correction. (B) PCA of four GEO datasets after batch correction. (C) Volcano plot illustrating DEGs between normal and LUSC patients.
(D) Heatmap depicting DEGs between normal and LUSC patients.

1 point; 26%–50% equaled 2 points; 51%–75% was given
3 points; and areas exceeding 75% were assigned 4 points.
For color intensity, no staining was scored 0 points; yellow
staining received 1 point; brown staining was assigned 2
points; and tan staining received 3 points. The immunos-
taining score was calculated by multiplying the color inten-
sity and positive stained area scores.

2.10 Statistical Analysis
Statistical analyses were performed using R software

(Version 4.3.1). For comparisons between two groups,
unpaired Student’s t-tests were applied for normally dis-
tributed variables, and Wilcoxon rank-sum tests were used
for non-normally distributed variables. Spearman correla-
tion analysis was conducted to estimate correlation coeffi-
cients. Statistical significance was defined as p < 0.05 in
two-tailed tests, unless otherwise specified.

3. Results
3.1 Identifying DEGs Between LUSC and Normal
Individuals

To identify differential expression between lung squa-
mous cell carcinoma (LUSC) and normal samples, four

GEO datasets (GSE19188, GSE2088, GSE30219, and
GSE33479) underwent batch correction and were subse-
quently merged into a large sample pool to form the training
cohort. Principal component analysis (PCA) and boxplot
analyses confirmed that batch effects were effectively min-
imized across the four original datasets (Fig. 1A,B; Sup-
plementary Fig. 1). Differential expression analysis iden-
tified a total of 1032 DEGs, including 466 upregulated and
566 downregulated genes, between 122 control samples and
150 LUSC samples (Fig. 1C; Supplementary Table 2).
Heatmaps depicted the top 20 genes with the most signif-
icant expression changes, either upregulated or downregu-
lated (Fig. 1D).

3.2 Immune Characteristics in LUSC

Next, we explored the immune landscape in LUSC by
assessing the abundance of 22 immune cell types using the
CIBERSORT algorithm (Fig. 2A). Significant differences
between control and LUSC samples were analyzed using
the Wilcoxon rank-sum test. Boxplots and statistical re-
sults revealed that T cells CD4memory resting, monocytes,
mast cells resting, T cells CD4 memory activated, and M1
macrophages were the top five immune cell types showing

4

https://www.imrpress.com


Fig. 2. Analysis of immune characteristics in LUSC. (A) Barplot showing the distribution of 22 types of infiltrating immune cells
in control and LUSC samples. (B) Differential expression analysis of 22 types of infiltrating immune cells between control and LUSC
samples. (C) Correlation analysis among 22 types of infiltrating immune cells in LUSC patients. *p < 0.05 , **p < 0.01 and ***p <

0.001.

significant differences between control and LUSC groups
(Fig. 2B; Supplementary Table 3). Correlation analyses
of the 22 types of infiltrating immune cells in patients with
LUSC are shown in Fig. 2C.

3.3 Identification of M1 Macrophage-Related Genes

To gain insight into the genes associated with M1
macrophages, the WGCNA algorithm was applied to iden-
tify gene modules strongly associated with immune cell
types. The optimal soft-thresholding parameters were de-
termined as β = 3 and R2 = 0.9 for constructing a scale-
free network (Fig. 3A). Using the dynamic tree-cutting al-
gorithm, seven distinct co-expression modules, each rep-
resented by a unique color, were generated (Fig. 3B).
Genes from these modules were then evaluated for their co-
expression and adjacency relative to the 22 types of immune
cells. By integrating the results of WGCNA and immune
cell differential analysis, the blue module, consisting of 567
genes, was found to have a significantly stronger associa-
tion with M1 macrophages (R = 0.37, p = 7.8 × 10−20),
and was selected for further investigation. These genes
within the blue module were positively correlated with M1
macrophages (Fig. 3C,D).

3.4 Biological Function of M1 Macrophage-Related DEGs

To identify M1 macrophage-related DEGs, the DEGs
were intersected with the genes from the WGCNA

blue module. A Venn diagram revealed that 143 M1
macrophage-related DEGs were obtained (Fig. 4A; Sup-
plementary Table 4). GO analysis indicated that these
genes are involved in leukocyte- or lymphocyte-mediated
immunity, antigen processing and presentation of peptide
antigens, assembly of major histocompatibility complex
(MHC) class I or II protein complexes, regulation of im-
mune response signaling pathways, and positive regula-
tion of immune cell-cell adhesion (Fig. 4B; Supplemen-
tary Table 5). KEGG pathway analysis revealed that these
genes are associated with signaling pathways in rheuma-
toid arthritis, asthma, Fc epsilon RI signaling, chemokine
signaling, and Tumor Necrosis Factor Signaling (TNF) sig-
naling (Fig. 4C; Supplementary Table 6).

3.5 Development and Evaluation of Machine Learning
Models

To explore the potential of these M1 macrophage-
related DEGs for LUSC diagnosis, four machine learning
models—SVM, XGB, RF, and GLM—were constructed
based on the expression profiles of 143 M1 macrophage-
related DEGs in the training dataset to identify diagnos-
tic genes for LUSC. Residual distribution analysis revealed
that SVM and XGB exhibited smaller residuals compared
to RF and GLM (Fig. 5A,B). The top 10 feature variables
for each model were ranked by their root mean square er-
ror (RMSE), and their corresponding feature importance
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Fig. 3. Identification of M1 macrophage-related genes throughWGCNA. (A) The process for selecting the soft threshold power. (B)
Cluster dendrogram of genes grouped into co-expression modules, with various modules represented by distinct colors. (C) Correlation
analysis between module eigengenes and 22 types of infiltrating immune cells. (D) Scatter plot showing the relationship between module
membership in the blue module and gene significance for M1 macrophages.

was visualized in Fig. 5C. Additionally, the performance
of each machine learning model was evaluated using ROC
curves generated through five-fold cross-validation on the
testing datasets. The results showed that the SVM model
achieved the highest AUC value (AUCSVM = 0.995, AUCRF
= 0.988, AUCXGB = 0.983, andAUCGLM = 0.622) (Fig. 5D).
These findings demonstrate that the SVM model was the
most effective for distinguishing patients with LUSC. Con-
sequently,MMP7, RTN1, ZIC2, KLRB1, andCXCL13were
identified as novel predictive genes (5-gene signature) for
LUSC due to their high significance in the SVM model.

3.6 Evaluation of Machine Learning Models in External
Testing Databases

To assess the predictive power of the 5 hub genes, a
nomogram was developed to estimate the risk associated
with LUSC (Fig. 6A). The calibration curve showed excel-
lent agreement between actual and predicted risks (Fig. 6B).
DCA further validated the high accuracy and clinical util-
ity of the nomogram (Fig. 6C). The predictive performance
of the 5 hub genes was also evaluated in three independent

external testing datasets. The AUC values for GSE33532,
GSE21933, and GSE8569 were all 1.000, as demonstrated
by the ROC curves (Fig. 6D–F). These results confirm that
the diagnostic signature developed in this study exhibits ro-
bust performance in distinguishing LUSC from normal in-
dividuals across both internal and external validation co-
horts.

3.7 Immunohistochemistry Validation of the Predictive
Performance of M1 Macrophage-Associated Biomarkers

To validate the predictive performance of M1
macrophage-associated biomarkers, IHC experiments were
performed to evaluate the protein expression levels of can-
didate genes in tissue samples. IHC results show ZIC2 is
predominantly expressed in the nuclei of lung cancer cells,
with elevated levels in cancer tissues. RTN1 is mainly
found in the membrane of lung cancer cells, but its expres-
sion is downregulated in these tissues. MMP7, a secreted
protein, is present in the nucleus, cytoplasm, and extracel-
lular matrix, with elevated expression in lung cancer tis-
sues. KLRB1, a transmembrane protein, is downregulated
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Fig. 4. Biological functional analysis of differentially expressed M1 macrophage-related genes. (A) Venn diagram illustrating the
overlapping and unique differentially expressed M1 macrophage-related genes. (B) Circular visualization of Gene Ontology (GO) anal-
ysis highlighting the biological functions associated with differentially expressed M1 macrophage-related genes. (C) Barplot depicting
the signaling pathways enriched in the differentially expressed M1 macrophage-related genes.

in lung cancer tissues. CXCL13 is expressed in the cyto-
plasm and extracellular matrix, with upregulation in lung
cancer tissues. The results showed that the protein expres-
sion of those 5 hub genes was largely consistent with their
corresponding mRNA expression levels in both the training
dataset and the TCGA dataset (Fig. 7A,B; Supplementary
Fig. 2; Supplementary Table 2). Furthermore, the pre-
dictive efficacy of the five hub genes was assessed based
on the IHC results, yielding an AUC value of 0.992 in the
ROC curve analysis (Fig. 7C). These results confirm the
reliability of the data mining outcomes and highlight their
potential for LUSC diagnosis.

4. Discussion
Macrophages are notably abundant in lung cancer tis-

sues and play a pivotal role in determining disease pro-
gression and outcomes [25]. Traditionally, macrophages
are categorized into two main types: classically activated
(M1) and alternatively activated (M2) macrophages [26].
In LUSC, higher densities of M1-like macrophages and
an increased M1/M2 ratio within tumor islets and stroma

are strongly associated with improved patient survival [25].
Most patients with LUSC are diagnosed at advanced stages,
leading to a low five-year survival rate [10,27]. This study
utilized seven GEO microarray datasets, which were di-
vided into training and testing cohorts, to identify novel di-
agnostic signatures for LUSC, with the goal of enhancing
diagnostic accuracy and improving survival rates. A total
of 143 M1 macrophage-related DEGs were identified using
the limma, CIBERSORT, and WGCNA algorithms. These
genes were significantly involved in antigen processing and
presentation, MHC protein complex assembly, leukocyte-
or lymphocyte-mediated immunity, and regulation of im-
mune response signaling pathways—key processes influ-
encing LUSC progression [28,29]. Through application
of the optimal machine learning model, SVM, during
both training and external validation, MMP7, RTN1, ZIC2,
KLRB1, and CXCL13 were identified as novel five hub
genes associated with LUSC-infiltrating M1 macrophages,
playing critical roles in the pathogenesis of LUSC.

TICs are closely linked to hub genes involved in
tumorigenesis [30–33]. For instance, the expression of
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Fig. 5. Development and evaluation of the machine learning models based on 143M1macrophage-related genes. (A) The cumula-
tive residual distribution of Support Vector Machine (SVM), Extreme Gradient Boosting (XGB), Random Forest (RF), and Generalized
Linear Model (GLM) models. (B) The residual boxplots of the four machine learning models. (C) The important features of the four
machine learning models. (D) Receiver operating characteristic (ROC) analysis of these models using 5-fold cross-validation in the
internal testing dataset.

purinergic receptor P2RY13 was positively correlated with
dendritic cell infiltration across various tumor types [31].
Zhang et al. [34] identified four key hub genes—LAPTM5,
C1QC, CSF1R, and SLCO2B1—that promote the exhaus-
tion of CD8+ T cells in LUSC tumor tissues. Addition-
ally, COL1A1, COL4A1, COL12A1, and PDGFRB were
found to be potential prognostic biomarkers associated with
M2 macrophage infiltration in gastric cancer [30]. In
contrast, CXCL6 and POSTN were overexpressed in M0

macrophage-enriched clusters and served as poor prognos-
tic factors in hepatocellular carcinoma [35]. Based on im-
mune cell infiltration analysis in the training datasets, a
significant increase in tumor-infiltrating M1 macrophages
was observed in LUSC tissues compared to control sam-
ples. Furthermore, MMP7, RTN1, ZIC2, KLRB1, and
CXCL13 were found to be significantly correlated with M1
macrophage infiltration in LUSC.
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Fig. 6. Validation of the 5-gene diagnostic signature. (A) Nomogram of 5 hub genes for predicting the risk of LUSC. (B,C) Calibration
curve (B) and decision curve analysis (DCA) (C) for validating the predictive accuracy of the nomogram. (D–F) ROC curve of the 5 hub
genes in external GSE33532 (D), GSE21933 (E), and GSE8569 (F) datasets.

Our study focused on the application ofmachine learn-
ing to further refine diagnostic strategies. Four machine
learning models—SVM, GLM, RF, and XGB—were em-
ployed to identify the optimal model by comparing their
predictive performances. The SVM model outperformed
the others, achieving the highest AUC value of 0.995. The
5-gene SVM model consistently demonstrated high accu-
racy in predicting LUSC across three externally validated
datasets. Because our model is built on a highly refined
set of 143 genes, carefully selected for their strong associa-
tion with both DEGs in LUSC and M1 macrophages. This
approach effectively reduces noise and enhances biological
relevance. Additionally, the SVM algorithm is particularly
adept at finding optimal boundaries in high-dimensional
data, which is suited for this work. As a result, the AUC
value has reached 1.000 in each dataset. These findings
suggest that the model offers a novel diagnostic approach
for LUSC. To our knowledge, no predictive signature based
on M1 macrophage-related DEGs has been previously re-
ported. Joon et al. [36] identified 40 genes using an XG-
Boost model that exhibited better predictive performance
for LUSC than SVM, RF, k-Nearest Neighbor (kNN), and
Decision Tree (DT) models. Ye et al. [37] identified ten
feature miRNAs using the SVM model that could distin-
guish LUSC tissues from adjacent tissues. Therefore, our
5-gene SVMmodel offers the advantage of achieving simi-
lar predictive accuracy with fewer genes, while also provid-
ing insights into the relationship between M1 macrophages
and LUSC.

Additionally, a nomogram model was developed for
diagnosing LUSC based on the expression profiles of
MMP7, RTN1, ZIC2, KLRB1, and CXCL13, with fur-
ther validation of its predictive power and clinical utility.
MMP7 exhibits anti-inflammatory effects [38] and is upreg-
ulated in various tumors, including LUSC [39]. Takayuki
Shiomi et al. [40] have demonstrated CD151 may function
as a possible docking molecule for proMMP-7 activation
in LUAD. Loss of MMP7 resulted in M1 macrophage po-
larization within H. pylori-infected stomachs [41]. Reticu-
lon 1 (RTN1), associated with the endoplasmic reticulum,
is a specific marker for neurological diseases and cancers
[42]. McGonigle et al. [43] demonstrated that RTN1 regu-
lates macrophage differentiation andmigration. Alterations
in RTN1 expression can further lead to an increased pro-
portion of immune effector cells, including CD4+ T cells
and CD8+ T cells, which are often associated with a favor-
able prognosis. Importantly, RTN1 expression was signif-
icantly correlated with the expression of multiple immune
checkpoints, such as CD274 (PD-L1), CTLA4, HAVCR2,
LAG3, PDCD1 (PD-1), PDCD1LG2 (PD-L2), TIGIT, and
SIGLEC15, suggesting a potential immunomodulatory role
that may involve macrophage-mediated regulation of the
tumor immune microenvironment [44]. Zinc finger pro-
tein of cerebellum 2 (ZIC2) drives immunosuppressive M2
macrophage polarization in nasopharyngeal carcinoma by
activating JUNB transcription and stimulating M-CSF se-
cretion [45]. It also correlates with a suppressed tumor
immune microenvironment, showing negative associations
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Fig. 7. Immunohistochemistry validation of the predictive performance of M1macrophage-associated biomarkers. (A) Represen-
tative images of immunohistochemical staining for Zinc finger protein ZIC 2 (ZIC2), Reticulon-1 (RTN1), Matrix metalloproteinase-7
(MMP7), Killer cell lectin-like receptor subfamily B member 1 (KLRB1) and C-X-C motif chemokine 13 (CXCL13) in normal lung
tissues and LUSC tissues (scale bar, 50 µm). (B) Statistical analysis of immunohistochemistry results in normal lung tissues and LUSC
tissues. Data are mean± SD. n = 48. *p< 0.05, and ***p< 0.001. (C) ROC curve of the 5-gene signature in the immunohistochemical
(IHC) data.

with tumor-infiltrating lymphocytes and immune check-
point expression in breast cancer [46]. Furthermore, ZIC2
enhances cancer stem cell traits by upregulating OCT4 ex-
pression in lung adenocarcinoma cells [47]. This study pro-

vides the first evidence linking ZIC2 to LUSC. KLRB1
(CD161), a C-type lectin-like receptor predominantly ex-
pressed on NK cells and CD8 T cells, has been identified
together with its ligand LLT1 (CLEC2D) as an emerging

10

https://www.imrpress.com


immune checkpoint [48]. Studies indicate that high KLRB1
expression is associated with increased infiltration of M1
macrophages and CD8 T cells in the tumor microenviron-
ment [49]. This effect is likely mediated indirectly through
the secretion of pro-inflammatory cytokines such as Inter-
feron gamma (IFN-γ) by activated KLRB1 immune cells,
which promotes the polarization of macrophages toward an
anti-tumor M1 phenotype. CXCL13 chemokine, originally
discovered as a B-cell chemoattractant, is widely impli-
cated in tumor development and progression [50]. CXCL13
secretion is a hallmark of M2-polarized macrophages and
is widely associated with pro-tumor functions across mul-
tiple cancers. In lung and renal cell carcinoma models,
CXCL13+ macrophages promote tumor growth, invasion,
and metastasis, with genetic deletion of CXCL13 or its re-
ceptor CXCR5 significantly suppressing cancer develop-
ment [51]. Importantly, CD68+macrophages within the
tumors were the origin of the observed increased CXCL13
levels [52].

While our study used comprehensive bioinformatics
analyses and machine learning models, there are limita-
tions that must be acknowledged. First, although machine
learning models and comprehensive bioinformatics anal-
yses were used and validated in both training and exter-
nal validation datasets, the external validation dataset has
a relatively small sample size and lacks standardized clin-
ical phenotype information. This limitation may affect the
generalizability of the model, suggesting that more detailed
clinical data are needed to fully confirm its predictive per-
formance. Second, further experimental studies are re-
quired to explore the functional relationship between the 5
hub genes and M1 macrophages.

These five genes are expected to be included in rou-
tine pathological diagnosis and liquid biopsy, such as de-
tecting the expression levels of these genes in circulating
immune cells or exosomes from blood samples for non-
invasive early detection for LUSC. However, it still faces
challenges such as technical standardization, clinical vali-
dation, and improvement of sensitivity. The prognostic and
diagnostic value of these five genes must be validated in
large-scale, multi-center clinical trials to ensure their appli-
cability across diverse patient populations. With the devel-
opment of big data, artificial intelligence and multi-omics
technologies, it is expected that these barriers will be over-
come in the future to achieve early diagnosis and precise
treatment of LUSC.

5. Conclusion
This study identified 143 M1 macrophage-related

DEGs. Among the machine learning models evaluated, the
SVM model based on five genes was selected as the op-
timal approach after comparison with four other models.
The genes MMP7, RTN1, ZIC2, KLRB1, and CXCL13 ex-
hibited high predictive accuracy for LUSC, potentially im-
proving diagnostic precision and informing more effective
treatment strategies for the disease.
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