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Abstract

Background: Breast cancer (BC) is a major global malignancy with rising incidence. The lack of effective traditional anti-human
epidermal growth factor receptor 2 (HER2) therapies for HER2-low BC underscores the critical need to identify this subtype early.
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) radiomics can help to differentiate between HER2-low and HER2-
zero BC, although this method has limited contrast and access. Ultrasound (US) is a cost-effective technique, although radiomics research
remains limited, and traditional radiomics largely ignores peritumoral value. This study aimed to determinewhether intra- and peritumoral
radiomic features observed by grayscale US can differentiate between HER2-low and HER2-zero BC. Methods: This retrospective
diagnostic study enrolled 209 consecutive BC cases from May 2022 to January 2024. These cases were categorized as HER2-low
(immunohistochemistry (IHC) 1+/2+, no erythroblastic leukemia viral oncogene homolog 2 (ERBB2) fluorescence in situ hybridization
(FISH) amplification, n = 129) or HER2-zero (IHC 0, n = 80). Patients were age-matched and randomly assigned (block size = 10) to the
training (n = 155) and validation (n = 54) cohorts, with predefined exclusion criteria applied (e.g., missing pathological data, poor US
quality). After calibration, two experienced radiologists performed blinded manual intratumoral region-of-interest (ROI) segmentation
(ITK-SNAP v3.8.0), with interoperator consistency confirmed by immunocytochemistry (ICC)>0.75. Pyradiomics was used to automate
the expansion of the 1 mm and 2 mm peritumoral regions, feature extraction, and z-score normalization. Features were filtered via
Spearman’s correlation, Mann-Whitney U test, and least absolute shrinkage and selection operator (LASSO) regression (10-fold cross-
validation for optimal λ). A predictive model for HER2 status was built using LASSO regression (variance inflation factor (VIF) <1.2
to avoid multicollinearity), and the performance of this model was evaluated for accuracy, sensitivity, specificity, receiver operating
characteristic (ROC) curves (area under the curve, AUC), calibration curves (Hosmer-Lemeshow test), and decision curve analysis
(DCA). A radiomic nomogram integrating radiomic and clinical signatures was evaluated in the validation cohort. Statistical analyses
were performed using R v4.2.2 (two-sided p < 0.05 for significance). Results: The clinical model showed limited discrimination in
the test set (AUC = 0.594). A total of 3320 radiomic features were extracted from intratumoral, as well as 1 mm and 2 mm peritumoral
regions, with the selection of 30, 19, and 24 features, respectively, via LASSO regression. The intratumoral-only model had AUCs
of 0.730 (training) and 0.649 (test), while the intratumoral + 1 mm peritumoral model exhibited enhanced performance (training AUC
= 0.852; test AUC = 0.868). The 2 mm peritumoral-integrated model demonstrated a high AUC in the training set (0.918), but poor
performance in the test set (AUC = 0.509). A combined model (intratumoral + 1 mm peritumoral features + clinical factors) was used to
generate a nomogram (no multicollinearity, VIF: 1.039–1.179) with AUCs of 0.882 (training) and 0.835 (test). The DCA confirmed the
clinical utility of the combined model, although the diagnostic performance of the model was slightly lower than that of the intratumoral
+ 1 mm peritumoral model. Conclusions: Combining 1 mm peritumoral radiomics with intratumoral and clinical data improves the
discrimination of HER2-low from HER2-zero BC (AUC = 0.882), thus reducing the need for biopsy and assisting with therapy planning.
Optimizing peritumoral margins enhances diagnostic accuracy, thereby validating radiomics for BC subtyping.
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1. Introduction
Breast cancer (BC) is the predominant malignancy in

the female population globally, and remains the most fre-
quent cause of cancer-related death among women [1]. BC
has considerable negative effects on quality of life and sur-
vival, accounting globally for approximately 43.8 million
cases within a 5-year prevalence period [2]. Epidemio-
logic data from 2024 show sustained increases in BC in-
cidence rates across demographic strata [3]. Human epi-
dermal growth factor receptor 2 (HER2)-overexpression is
observed in 15% of invasive BCs and correlates with in-
creased metastatic propensity and adverse prognostic tra-
jectories [4]. Current translational research in precision
oncology has redefined therapeutic paradigms for HER2-
driven malignancies, resulting in significant survival bene-
fits from targeted treatment [5]. HER2 signaling not only
drives BC progression, but also crosstalks with estrogen re-
ceptor pathways, thereby influencing treatment resistance
and metastatic potential [6].

Recent oncopathologic consensus defines the HER2-
low phenotypic subset as tumors which demonstrate an
immunohistochemical (IHC) staining intensity for HER2
of 1+ or 2+, with concomitant absence of erythroblastic
leukemia viral oncogene homolog 2 (ERBB2) gene am-
plification as detected by fluorescent in situ hybridization
(FISH) [7,8]. The physiological interplay between the
mammary gland and the female reproductive system under-
scores the shared risk factors and pathogenic mechanisms
between BC (including HER2-low subtypes) and gyneco-
logic cancers. Recent studies have demonstrated that ge-
netic susceptibility (e.g., breast cancer antigen (BRCA) mu-
tations), hormonal dysregulation, and lifestyle factors (e.g.,
obesity, smoking) contribute to BC pathogenesis and even
to secondary primary malignancies [9]. Studies have also
shown that traditional anti-HER2 treatment modalities are
not effective in the treatment of HER2-low BC [2]. How-
ever, clinical data indicate that antibody-drug conjugates
such as trastuzumab deruxtecan and trastuzumab duocar-
mazine might confer benefits to patients with low HER2
expression. Indeed, trastuzumab deruxtecan has demon-
strated efficacy in HER2-low BC [10], thus expanding
the scope of treatment beyond traditional HER2-positive
tumors [10–12]. Therefore, identifying HER2-low sta-
tus at an early stage during BC disease progression is of
paramount importance for customizing treatment strate-
gies, particularly in the case of therapy-resistant, hormone
receptor-negative tumors [13,14].

Although ultrasound (US) is sensitive for the detec-
tion of BC [15], the ability to differentiate between HER2-
low and HER2-zero expression continues to pose a signif-
icant challenge. Dynamic contrast-enhanced magnetic res-
onance imaging (DCE-MRI) radiomics has been used to
help distinguish between these two BC subtypes [16]. Al-
though Bian et al. [17] reported an MRI-based radiomics
framework for this differentiation, their methodology is

constrained by the need for contrast-enhanced protocols
and specialized imaging facilities. Moreover, reliance on
core needle biopsies as the principal means for ascertain-
ing HER2 status has proven inadequate, with an approxi-
mately 20% rate of misdiagnosis in cases of HER2-low BC
[18]. As a primary modality for BC screening, US offers
distinct advantages of widespread accessibility and cost-
effectiveness compared to MRI. However, despite its clini-
cal significance, there is only limited research on the corre-
lation between US radiomics features and HER2 expression
status (HER2-zero vs. HER2-low), with few studies having
systematically explored this potential association.

Traditional radiomics analysis has predominantly fo-
cused on intratumoral characteristics, largely neglecting
the diagnostic potential of peritumoral regions. However,
given the heterogeneous invasion patterns observed across
different tumor types, where peritumoral areas serve as the
primary pathway for tumor infiltration, these regions may
provide critical complementary information for tumor di-
agnosis and characterization [19]. Furthermore, the use of
US intratumoral and peritumoral radiomics to differentiate
between HER2-low and HER2-zero BC has yet to be re-
ported. The aim of this study was therefore to evaluate the
utility of intratumoral and peritumoral radiomic signatures
generated by grayscale US in differentiating HER2-low BC
from HER2-zero BC.

2. Materials and Methods
The study protocol was approved by the Institutional

ReviewBoard of Shenzhen People’s Hospital (ethical clear-
ance number: LL-KY-2022479-02) and was conducted
in accordance with the principles of the Declaration of
Helsinki. All participants provided written informed con-
sent for the use of their clinical and imaging data prior to
inclusion in this retrospective study. The study design, ex-
ecution, and reporting adhered to the rigorous standards
of the standards for reporting diagnostic accuracy studies
(STARD) guidelines [20] for research into diagnostic ac-
curacy, thereby ensuring transparency, reproducibility, and
ethical integrity throughout the investigation.

2.1 Study Population
This retrospective diagnostic study was conducted

from May 2022 to January 2024 and enrolled consecutive
BC patients (n = 209) who met pre-defined HER2 status
criteria. HER2-low (n = 129) was defined as IHC 1+/2+
with no FISH amplification of ERBB2, while HER2-zero
(n = 80) was defined as IHC 0, as per the 2018 ASCO/CAP
guidelines [21]. The cohort was stratified into training (n
= 155) and validation (n = 54) subsets through computer-
generated block randomization (block size = 10), withmean
ages of 52.97 ± 11.76 and 52.20 ± 12.46 years, respec-
tively. Covariate balance was maintained through age-
matching algorithms. All participants met standardized in-
clusion criteria through centralized pathology verification.
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Fig. 1. Flowchart showing inclusion and exclusion criteria. US, Ultrasound; BC, Breast cancer; ROI, region of interest; LR, logistic
regression.

Continuous variables were assessed for normal distribution
using the Shapiro-Wilk test (α = 0.05) and visual inspection
of quantile-quantile (Q-Q) plots. Variables with a skewed
distribution (p < 0.05 on Shapiro-Wilk test) were reported
as the median with interquartile range (IQR), while nor-
mally distributed variables were reported as the mean ±
standard deviation (SD). 

The exclusion criteria were: (1) lack of postoperative
pathological data; (2) poor-quality US images; (3) presence
of tumor other than BC; (4) BC patients who had received
radiotherapy or neoadjuvant chemotherapy within the pre-
vious three months; (5) patients with psychiatric disorders
that hindered cooperation during clinical examinations; and
(6) BC patients with open skin ulcers on the breasts. A
flowchart depicting the patient inclusion process is shown
in Fig. 1, while Fig. 2 presents a workflow diagram outlin-
ing the steps involved in constructing the radiomics model.

2.2 Region-of-Interest (ROI) Segmentation and Feature
Extraction

Manual segmentation of tumor regions was conducted
with rigorous quality control measures in order to minimize
operator-dependent variability. Prior to formal segmenta-
tion, each participating radiologist (n = 3) underwent a stan-
dardized training program on 15 calibration cases that were
excluded from the main study cohort. This training estab-

lished consensus on critical segmentation parameters, in-
cluding boundary definition criteria for irregular margins,
protocols for handling heterogeneous echo patterns, and
standardized ITK-SNAP software settings (version 3.8.0;
http://www.itksnap.org/; developed by Paul A. Yushkevich,
University of Pennsylvania, Philadelphia, PA, USA). The
segmentation process itself involved a dual-observer design
with two independent radiologists. Each had more than
a decade of specialized experience in breast US, and per-
formed blinded annotations without access to pathological
results. To assess interoperator consistency, the immuno-
cytochemistry (ICC) was calculated from 30 randomly se-
lected US images, with ICC values >0.75 indicating satis-
factory agreement in ROI delineation. Automated expan-
sion of peritumoral regions (1 mm and 2 mm) was im-
plemented using algorithms from the Pyradiomics pack-
age. Radiomic feature extraction and selection were subse-
quently performed through the Pyradiomics platform (https:
//pyradiomics.readthedocs.io/en/latest/index.html) to quan-
tify image characteristics.

The radiomic features underwent standardized prepro-
cessing through z-score normalization to eliminate dimen-
sional disparities. Feature correlation analysis was con-
ducted using Spearman’s rank correlation coefficient, with
highly correlated features (Spearman’s ρ > 0.9) retained
to mitigate multicollinearity. Subsequently, the Mann-
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Fig. 2. ROI Segmentation. Note: To define the ROI, manual segmentation was conducted on the intratumoral area in US images, with
subsequent AI-assisted automatic segmentation of the peritumoral region at 1 mm and 2 mm intervals. Feature Selection: Features were
derived from the delineated US images around the tumor. LASSO regression models were employed to select features, with the aim of
enhancing the quality of analysis. Model Construction & Evaluation: Omics models were built based on the selected feature variables,
and their diagnostic performance was assessed through analysis by AUC and DCA. AUC, area under the curve; DCA, decision curve
analysis; LASSO, least absolute shrinkage and selection operator.

Whitney U test was applied to assess feature discriminative
capacity, excluding non-significant features (p> 0.05). Fi-
nal feature selection was carried out via LASSO (least ab-
solute shrinkage and selection operator) regression on the
training cohort, where the L1 penalty term automatically
nullified non-informative features by driving their coeffi-
cients to zero. The optimal regularization parameter λ was
determined through 10-fold cross-validation based on min-
imum criteria, ensuring model generalizability. Features
with non-zero coefficients were subsequently incorporated
into the logistic regression framework.

2.3 Model Construction and Performance Evaluation

LASSO regression was employed to select variables
for the development of a predictive model of HER2 sta-
tus. Prior to building the predictive model, multicollinear-
ity among variables was assessed by calculating the vari-
ance inflation factor (VIF). A VIF value <1.2 indicated

that no multicollinearity existed among the final predictors
[22]. The diagnostic performance of the model was as-
sessed through metrics including accuracy, sensitivity, and
specificity, all of which were obtained from the confusion
matrix. A radiomic nomogram was developed by integrat-
ing the radiomic signature with the clinical signature. Its
diagnostic performance in the test cohort was assessed by
plotting receiver operating characteristic (ROC) curves, and
the calibration efficiency through calibration curves. The
Hosmer-Lemeshow test was applied to gauge the calibra-
tion capability of the nomogram, and decision curve anal-
ysis (DCA) was performed to determine the clinical utility
of the predictive model.

2.4 Statistical Analysis

Statistical analyses were conducted using R software
(version 4.2.2; The R Foundation for Statistical Comput-
ing, Vienna, Austria). A two-sided p-value of <0.05 was
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Table 1. Baseline characteristics of the study cohort.
Variables Total (n = 209) HER2-zero (n = 80) HER2-low (n = 129) p-value

Age (years) 50 (44, 62) 52 (45, 62) 50 (43, 60) 0.414
Height (cm) 158 (155, 161) 158 (154, 161) 158 (155, 161) 0.788
Weight (kg) 57 (55, 60) 58 (54, 60) 57 (55, 60) 0.860
Menopausal status 0.844

Premenopausal 105 (50%) 39 (49%) 66 (51%)
Postmenopausal 104 (50%) 41 (51%) 63 (49%)

History of breast cancer 0.745
Absent 199 (95%) 77 (96%) 122 (95%)
Present 10 (5%) 3 (4%) 7 (5%)

Location 0.484
Right 102 (49%) 42 (52%) 60 (47%)
Left 107 (51%) 38 (48%) 69 (53%)

Clinical tumor stage 0.303
T1 131 (62%) 46 (57%) 85 (66%)
T2 or above 78 (38%) 34 (42%) 44 (34%)

Clinical nodal stage 0.439
N0 152 (73%) 61 (76%) 91 (70%)
N+ 57 (27%) 19 (24%) 38 (30%)

L (mm) 18 (13, 25) 19 (14, 25) 18 (13, 26) 0.944
S (mm) 14 (10, 20) 15 (12, 20) 14 (10, 18) 0.192
Middle (mm) 11 (8, 14) 12 (8, 15) 11 (8, 13) 0.080
Shape 0.383

Oval or Round 1 (0%) 1 (1%) 0 (0%)
Irregular 208 (100%) 79 (99%) 129 (100%)

Orientation 0.190
Parallel 48 (23%) 14 (18%) 34 (26%)
Not parallel 161 (77%) 66 (82%) 95 (74%)

Margin <0.001
Not circumscribed 188 (90%) 63 (79%) 125 (97%)
Circumscribed 21 (10%) 17 (21%) 4 (3%)

Echo patten 0.222
Hypoechoic 33 (16%) 9 (11%) 24 (19%)
Others 176 (84%) 71 (89%) 105 (81%)

Posterior echo 0.600
Shadowing 108 (52%) 39 (49%) 69 (53%)
No posterior features 101 (48%) 41 (51%) 60 (47%)

Calcification 0.965
Absent 142 (68%) 55 (69%) 87 (67%)
Present 67 (32%) 25 (31%) 42 (33%)

Vascularity 0.427
Absent 83 (40%) 35 (44%) 48 (37%)
Present 126 (60%) 45 (56%) 81 (63%)

ER 90 (80, 90) 90 (58, 90) 90 (80, 90) 0.001
PR 80 (10, 90) 80 (2, 90) 80 (40, 90) 0.040
KI67 20 (10, 30) 30 (10, 40) 20 (10, 30) 0.002
Note: L,Maximum diameter; S, Shortest path; Middle, anteroposterior diameter; HER2, human epidermal
growth factor receptor 2; ER, estrogen receptor; PR, progesterone receptor; KI67, marker of proliferation
Ki-67; T1, tumor stage 1; T2, tumor stage 2.

set as the threshold to define statistical significance. For
descriptive statistics, continuous variables were presented
as mean ± standard deviation, whereas categorical vari-
ables were expressed as median (interquartile range) and

frequency (%). TheMann-Whitney U test was employed to
analyze continuous variables, while either the chi-squared
test or Fisher’s exact test was used for categorical variables,
depending on the stratification of the dataset and its suit-
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Table 2. Univariable and multivariable analyses of clinical characteristics and clinicopathologic features of patients in the
training set (n = 155).

Variable Univariable analysis Multivariable analysis

OR 95% CI p-value OR 95% CI p-value

Clear 0.333 0.129–0.862 0.057 - - -
KI67 1.002 0.994–1.010 0.697 - - -
Height 1.002 1.001–1.004 0.020 1.001 0.947–1.058 0.971
Age 1.006 1.001–1.011 0.049 0.982 0.957–1.008 0.245
ER-positivity 1.007 1.004–1.010 0.001 1.019 1.007–1.033 0.012
Weight 1.007 1.002–1.011 0.021 0.981 0.918–1.048 0.630
PR-positivity 1.007 1.004–1.011 0.002 1.000 0.990–1.010 0.971
Middle 1.011 0.990–1.031 0.381 - - -
L 1.014 1.003–1.026 0.046 0.996 0.969–1.024 0.828
S 1.014 0.999–1.030 0.128 - - -
T 1.077 0.688–1.685 0.786 - - -
Direction 1.196 0.889–1.611 0.322 - - -
Margin 1.229 0.845–1.786 0.366 - - -
Posteriorecho 1.314 0.908–1.900 0.223 - - -
Echo 1.339 1.002–1.791 0.098 - - -
Bloodflow 1.350 0.958–1.902 0.150 - - -
Shape 1.460 1.116–1.912 0.021 2.134 0–17,378.69 0.890
Location 1.484 1.012–2.175 0.089 - - -
Calcification 1.941 1.188–3.171 0.026 1.322 0.696–2.514 0.474
N 2.333 1.323–4.116 0.014 1.452 0.715–2.948 0.386
History 2.500 0.631–9.895 0.273 - - -
Note: CI, confidence interval; OR, odds ratio; N, lymph node metastasis; T, clinical
tumor stage.

ability. In addition, the Analysis of Variance (ANOVA)
and Kruskal-Wallis H tests were employed when compar-
ing three or more groups.

3. Results
3.1 Patient Clinical Results

This investigation comprised 209 eligible patients
stratified into training (n = 155) and test (n = 54) cohorts.
Clinical profiling included patient age, anthropometric pa-
rameters (height/weight), tumor diameter, and spatial dis-
tribution (Table 1). Univariate logistic regression identi-
fied significant associations between HER2-low status and
age (odds ratio [OR] = 1.006, p = 0.049), height (OR =
1.002, p = 0.020), weight (OR = 1.007, p = 0.021), lymph
node metastasis (OR = 1.014, p = 0.046), ER-positivity
(OR = 1.007, p = 0.001), and progesterone receptor (PR)-
positivity (OR = 1.007, p = 0.002). Multivariate adjustment
revealed that ER status was the only independent predictor
of HER2-low status (OR = 1.019, 95% confidence interval
[CI]: 1.007–1.033; p = 0.012) (Table 2). The clinical pre-
diction model demonstrated limited discriminative capacity
in the test set (AUC = 0.594, 95% CI: 0.448–0.740). The
comprehensive performance evaluation, including calibra-
tion and decision curves for all models in both training and
test sets, is presented in Fig. 3.

3.2 Intratumoral and Peritumoral Feature Selection and
Model Construction

A total of 3320 radiomic signatures were extracted
fromwithin the intratumoral region and the 1 mm and 2mm
ROIs in the peritumoral region. These included 1651 intra-
tumoral features and 1651 peritumoral features. LASSO di-
mensionality reduction was used to select 30 features from
the intratumoral region, and 19 and 24 features from the
1 mm and 2 mm peritumoral regions, respectively. The se-
lected features and their corresponding coefficients for each
region are visualized in Fig. 4A–C. A composite radiomics
model was developed by integrating the intratumoral fea-
tures with the peritumoral features extracted from both the 1
mm and 2 mm regions. This model was designed to quanti-
tatively assess the differentiation of HER2-low fromHER2-
zero BC. The performance metrics of these models, as eval-
uated in the training and test cohorts, are detailed in Table 3.

The radiomics model based on intratumoral features
alone demonstrated an AUC of 0.730 (95% CI: 0.647–
0.814) in the training set, and 0.649 (95% CI: 0.489–0.808)
in the test set (Fig. 4D). In comparison, the peritumoral ra-
diomics model combining intratumoral features with a 1
mm ROI showed enhanced performance, achieving AUC
values of 0.852 (95% CI: 0.788–0.916) in the training set
and 0.868 (95% CI: 0.771–0.965) in the test set (Fig. 4E).
Expansion of the peritumoral ROI to 2 mm while main-
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Fig. 3. Model performance comparison. (A,B) Calibration curves for the clinical model, radiology model, and column chart model in
the training (A) and test (B) sets. (C,D) Decision curves for the clinical model, radiology model, and column chart model in the training
(C) and test (D) sets.

taining integration of intratumoral features resulted in the
model exhibiting superior training set performance, with an
AUC of 0.918 (95%CI: 0.876–0.959). However, a substan-
tial performance degradation was observed in the test set,
with an AUC of just 0.509 (95%CI: 0.357–0.662) (Fig. 4F).

These findings suggest that incorporation of peritu-
moral regions into radiomics analysis results in better pre-
dictive performance compared to using intratumoral analy-
sis alone. Additionally, by comparing results from different
peritumoral sizes, the peritumoral region with a 1 mm ROI,
in combination with the intratumoral model, was found to
have the best predictive performance.

3.3 Construction of the Combined Model
We next developed a comprehensive prediction model

by integrating intratumoral and 1 mm peritumoral US
imaging-derived radiomic features with clinical risk fac-
tors. This model led to the creation of a nomogram, de-
picted in Fig. 5, which was designed to discriminate be-
tween HER2-low and HER2-zero BCs. Notably, the VIFs

of the predictors in the nomogram, which included clini-
cal risk factors and radiomic features, ranged from 1.039
to 1.179, indicating the absence of multicollinearity among
the variables. The model performance was assessed based
on its AUC value. In the training set, the model exhib-
ited an AUC of 0.882 (95% CI: 0.826–0.938), while in
the test set the AUC was 0.835 (95% CI: 0.727–0.942).
DCA revealed that nomograms incorporating clinical fea-
tures, intratumoral and 1 mm peritumoral US imaging ra-
diomic features were capable of differentiating HER2-low
from HER2-zero BC.

Notably, the results indicated the diagnostic ability of
the nomogram was marginally lower than that of the intra-
tumoral and 1 mm peritumoral radiomics models.

4. Discussion
In this study, we developed a predictive model inte-

grating clinical parameters and grayscale US-based intra-
tumoral and peritumoral radiomic features to differentiate
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Fig. 4. AUC plots of the radiomics model for the area in and around the tumor. (A) Radiological characteristics of the intratumoral
area selected by LASSO. (B) Radiomics characteristics of the 1 mm peritumoral area selected by LASSO. (C) Radiomics characteristics
of the 2 mm peritumoral area selected by LASSO. (D–F) ROC curves of intratumoral (D), 1 mm peritumoral (E) and 2 mm peritumoral
(F) regions.

HER2-low from HER2-zero status in BC patients. Pre-
vious studies that concentrated on the imaging profiles of
HER2-negative and HER2-positive cases reported diagnos-
tic performance ranging from moderate to substantial ac-
curacy [23,24]. However, until recently, HER2-low BC
has often been under-represented in clinical research. The
emergence of new antibody-drug conjugates (ADCs) tar-
geting HER2 has once again drawn attention to HER2-low
tumors [25]. A subset of BCs featuring low HER2 expres-
sion level and lacking significant ERBB2 amplification is
designated as “HER2-low”. These tumors are character-
ized by an IHC score for HER2 of either 1+ or 2+, and
a negative test result for ERBB2 in ISH [26]. Given their
different biological phenotype, therapeutic responses, and
clinical outcomes, HER2-low BC should be considered a
novel BC subtype separate fromHER2-zero (IHC 0) BC. In
future, the definition of HER2 status in BC is likely to in-
clude three categories, comprising HER2-positive, HER2-
negative, and HER2-low, of which the latter subgroup may
benefit from targeted therapy regimens.

Bian et al. [17] devised a multiparametric, MRI-
based radiomics approach to discriminate HER2-zero tu-
mors from HER2-positive tumors. The former were fur-
ther subdivided into HER2-low and HER2-zero subtypes,

achieving an acceptable AUC of 0.81. Yin et al. [16] also
reported a DCE-MRI radiomics model to differentiate these
two subtypes, achieving an AUC of 0.78. While their work
demonstrated the potential of radiomics for HER2 subtyp-
ing, their approach requires specialized equipment and con-
trast administration, thus limiting widespread clinical adop-
tion. In contrast, our US-based model not only achieves
superior performance (AUC = 0.882), but also overcomes
these practical constraints through the inherent advantages
of US technology. Moreover, the performance of our model
surpasses that of the nomogram model by Yin et al. [16].
US is one of the primary modalities for clinical BC screen-
ing, with considerable merit beyond its extensive availabil-
ity and cost-effectiveness compared toMRI. The ubiquitous
availability of US in primary care clinics and community
hospitals addresses a critical accessibility gap. Whereas
MRI scanners are predominantly available in tertiary care
centers (present in only 18% of Chinese county-level hos-
pitals according to recent surveys), US systems are present
in over 95% of healthcare facilities. This is particularly im-
portant for the detection of HER2-low, as such patients of-
ten present initially at community healthcare settings before
specialist referral.
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Table 3. Diagnostic performance of the radiomics model.
Set Signature AUC 95% CI PPV NPV Sensitivity Specificity Accuracy

Train

Clinic 0.632 0.547–0.718 0.661 0.636 0.867 0.344 0.656
Intra 0.730 0.647–0.814 0.758 0.679 0.800 0.623 0.728

IntraPeri 1 mm 0.852 0.788–0.916 0.884 0.646 0.678 0.869 0.755
IntraPeri 2 mm 0.918 0.876–0.959 0.835 0.852 0.910 0.742 0.841
Nomogram 0.882 0.826–0.938 0.828 0.846 0.911 0.721 0.834

Test

Clinic 0.594 0.448–0.740 0.718 0.400 0.757 0.353 0.630
Intra 0.649 0.489–0.808 0.745 0.714 0.946 0.294 0.741

IntraPeri 1 mm 0.868 0.771–0.965 0.923 0.536 0.649 0.882 0.722
IntraPeri 2 mm 0.509 0.357–0.662 0.900 0.370 0.209 0.952 0.453
Nomogram 0.835 0.727–0.942 0.926 0.556 0.676 0.882 0.741

Note: Intra, intratumoral features; Peri, peritumoral features; PPV, positive predictive value; NPV, negative
predictive value; Nomogram, combined clinical features, intratumoral and 1 mm peritumoral US imaging
features.

Fig. 5. Construction of the nomogram model, incorporating clinical features with intratumoral and peritumoral US imaging-
derived radiomic features. ER, ER-positivity.

Previous studies on radiomics in BC molecular typ-
ing have focused on deriving information and features from
the intratumoral region to differentiate between HER2-low
and HER2-zero BC [27–29]. However, there is now in-
creasing evidence for a substantial correlation between the
tumor microenvironment (TME) and cancer cell behavior,
including unrestricted proliferation and immune evasion.
This implies that peritumoral regions may also furnish valu-
able information [30]. Therefore, in the present study we
used IHC and FISH to determine HER2 status, combined
the results from intratumoral and adjacent peritumoral re-
gions of BC, designed a comprehensive radiomics and clin-
ical model by applying machine learning algorithms, and

compared the diagnostic accuracy of different models for
discriminating HER2-low from HER2-zero BC. Our inte-
grated model demonstrated robust discriminative perfor-
mance, with AUC values of 0.882 (95% CI: 0.826–0.938)
in the training cohort and 0.835 (95% CI: 0.727–0.942) in
the validation cohort. These results indicate that an intratu-
moral and peritumoral radiomics model, combined with the
clinical model, can effectively distinguish between HER2-
low and HER2-zero BC subtypes.

Furthermore, this study found the clinical model ex-
hibited relatively poor performance when compared to the
clinical model combined with the intratumoral and peritu-
moral radiomics model, as well as to the nomogram model.
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The latter two models demonstrated a high discriminative
capacity between HER2-low and HER2-zero BCs. The
AUC of the clinical model in this study was 0.594, which is
considerably lower than the 0.866 reported by Chen et al.
[27] for their clinical model. These authors included ER
status, PR status, lymph node metastasis and internal echo
to construct their clinical model after multivariate analy-
sis, whereas the present study included only the ER sta-
tus. The difference in AUC value may also be partly due
to the limited sample size of our study. This led to a wide
distribution of clinical data, causing certain relevant fac-
tors to be excluded following multi-factor screening. In
future investigations, we plan to expand the cohort size to
enhance the generalizability and robustness of our model.
Notably, the highest diagnostic performance in the test set
was not achieved by the nomogram model. Although this
model incorporated both clinical and radiomic data, the
AUC was 0.835 (95% CI: 0.730–0.940). Instead, the in-
tratumoral and peritumoral radiomic model exhibited supe-
rior diagnostic efficacy, achieving an AUC of 0.868 (95%
CI: 0.770–0.970). Critically, the high positive predictive
value (PPV = 0.923) of our 1 mm intra-peri-tumoral model
signifies excellent reliability for the confirmation of  HER2-
low status, thereby strengthening the indication for biopsy.
Conversely, the moderate negative predictive value (NPV
= 0.536) suggests that a negative result   does not indepen-
dently rule out  the target condition, highlighting the need to
integrate this tool with other clinical assessments for com-
prehensive decision-making.

This study focused on the 1 mm and 2 mm peritu-
moral regions for feature extraction. Nevertheless, uncer-
tainties persist concerning the most appropriate delineation
of the peritumoral region in BC. To date, a globally recog-
nized gold standard for defining the peritumoral region in
this specific clinical scenario is still lacking. The adoption
of multi-scale, fixed-distance zones (0 mm, 1 mm, 2 mm)
in the current study was based on existing findings in the
field of BC radiomics and research into the TME, as well
as validation results from our own study. The goal of this
design is to strike a balance between capturing biologically
relevant information (e.g., immune infiltration, neovascu-
larization in the TME) and ensuring practical feasibility in
clinical imaging analysis. Zhao et al. [31] provided com-
pelling evidence for the utility of multi-scale peri-tumoral
regions in predicting lympho-vascular invasion (LVI) in BC
via DCE-MRI. Their multi-institutional study of 496 inva-
sive BC cases involved the construction of models targeting
0–1mm, 1–3mm, and 3–5mm peritumoral regions. The 0–
1 mm peritumoral region contributed the highest weight co-
efficient in their fusionmodels [31]. After confirming 1mm
as the basic margin, we investigated the concept of multi-
scale peritumoral margin validation, expanded the margin
outward using 1 mm as the minimum unit, and sequentially
designed larger peritumoral margins of 2 mm and 3 mm.
We then constructed the respective radiomics models and

tested their efficacy. However, the efficacy of models with
2 mm and larger peritumoral margins was all inferior. The
AUC value, sensitivity, and specificity of the 2 mm margin
model were significantly lower compared with the 1 mm
model, while the efficacy of models with 3 mm margins
or greater was even lower. In summary, the decisions re-
garding margin size in our study and the overall scope of
this discussion are based on existing findings from previous
BC peritumoral studies, combined with validation from our
own experimental data, giving rise to the final scheme.

The 1 mm region is considered optimal, as the
isolated peritumoral region often lacks sufficient data
to adequately reflect the nuances of BC aggressiveness
and US signal transmission. Moreover, the 2 mm re-
gion may contain excessive normal breast tissue, reduc-
ing the distinction between HER2-low and HER2-zero
BC types. For example, in the final characteristics,
“peri_wavelet_HLL_firstorder_Mean” reflects the average
gray intensity of the peritumoral region post-wavelet trans-
formation. Biologically, a higher value for this feature may
indicate more prominent abnormal signals (e.g., inflamma-
tion or fibrosis) in HER2-low peritumoral tissues. Inflam-
mation in the TME can attract immune cells that release cy-
tokines to promote tumor growth and angiogenesis, while
fibrosis forms a rigid extracellular matrix facilitating tumor
cell invasion. In contrast, HER2-zero tumors show rela-
tively homogeneous signals in the peritumoral region, with
the difference facilitating subtype differentiation and pro-
viding insights into the distinct biological behaviors of this
tumor subtype. “Intra_exponential_glszm_ZoneVariance”
characterizes the variability in size of intratumoral homo-
geneous regions. Its negative weight implies that HER2-
low tumors are likely to have more uniform intratumoral
zone distribution. In contrast, HER2-zero tumors exhibit
higher intratumoral heterogeneity, which is closely linked
to tumor prognosis and treatment response, and may be as-
sociated with necrotic or cystic regions. Necrotic areas of-
ten indicate a more aggressive tumor phenotype, arising
when rapid tumor growth outpaces blood supply, making
this feature a valuable biological marker for distinguishing
the two subtypes. “Peri_wavelet_LHL_glcm_Idn” quanti-
fies the local homogeneity of peritumoral tissue via inverse
difference normalization. A negative value for this char-
acteristic indicates higher heterogeneity in the HER2-low
peritumoral micro-environment, possibly due to mixed fi-
brosis or inflammation. This can alter tumor-stroma inter-
actions, thereby affecting tumor cell motility and survival.
Tumor-stroma cross-talk, including immune cell infiltration
and angiogenesis, closely correlates with HER2 expression.
Such interactions are concentrated in the area adjacent to
the tumor, providing the biological signals needed to dis-
criminate between HER2 subtypes in our US radiomics
model [30,32]. The peritumoral micro-environment is a
critical hub for immunosuppressive cell interactions (e.g.,
cancer-associated fibroblast (CAF)-mediated T-cell inhibi-
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tion, tumor-associated macrophage (TAM)-induced ther-
apy resistance). The micro-environmental differences be-
tween HER2 subtypes are precisely what is targeted by
our peritumoral radiomics model [33]. The choice of 1
mm, rather than a broader margin, avoids diluting these
tumor-specific signals. Expansion beyond 1 mm, as in the 2
mmmodel, increases the proportion of normal breast tissue
(e.g., mammary ducts, adipose tissue) that is unrelated to
tumor-stroma interactions, which is likely to explain the ob-
served degradation in the performance of the test set (AUC
= 0.509). The findings of this research support the practi-
cality of peritumoral characteristics in US-based radiomics.
Furthermore, the clinical workflow integration of our US
radiomics model offers additional practical benefits. Un-
like MRI which requires separate scheduling, US can be
performed during routine diagnostic or biopsy procedures
without additional patient visits, thus reducing diagnostic
delays and allowing immediate clinical decision-making.
This is particularly valuable for time-sensitive cases. To-
gether, these advantages suggest our US-based approach
may be a transformative solution for the detection of HER2-
low BC in diverse clinical settings, from resource-limited
rural clinics to advanced cancer centers. This should help
address critical barriers to the widespread implementation
of precision diagnostics in BC care.

To address the inherent subjectivity of manual ROI
segmentation, we implemented rigorous measures to min-
imize operator-dependent variability. Prior to formal seg-
mentation, each participating radiologist (n = 3) completed
standardized training using 15 calibration cases that were
excluded from the main cohort. This established consen-
sus on critical parameters, including boundary definitions
for irregular margins, protocols for heterogeneous echo pat-
terns, and standardized ITK-SNAP software settings (ver-
sion 3.8.0; http://www.itksnap.org/; developed by Paul A.
Yushkevich, University of Pennsylvania, Philadelphia, PA,
USA). The segmentation process employed a dual-observer
design with two radiologists (each with>10 years of breast
US experience) performing blinded annotations without ac-
cess to pathological results. Inter-operator consistency was
quantitatively verified using ICC on 30 randomly selected
images, with a threshold of >0.75 for satisfactory agree-
ment. Automated expansion of peritumoral regions (1 mm
and 2 mm) and radiomic feature extraction/selection were
conducted via the Pyradiomics platform with fixed param-
eters to ensure standardization. These multi-step quality
control measures encompassed pre-segmentation training,
dual-observer blinded annotation, objective ICC verifica-
tion, and automated post-processing. Collectively, they
systematically mitigated subjectivity, enhanced the reliabil-
ity of our radiomic features, and strengthened the perfor-
mance of our model in discriminating between HER2-low
and HER2-zero BC.

Limitations
This study had several limitations that should be ac-

knowledged. Firstly, a single-center retrospective design
was adopted, where all enrolled cases were sourced from
only one institution. We plan to mitigate this constraint
by increasing the sample size and employing a multicenter
study framework. Second, the extraction of all radiomics
features based on manually delineated ROIs can be sub-
jective. Despite the use of a double depiction method to
ensure consistency, potential biases may still exist. To al-
leviate this limitation, features with a low ICC can be ex-
cluded to enhance robustness. At the same time, automatic
algorithms based on deep learning can be employed in fu-
ture to improve segmentation accuracy. This problem can
be addressed by implementing artificial intelligence to au-
tomatically delineate ROI areas.

5. Conclusions
This study is the first attempt to investigate the util-

ity of US-derived intratumoral and peritumoral features
in radiomic analysis to discriminate between HER2-low
and HER2-zero BC. Furthermore, the intra-peri-tumoral ra-
diomic model developed in this study provides an auxiliary
diagnostic tool to support the development of neoadjuvant
chemotherapy protocols, and decreases the need for inva-
sive biopsy procedures in BC patients. Our results confirm
that peritumoral features harbor crucial information regard-
ing the tumor itself, thereby justifying their inclusion in fu-
ture radiomic research.
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