

Review

Ethnomedicinal Uses, Phytochemistry, Pharmacological Activity, Therapeutic Potentials, and Functional Foods of *Coccinia grandis* (L.) Voigt: An Updated Review

Nawfal Hasan Siam^{1,*,†}, Nayla Nuren Snigdha^{1,†}

Submitted: 7 February 2025 Revised: 22 March 2025 Accepted: 8 April 2025 Published: 18 December 2025

Abstract

Coccinia grandis (L.) Voigt (ivy gourd) is popularly consumed in South Asia for food and therapeutic purposes. C. grandis acts as a remedy for various ailments, such as hypertension, diabetes, cancer, ulcers, diarrhea, jaundice, inflammation, fever, bronchitis, burns, skin eruptions, insect bites, allergies, eye infections, and urinary disorders. Researchers have identified phytoconstituents in diverse chemical classes from this species, including alkaloids, flavonoids, coumarins, esters, ethers, fatty acids, fatty alcohols, terpenoids, and phenolic compounds. Comprehensive research conducted in vitro and in vivo has confirmed the properties of the plant as antidiabetic, anticancer, antiparasitic, antimicrobial, hepatoprotective, analgesic, antipyretic, anti-Alzheimer's, anticataract, antileishmanial, anti-anaphylactic, anti-histaminic, and wound-healing agent, as well as being advantageous for cardiovascular health. Most pharmacological findings are derived from studies on the extracts and the subsequent phytoconstituents from this plant species. Nevertheless, the specific phytoconstituents underlying these biological effects and the mechanisms of action involved are yet to be fully identified. Toxicological evaluations indicate that C. grandis is generally safe, although high doses can cause dose-dependent hepatotoxicity. Moreover, the clinical trials focusing on the antidiabetic effects of C. grandis demonstrate promising effects in managing glucose dysregulation. This review aims to provide a comprehensive update on C. grandis, expanding on previous studies by incorporating a broader ethnomedicinal scope, a more extensive phytochemical profile with detailed chemical structures, and additional clinical trial data. Unlike prior publications, this review emphasizes C. grandis as a functional food, highlighting its potential in chronic disease management. By integrating these aspects, this study offers a more in-depth analysis of the therapeutic potential and future applications of this plant. The functional food aspect of C. grandis, rich in bioactive compounds, supports its role in preventing and managing chronic diseases as a regular vegetable.

Keywords: Coccinia grandis; pharmacological activity; phytoconstituents; functional foods; ethnomedicinal

1. Introduction

Coccinia grandis (L.) Voigt, commonly known as Ivy gourd, belongs to the Cucurbitaceae family and is consumed as both food and a medicinal herb in South Asia [1]. It is widespread across tropical Asia, Central America, and Africa but is particularly prevalent in India, Bangladesh, Pakistan, Indonesia, Malaysia, the Philippines, Cambodia, Vietnam, Myanmar, Thailand, and Sri Lanka, where it is commonly utilized as a vegetable [2–4]. In Bangladesh, Ivy gourd is known by various vernacular names, such as Telakucha [5]. The tender, young, and elongated stems, leaves, and tuberous roots of *C. grandis* are used in culinary preparations or as seasoning, while its youthful fruits are incorporated into salads. Across various traditions, every part of this plant is believed to possess medicinal properties [6].

The World Health Organization (WHO) estimates that 80% of residents in developing nations rely primarily on traditional remedies for their basic healthcare needs [1]. *C. grandis* holds significant importance in traditional medicine. Almost all parts of *C. grandis*—fruits, leaves,

and roots—are used for remedies like wound healing, ulcers, jaundice, diabetes, and fever [2,3]. Traditionally, it has been employed for its hypoglycemic, digestive, carminative, laxative, and analgesic properties. Additionally, it exhibits antimicrobial effects against syphilis, leprosy, gonorrhea, urinary tract infections, eye infections, bronchitis, and abscesses. It is also used for skin problems (burns, skin eruptions, psoriasis, allergies) and inflammatory conditions such as fever, asthma, joint pain, and stomach pain, as well as for other ailments, including vertigo, ulcers, insect bites, filarial swelling, and snake poisoning [4–6].

Scientific studies, both *in vitro* and *in vivo*, have validated the efficacy of *C. grandis* in addressing these conditions. Research findings suggest that this plant species helps relieve pain, relax muscles, protect the liver, reduce fever and inflammation, and manage blood sugar, dyslipidemia, ulcers, malarial infections, and even cancer [7–9]. The leaves of this species are a rich source of secondary metabolites such as flavonoids, alkaloids, triterpenoids, glycosides, saponins, and carotenoids.

¹Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh

^{*}Correspondence: nawfalhasansiam@gmail.com (Nawfal Hasan Siam)

[†]These authors contributed equally. Academic Editor: Baohong Zhang

Table 1. Vernacular names of C. grandis in various countries.

Country	Vernacular names	Ref.
Bangladesh	Telakucha, kawajhinga	[10]
India	Tindora, tondli, parval, tindora, tinda, kundru, golenda, kaage thonde, theekkuduru,	[11]
	covel, aracanviroti, araiyanviroti, attarittan, katutumpi, korutan, periyakovai, pe-	
	runkovai, dondatheege, rattakkovai, nallakovai	
Malaysia	Pepasan, papasan	[12]
Chinese	Hong gua	[12]
Denmark	Skariagenagurk	[12]
Indonesia	Boluteka, papasan	[13,14]
Thailand	Tålung, Tam Lueng, phak Tålung, Phak Tam Lueng	[12,13]
Spain	Pepino cimarrón	[15]
Germany	Scharlachranke, tindola	[15]
Vietnam	Hoa bát, rau bát	[15]
Japan	Yasai karasu uri	[16]
SriLanka	Kowakka	[17]
Myanmar	Kin pone, Taw-kinmon, Kinmon, Hla cawi bactine (mon)	[18]
Cambodia	Sleuk bah	[19]
Saudi Arab	Mogad	[20]
Tanzania	Lukewja, pondwa	[20]
Nepal	Gol kankri, Ngadha	[20]
Iran	Kabare-hindi	[20]
Somali	Masskar	[20]
Nigeria	Lombaria	[20]
Singapore	Aroi papassang	[20]
Mali	Seff	[20]
Senegal	Barbouf	[20]
Ethiopia	Gale	[18]
Franch	Gourde Écarlate De L'Inde Tindola, Courge Écarlate	[18]
Kenya	Nyamutu Kuru	[18]
Niger	Magaro	[18]
Pakistan	Kanduri, Kundur	[18]

This review provides a comprehensive update on *C. grandis*, expanding on previous studies by incorporating a broader ethnomedicinal scope, a more extensive phytochemical profile with detailed chemical structures, and clinical trial. Unlike prior reviews, it emphasizes *C. grandis* as a functional food, highlighting its potential in chronic disease management. By integrating these aspects, this study offers a more in-depth analysis of the plant's therapeutic potential and future applications.

2. Literature Search Strategy

Information for this article was gathered from Web of Science, PubMed, Science Direct, and Google Scholar employing specific keywords related to *Coccinia grandis*, *Coccinia indica*, *Cephalandra indica*, and Telakucha. The search spanned various periods, with approximately 1% of the data retrieved predating the year 2000, 19% falling within the range of 2001 to 2012, and the remaining 80% from the past decade, specifically from 2013 to 2024. Data collection occurred between January to July 2024, during which around 600 papers were reviewed to locate relevant

information. Following initial screening, 209 papers were selected for thorough examination and summarization in this current review.

3. Vernacular Names

Vernacular names or local names are essential to biodiversity, showcasing the deep connection between people, language, and the natural world (Table 1, Ref. [10–20]). They serve as a valuable addition to scientific names, preserving local knowledge and cultural heritage. The local names of this species across the world are summarized in Table 1.

4. Taxonomy and Distribution

The *Coccinia* genus includes 30 species found exclusively in tropical Asia and Africa. This common dioecious plant is widely grown across Asia, from India to Indonesia, including Bangladesh, Nepal, Sri Lanka, Pakistan, Malaysia, Myanmar, Thailand, and Vietnam [21]. *C. grandis* is a trailing, dioecious, perennial climber, reaching lengths of up to 20 to 30 meters, with tuberous rootstock.

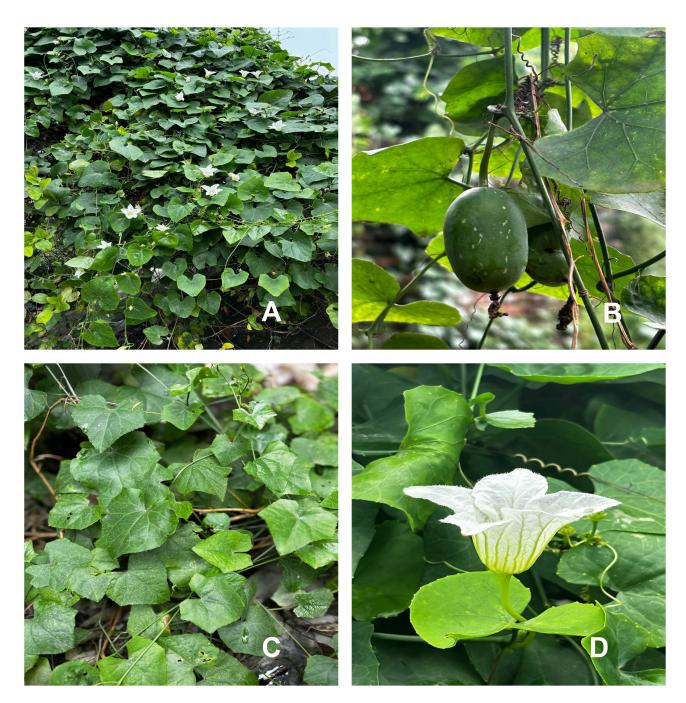


Fig. 1. Coccinia grandis. (A) Full plant. (B) Fruit. (C) Leave. (D) Flower.

The young stem is green, longitudinally ribbed, and eventually becomes woody [22]. The leaves are roughly oval-shaped with a central indentation at the base. Leaf measures 310 cm length, and width ranging from 4 to 10 cm, displaying five angles and typically having 3–7 lobes branching out from the center. The edges of the leaves are finely toothed, and the tips are blunt with a small point. The leaf stems are 1–3 cm long, and the tendrils are not divided into smaller branches [23]. The flowers are sizable, star-shaped, and white. The calyx comprises five recurved lobes, approximately 25 mm in length, situated on the hypanthium with a peduncle ranging from 1 to 5 cm. The corolla is white, bell-

shaped, 34.5 cm in length, and consists of five ovate lobes. Individual flowers contain three stamens, and the ovary of the flower is located below the other floral parts. The fruit is either ovoid or elliptical, length of 25 to 60 mm, a diameter of 15 to 35 mm, with a smooth surface and hairless stalks (Fig. 1) [24]. The full taxonomic classification of *C. grandis* is outlined below [25]: Kingdom: Plantae; Division: Magnoliophyta; Class: Magnoliopsida; Order: Violales; Family: Cucurbitaceae; Genus: *Coccinia*; Species: *grandis*.

Table 2. Ethnomedicinal uses of *C. grandis* in various countries.

Country	Parts used	Preparation & method of extraction	Ethnomedicinal uses	Ref.
Bangladesh	Root	Juice used topically	Moisturizer (for dry skin)	[26]
		Roots of macerated	Osteoarthritis and joint pain	[27]
	Leaf	Paste prepared from leaves (topical use)	Scabies	[27]
	Fruit	Flowers of Lagenaria siceraria and Zingiber officinale are pasted in combination	Infertility of women	[27]
	Whole plant		Diabetes	[28]
Cambodia	Stem	Decoction	Hepatoprotective activity	[29]
Ethiopia	Leaf	Decoction	Diabetes	[30]
	Fruit	Consumption of Fruits	Diabetes	[30]
	Root	Dry, grind into powder, & mix with water	Stomachache, Headache, Fever	[31]
India	Fruit	Orally administered	Antidiabetic	[32]
	Leaf	A blend of black pepper & decoctions of the leaves from both C. grandis & Acalypha indica	Anti-ulcer	[33]
		Juice is mixed with honey	Diabetes and bronchitis	[34]
			Dysuria	[35]
Indonesia	Leaf	Infusion (Orally administered)	Fever, Malaria	[36]
	Fruit	Pound	Diabetes	[37]
	Stem	Infusion	Diabetes	[38]
Kenya	Leaf	Made into decoction or consumed as a vegetable	Heavy snoring	[39]
Malaysia	Leaf	Infusion (Orally administered)	Diabetes	[40]
	Fruit	Infusion (Orally administered)	Diabetes	[40]
Myanmar	Root	Apply crushed root	Stomachache	[41]
Nepal	Fruit	Juice used topically	Dysentery, body pain & syphilis	[48]
	Root	Juice used topically	Dysentery, body pain & syphilis	[48]
Nigeria	Leaf		Depression	[42]
	Fruit		Venereal diseases	[42]
Pakistan	Leaf	Made into decoction from fresh leaves (Orally administered)	Antidiabetic	[43]
	Fruit	Orally administered	Antidiabetic	[43]
	Root	Juice extracted from the roots	Antidiabetic	[44]
Saudi Arabia	Fruit	Consumed when fresh ripe & tastes mildly sweet	Antioxidant & antidiabetic	[44]
Sri Lanka	Leaf	A decoction made from fresh leaves (Orally administered)	Antidiabetic	[43]
Thailand	Stem	Made into decoction (Oral ingestion)	Antidiabetic	[45–47]
Uganda	Fruit	Consumed as fruits	Bedwetting	[49]
	Root	Made into decoction	Antivenom	[50]

5. Ethnomedicinal Uses

C. grandis is widely utilized as a traditional medicine, particularly in Southeast Asia and Africa. Its uses differ, with some being common, like those for diabetes, whereas others are limited to specific regions (Table 2, Ref. [26-50]). In Bangladesh, the plant is popular for its antidiabetic, antioxidant, osteoarthritis, joint pain, antihyperlipidemic, anti-diarrheal, anti-dyslipidemia, and antiinflammatory properties [26–28]. In Cambodia, the stems are used to treat hepatoprotective activity [29]. In Ethiopia, leaves, fruits, and roots are employed for diabetes, stomachache, headache, and fever [30,31]. In India, infusions made with entire plants or their stems are used to treat diabetes mellitus, hypertension, cardiovascular diseases, bronchitis, anti-ulcer, dysuria, itch, cough, emaciation, fever, and skin infections [32–35]. In Indonesia, the stems, fruits, and leaves are used to cure fever, malaria, and diabetes [36– 38]. The leaves are employed in Kenya for heavy snoring [39]. In Malaysia, the fruits and leaves of the plant serve as therapeutic options for diabetes and hyperlipidemia [40]. In Myanmar, roots are employed in treating stomachaches [41].

In Nigeria, leaves and fruits are used to treat depression, and venereal diseases [42]. In Pakistan, Saudi Arabia, and Thailand leaves, fruits, and stems are employed to manage diabetes, respectively [43–47]. In Nepal, roots and fruits are utilized for dysentery, body pain, and syphilis [48]. In Sri Lanka, the leaves are made into powder for the treatment of hyperglycemia, hyperlipidemia, and diabetes [43]. In Uganda, the fruits and roots are employed for their antivenom properties [49,50].

6. Phytoconstituents

Nuclear magnetic resonance (NMR) analysis of isolated pure bioactive compounds from *C. grandis* has confirmed the structure and purity of several key phytoconstituents. Extensive phytochemical investigations on the aerial parts of *C. grandis*, as well as its components such as leaves, stems, roots, and fruits, have led to the identification of over 31 distinct compounds across various chemical classes. Flavonoids are the most abundant phytochemicals in this species, with several bioactive flavonoids identified in the leaves and fruits. A significant number of alkaloids, phenolic acids, and glycosides have also been reported, particularly in the roots and leaves, highlighting their diverse pharmacological potential. Other classes of secondary metabolites present to a lesser extent include terpenoids, lignans, and miscellaneous aromatic compounds.

Around 158 compounds have been identified by chromatographic and spectrometric methods from various parts of *C. grandis* (Table 3, Ref. [4,10,51–63]). These studies employed advanced analytical techniques such as Ultra-High-Performance Liquid Chromatography (UHPLC), Liquid Chromatography-Mass Spectrometry (LC-MS), Liquid Chromatography-Tandem Mass Spectrometry (LC-

MS/MS), and Gas Chromatography-Mass Spectrometry (GC-MS), which have successfully characterized a diverse array of phytoconstituents within the plant. However, NMR analysis has not yet been conducted to confirm the structural details of these compounds. Structures of the compounds analyzed using NMR have been illustrated in Fig. 2.

6.1 Alkaloids

The alkaloids identified from *C. grandis* demonstrate remarkable structural diversity and notable pharmacological potential. Five alkaloids (1–5) have been isolated from the fruit, contributing significantly to the diverse alkaloidal profile of the species [51]. Alkaloids derived by isolated compounds (6, 7) from leaf callus, highlight the efficacy of plant tissue culture techniques in facilitating the production of secondary metabolites. Moreover, the leaf has yielded compound (8), along with two isoquinoline alkaloid compounds (9) and (10), emphasizing the structural complexity and chemical diversity inherent in the plant's alkaloidal constituents [52–54].

6.2 Flavonoids

The flavonoids identified in this plant reflect significant structural diversity. Eight flavonoids (11–18) have been isolated from the leaf, comprising glucosides (11–14), rutinosides (15, 16), and complex conjugates (17, 18), showcasing the chemical diversity of the leaf constituents [61]. The fruit, on the other hand, contains a broader array of flavonoids, with 13 compounds (21–33) identified. These include glucosides (22–24), galactosides (25), rhamnosides (26, 29), and rutinosides (28), as well as acetyl derivatives (31) and simple flavonoids (27, 32). Notably, compound 33, a coumarin, further expands the fruit's phytochemical profile, underlining its pharmacological potential [51,52,56].

6.3 Iso-Flavonoids

Three iso-flavonoids (34–36) have been isolated from the fruit of C. grandis [51].

6.4 Lignans

Different parts of the plant have been characterized by the presence of several lignans (37–42). From the stem, two compounds (37) and (38), have been isolated [57]. The fruit contains a broader range, with four compounds (39–42) identified, contributing to the plant's lignan profile [51, 56,58].

6.5 Phenolic Compounds

Twentynine phenolic compounds (43–71) have been isolated from *C. grandis*. The leaf contains six phenolic constituents (43–48) emphasizing its diverse bioactive profile [55]. In the stem, compound (49) has been identified as a sterol [52,58], while compound (50) is a tocopherol derivative, with additional phenolic compounds (51) and

Table 3. A list of chemical compounds present in C. grandis.

		Table 3. A list of chemical compounds present in C. grandis.		
SI.	Class	Chemical compounds	Parts	Ref.
1	Alkaloids	(6S)-Hydroxyhyoscyamine	Fruit	[51]
2		(S)-Norlaudanosoline		
3		Camptothecin		
4		Cathinone		
5		Senecionine		
6		Canadine	Leaf	[52]
7		Protopine		
8		Clonitazene		
9		1-tert-Butyl-5,6,7-trimethoxyisoquinolene		[53]
10		1-tert-butyl-5,6,7-trimethoxyisoquinolin-3 (4H)-one		[54]
11	Flavonoids	Kaempferol-3-O-glucoside	Leaf	[55]
12		Kaempferol-3-O-neohesperidoside		
13		Quercetin-3-O-neohesperidoside		
14		Rutin		[4]
15		Kaempferol-3-O-rutinoside (or nicotiflorin)		
16		Kaempferol 3-O-robinobioside		
17		Quercetin 3- <i>O</i> -robinobioside		
18		Quercetin 3- O - β -D-apiofuranosyl-		
		$(1\rightarrow 2)$ - $[\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 6)$]- β -D-glucopyranoside (or		
		CTN-986)		
19		Kaempferol 3- <i>O</i> - β -Dapi-furanosyl-(1 \rightarrow 2)-[α -L-rhamnopyranosyl-		
1)		$(1\rightarrow 6)$]- β -D-glucopyranoside		
20		Kaempferol 3- O - β -D-apiofuranosyl- $(1\rightarrow 2)$ - $[\alpha$ -L-rhamnopyranosyl-		
20		(1 \rightarrow 6)]- β -D-galactopyranosid		
21		(-)-Sophorol	Emit [51,52,56
22		Esculetin	Truit [31,32,30
23		Hyperoside		
24		Isorhamnetin 3-glucoside		
25		Isorhamnetin 3- <i>Q</i> -galactoside		
2 <i>5</i>		Isorhamnetin 3- <i>O</i> -glucoside 7- <i>O</i> -rhamnoside		
		Isorhamnetin		
27		Isorhoifolin		
28				
29		Kaempferol 3- <i>O</i> -rutinoside		
30		Luteoside/Luteolin 7- <i>O</i> -glucoside		
31		Quercetin 3-O-acetyl-rhamnoside		
32		Quercetin		
33		Scopoletin		
	Iso-flavonoids	2,7-Dihydroxy-4-methoxyisoflavanone	Fruit	[51]
35		7,2-Dihydroxy-4-methoxyisoflavanol		
36		Isoformononetin		
37	Lignans	Medioresinol	Stem	[57]
38		5-(Hydroxymethyl)-2-(dimethoxymethyl) furan		
39		Lukianol	Fruit [51,56,58
40		Coniferin		
41		Pinoresinol		
42		1-Acetoxypinoresinol		
43	Phenolics	Methyl caffeate	Leaf	[55]
44		Trans-p-coumaric acid		
45		Ferulic acid		
46		Kaempferol-3- <i>O</i> -β-D-glucoside		
47		Ligstroside		
48		Oleuropein		

Table 3. Continued.

		rable 5. Continued.		
SI.	Class	Chemical compounds	Parts	Ref.
50		Stigmatosterol		
51		(+/-)-alpha-Tocopherol acetate		
52		2,4-ditertiary butyl phenol	Stem	[59]
53		Gamma-sitosterol	Stem callus	[57]
54		3,4'-O-dimethylcedrusin9'-O-glucopyranoside		
55		Syringaresinol		
56		Vanillic acid		
57		lpha-Tocopherol		[58]
58		β -sitosterol	Bark	[60]
59		4-Feruloylquinic acid	Fruit	[51,58]
60		5-Hydroxyferulic acid		
61		Caffeic acid		
62		Cinnamaldehyde		
63		Cinnamyl alcohol		
64		Coniferyl alcohol		
65		Feruloyl glucose		
66		p-Coumaroyl glucose		
67		Phenol, 2,4-bis(1,1-dimethyethyl)		
68		Phenol-2-methoxy-5(1-propenyl)		
69		2-Methoxy-4-vinylphenol		[52]
70		3,5-bis(1,1-dimethylethyl)-4-hydroxy-methyl ester		[]
71		Benzenepropanoic acid		
72	Polyprenols	C ₆₀ -polyprenol	Leaf	[10]
73	, [2-Methyl-Z, Z-3,13-Octadecadienol	Stem	[51,58]
74		3,7,11,15-Tetramethyl-2-hexadecen-1-ol	2.2	[01,00]
75		Carnosic acid		
76		Cucurbitacin E		
77		Isosteviol		
78		Rosmadial		
79	Sterols	Cholesta-8,24-dien-3-ol,4-meth, (3-beta., 4-alpha.)	Leaf	[52]
80	Steroidal compounds	Olean-12-en-3-ol acetate (3-beta)	Leaf callus	[10]
81	Steroraur compounds	Farnesol	Fruit	[10]
82	Terpenoids	Betulin	Bark	[60]
83	respondes	Oleanolic	Leaf	[61]
84		Cucurbitacin B	Lear	[51,52]
85		Cucurbitacin D		[31,32]
86		Cucurbitacin I		
87		Phytol		
88		Neophytadiene	Fruit	
89		Lup-20(29)-ene-3, 28-diol, (3-beta)	Truit	
90		$\beta-\text{Amyrin}$		
91	Glycosides	β -Allyttii 3β , 25-dihydroxy-24-methyl-30-carboxy methyl	Fruit	[62]
91	Glycosides	3β , 23-dinydroxy-24-methyl-30-carboxy methyl cucurbita-5-en-3- O - β -d-glucopyranoside	riult	[62]
02				
92		3β , 25-dihydroxy-24-ethyl-30-carboxy methyl cucurbita-5,		
02		22-dien-3- O - β -d-glucopyranoside		
93		3β -hydroxy-24-(1-butanol-4-yl)-30-carboxy methyl cucurbita-5, 7,		
0.4		22-trien-3- <i>O</i> -β-d-glucopyranoside	C+	
94		Ethyl- α -D-glucopyranoside	Stem	
95	Foto and	Methyl-β-D-gluco hexodialdo-1,4-furanoside	T	[50]
96	Fatty acids	9-Octadecynoic acid	Leaf	[52]

Table 3. Continued.

		Table 5. Continued.		
SI.	Class	Chemical compounds	Parts	Ref.
97		Palmitic acid		
98		9,12,15-Octadecatrienoic acid		
99		Oleic acid		
100		9,10,12,13-Tetrabromo-octadecanoic acid	Leaf callus	[58]
101		9,12-Octadecadienoic acid;	Fruit	
102		N-Pentadecanoic acid;		
103		Linoleic acid		
104	Fatty acid derivatives	11-Octadecanoic acid, methyl ester	Leaf	[52]
105		8,11,14-Eicosatrienoic acid, methyl ester (Z, Z, Z)		
106		9,12-Octadecadienoyl chloride (Z, Z)		
107		9,12-Octadecanoic acid, methyl ester		
108		Cyclopentaneundecanoic acid, methyl ester		
109		Hexadecanoic acid, ethyl ester		
110		Pentadecanoic acid, 14-methyl-, methyl ester		
111		Pentadecanoic acid, 2-hydroxy-(hydroxymethyl) ethyl ester		
112		Hexadecanoic acid	Leaf callus	[58]
113		Octadecyl ester		
114		Isopropyl linoleate		
115		Hexadecanoic acid methyl ester	Fruit	
116		Hexadecanoic acid methyl ester	Stem	[59]
117		Methyl stearate		
118		Eicosanoic acid, methyl ester		
119		Decanoic acid, methyl ester	Stem callus	[58]
120		Phosphonic acid, dioctadecyl ester		
121	Fatty alcohols	Behenic alcohol	Leaf	
122	,	1-Octadecanol	Leaf callus	
123		Undecanol	Fruit	
124		1-Heptacosanol	Stem	[59]
125		1-Eicosanol		[]
126	Anthocyanins	Cyanidin 3-O-sambubioside 5-O-glucoside	Fruit	[51]
127	•	Cyanidin 3- <i>O</i> -xyloside		
128	Lactones	Benzofuranone	Fruit	[58]
129		2(3H)-furanone		
130	Aldehydes	4-hydroxybenzaldehyde	Stem	[57]
131	Ž	Syringaldehyde		
132	Miscellaneous	2E,4E,6E)-5-methyl-7-(2,6,6-trimethylcyclohexa-2,4-dien-1-yl)	Aerial parts	[63]
		hepta-2,4,6-trien-1-o	•	
133		9-(furan-3-yl)-4-hydroxy-1,5,6,6a,9,10,10a,10b-octahydro-3H,7H-		
		pyrano[3,4-f] isochromene-3,7-dione		
134		Docosan-1-ol	Bark	[60]
135		Docos-10-one		
136		Cyclohexane, 1,5-diethyl-2,3-dimethyl-	Stem	[59]
137		3-Tetradecene (E)		
138		Cyclohexane,1,1'-(1,2-dimethyl-1,2-ethanediyl) bis-		
139		Cyclohexane, hexyl-		
140		2,2-Dicyclohexylbutane		
141		1-Pentadecene		
142		1,7-Dimethyl-4-(1-methylethyl) cyclodecane		
143		Cyclohexane, octyl-		
144		Cyclohexane, 1,2,4,5 tetraethyl		
145		Cyclohexane, undecyl-		
		e jetonomine, unace ji		

Table 3. Continued.

SI.	Class	Chemical compounds	Parts	Ref.
146		Spiro [4.5] dec-6-en-8-one, 1,7-dimethyl-4-(1-methylethyl)		
147		1-Nonadecene		
148		7,9-Di-tert-butyl-1-oxaspiro (4,5) deca-6,9-diene-2,8-dione		
149		Heneicosane		
150		Cyclononasiloxane, octadecamethyl-		
151		Phnol,4-ethenyl-, acetate		
152		9-Methyl-Z, Z-10,12-hexadecadien-1-ol acetate		
153		2,6-Octadiene, 1-(1-ethoxyethoxy)-3,7-dimethyl		
155		9-Octadecynoic acid		
156		9,12,15-Octadecatrienoic acid		
157		Palmitic acid		
158		1-(4-Isopropylphenyl)-2-methylpropyl acetate		

(52) further contributing to its chemical complexity. The stem callus adds to this diversity with the presence of a compound (53). The fruit has been characterized with four notable phenolic compounds (54–57) significantly expanding the plant's repertoire of bioactive compounds [57]. Furthermore, the bark contains a compound (58), while the fruit is enriched with an array of phenolics, including isolated compounds (59–71), collectively contributing to the comprehensive phenolic profile [51,58,62].

6.6 Polyprenol

Seven polyprenol compounds (72–78) have been identified across various parts of C. grandis, emphasizing its remarkable chemical diversity. Among these, compound (72), identified as C_{60} -polyprenol, was isolated from the leaf [10]. Six polyprenol compounds, including (73-78), isolated from the stem each enriching the chemical complexity [51,58].

6.7 Sterol and Steroidal Compounds

Three compounds, including one sterol (79) and two steroidal derivatives (80, 81), have been identified in *C. grandis*. Specifically, compound (79) was isolated from the leaf [52] compound (80, 81) have been isolated from the leaf callus, and fruit of *C. grandis*.

6.8 Terpenoids

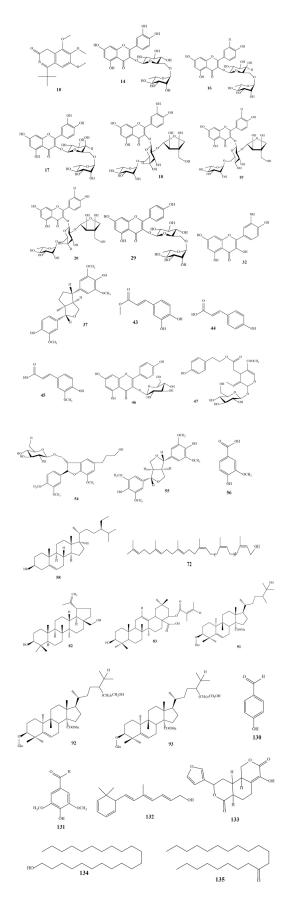
The terpenoids identified in *C. grandis* showcase a diverse range of chemical structures. Nine terpenoids (82–90) have been isolated from different parts of the plant, highlighting its chemical complexity. Specifically, compound (82) was isolated from the bark [60] and compounds (83–87) have been isolated from the leaf [60,61]. The fruit is rich in additional terpenoids, including compounds (88–90) were also isolated, expanding the plant's chemical repertoire.

6.9 Glycosides

Five glycosidic compounds (91–95) have been isolated from various parts of *C. grandis*, compounds (91–93) have been isolated in the fruit, contributing to the glycosidic profile of the plant [62]. Additionally, compounds (94, 95) were isolated from the stem, further enriching the plant's glycosidic composition.

6.10 Fatty Acids

A diverse array of fatty acids (96–103) has been identified across different parts of *C. grandis*, further enriching its chemical profile. From the leaf, compounds 96, 97, 98, and 99 were isolated, significantly contributing to the plant's fatty acid composition [52]. Compound (100) was discovered in the leaf callus, introducing a distinctive aspect to the plant's lipid profile. Additionally, the fruit was found to contain compound (101–103) thus broadening the fatty acid spectrum and enhancing the plant's potential for diverse pharmacological applications [58].


6.11 Fatty Acids Derivatives

Different parts of *C. grandis* have been characterized by the presence of seventeen fatty acid derivatives (104–120). From the leaf, eight compounds (104–111) have been identified, reflecting significant chemical diversity [52]. The leaf callus has yielded three additional compounds isolated (112–114), further enriching the plant's lipid profile. The fruit has been found to contain a compound (115), highlighting its contribution to the fatty acid derivative spectrum [58]. The stem also exhibits considerable diversity with the isolation of three compounds (116–118), while the stem callus features two unique derivatives (119–120) that have been isolated [59].

6.12 Fatty Alcohols

Five fatty alcohols (121–125) have been isolated in various parts of *C. grandis*, compounds (121) and (122) were isolated from the leaf and leaf callus. The fruit was found to contain a compound (123) [58]. Furthermore,

 $Fig.\ 2.\ Chemical\ structure\ of\ bioactive\ phytoconstituents\ of\ \textit{Coccinia\ grandis}.$

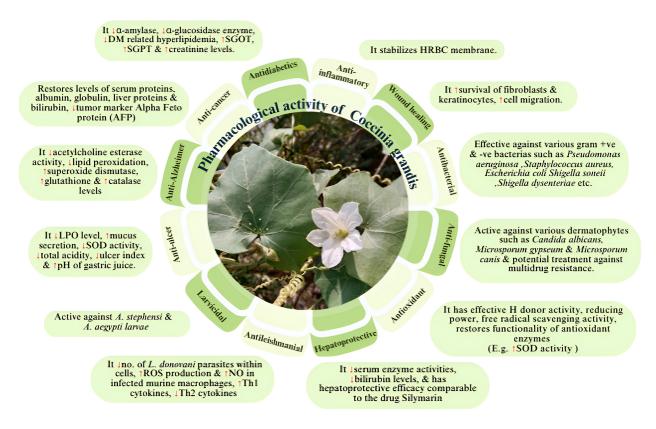


Fig. 3. Pharmacological activities of *Coccinia grandis*. Upward (\uparrow) and downward (\downarrow) arrows represent increases and decreases in activity or levels, respectively. Created using canva.com.

compounds (124) and (125) were isolated from the stem [59].

6.13 Anthocyanins, Lactones, and Aldehydes in C. grandis

Two anthocyanins (126, 127) have been identified in the fruit of *C. grandis* [51]. Among the lactones, two compounds (128, 129) were isolated in the fruit, highlighting the plant's lactone diversity [58]. Additionally, the stem yielded two aldehydes (130, 131) further expanding the chemical constituents of the plant [57].

6.14 Miscellaneous Compounds

The phytochemical profile of *C. grandis* also encompasses various miscellaneous compounds. These include two complex cyclic structures (132, 133) isolated from the aerial parts [63], along with two docosane derivatives (134, 135) from the bark [60]. Furthermore, the stem has yielded a range of diverse compounds, including cycloalkanes, alkenes, and other unique structures (136–158) [59].

7. Pharmacological Activities

A variety of *in vitro*, *in vivo*, and *in silico* studies validated the traditional therapeutic uses of *C. grandis*. Most studies have concentrated on its antidiabetic [64] and cardiac activities [65], particularly exploring the molecular mechanisms of extracts and phytoconstituents.

There is considerable evidence suggesting that the plant possesses anticancer [66], immunomodulatory [67], anthelmintic [68], antioxidant [69], antidiabetic [70], and antimicrobial effects [71]. Additionally, preliminary studies showed that it has hepatoprotective [72], woundhealing [51], anticataract [73], anti-Alzheimer [74], and larvicidal [75] effects. The pharmacological properties of the plant are outlined in Table 4 (Ref. [9,51,55,64,65,67–111]) and demonstrated in Fig. 3. In addition, researchers unveil the mechanism of actions of some activities, particularly antidiabetic, anticancer, anti-inflammatory, antiulcer, hepatoprotective, and anti-Alzheimer effects. Compared to its traditional uses and beneficial effects, there is still a scope to perform in-depth research to find out the pharmacological activities as well as the precise mechanism of action of those effects [91]. A concise mechanism of action for various pharmacological effects is summarized in Fig. 4.

7.1 Antidiabetic Properties

Non-insulin-dependent diabetes mellitus (NIDDM), commonly known as Type 2 Diabetes Mellitus (T2DM), accounts for approximately 90% of diabetes cases globally, affecting around 9% of the population, or about one in eleven individuals worldwide. T2DM is marked by persistent hyperglycemia, disrupted protein, carbohydrate, and lipid metabolism, and an elevated risk of vascular compli-

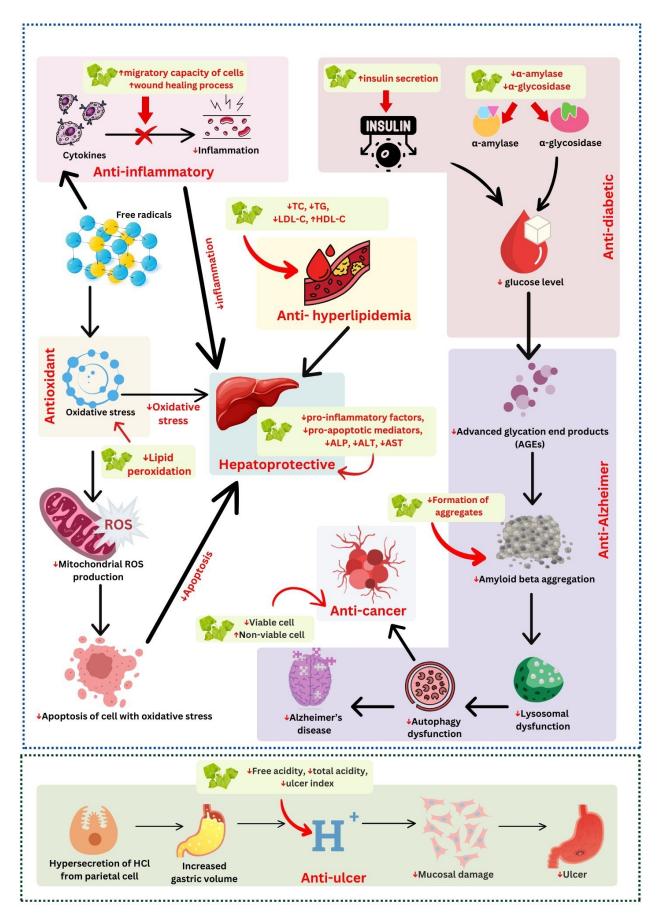


Fig. 4. The diverse effects of *Coccinia grandis* and the underlying mechanisms. The small red upward arrows (\uparrow) indicate an increase or upregulation of the respective biological activity, level, or process, whereas red downward arrows (\downarrow) indicate a decrease or downregulation. Created using canva.com.

Table 4. Pharmacological effects of *C. grandis* extracts observed in various experiments.

Activity	Type of preparation	Study type	Study models/methods	Administered dosage	Biological effects	Ref.
Antidiabetic	Methanolic extract of leaves	In vivo	Diabetic mice	100 mg/kg	It \downarrow TG, \downarrow blood glucose levels, \downarrow low-density lipoprotein cholesterol (LDL-C), \downarrow TC, & \uparrow high-density lipoprotein cholesterol (HDL-C)	[76]
	Ethanolic extract	In vitro	α -glucosidase inhibitory assay	$12.5250~\mu\text{g/mL}$	It $\downarrow \alpha$ -amylase enzyme activity & $\downarrow \alpha$ -glucosidase enzyme activity	[64,91]
	Ethanolic extract	In vivo	Wistar rats (male)		Antihyperlipidemic activity	[77]
	Methanolic extract	In vitro	RINm5F cells	0.250 mg/mL & 0.50 mg/mL	It stimulated 1.28 & 1.71-fold ↑insulin secretion	[78]
	Aqueous extract	In vivo	Wistar rats with diabetes	0.25-2.00 g/kg	Optimum effectiveness in antihyperglycemic activity	[9]
	Aqueous extract from leaves	In vivo	Albino rat models	50 mg/kg body weight	It ↓glucose levels in the blood	[79]
	Methanolic extract	In vitro	Murashige & Skoog medium	1.0 mg/L	It $\downarrow \alpha$ -amylase & $\downarrow \alpha$ -glucosidase enzyme activity	[80]
	Methanolic extract (leaves, fruits, root & aerial parts)	In vivo	Albino mice models	150 mg/kg	After 8 hours, it \downarrow glucose levels in the blood to 7.87 \pm 0.35, 17.9 \pm 12.18, 19.5 \pm 7.04 & v23.7 \pm 7.23 respectively	[70]
				300 mg/kg	After 8 hours, it \downarrow glucose levels in the blood to 18 ± 12 , 19.6 ± 11.6 , 20.1 ± 1.55 & 15.3 ± 1.28 respectively	
				450 mg/kg	After 8 hours, it \downarrow glucose levels in the blood to $16.2 \pm 1.08, 9.4 \pm 0.46, 14.3 \pm 1.31 \& 10.4 \pm 1.56$ respectively	
	Aqueous leaf extract	In vivo	Swiss-type albino rats	3 mL/kg body weight	It ↓glucose level & has exhibit antidiabetic effect	[81]
	Ethanol, methanol & chloroform extract	In vivo	Wistar-type albino rats	100 mg/kg	It possesses potential ability to ↓plasma lipids	[82]
	Aqueous & ethanolic extract	In vitro	Alpha amylase and alpha glucosidase	62.5, 125, 250, 500 & 1000 μg/mL	It ↓postprandial hyperglycemia & help with diabetic complications	[83]
	Methanolic extract	In vivo	Rats	125, 250 & 500 mg/kg	It has potential antidiabetic & antihyperlipidemic properties	[84]
	Fruit extract	In vivo	Rats with diabetes	250 mg/kg	It possesses considerable antihyperglycemic activity	[85]
	Aqueous extract	In vivo	Wistar rat model	0.75 g/kg	It possesses potential antidiabetic effect	[86]
	Chloroform, ethyl acetate, methanolic & n-hexane extract	In vitro	α -glucosidase inhibition assay	0.5–7 mg/mL	It possesses effective α -glucosidase inhibitor	[9]
Antioxidant	Petroleum ether, Chloroform, hydroalcoholic extract of stem	In vivo	Wistar-type albino rats	250 & 500 mg/kg	It has antioxidant property, ↓glucose level in blood, ↓lipid peroxidation (LPO) & ↓oxidative stress	[87]
	Ethanolic	In vitro	2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay	$20800~\mu\text{g/mL}$	It possesses significant antioxidant activity	[88]
	Ethanolic extract	In vitro	DPPH free radical scavenging assay	2 mL	It possesses significant antioxidant effect	[69]
	Petroleum ether, chloroform & ethyl acetate	In vivo	Rats	200 mg/kg	It possesses potential antioxidant effect	[9]
	Aqueous extract	In vitro	DPPH free radical scavenging assay	40%, 50%, and 70%	Free radical inhibition	[71]
	Aqueous extract of leaves	In vitro	DPPH free radical scavenging assay	100-500 μg/mL	It possesses significant antioxidant potential	[89]

Activity	Type of preparation	Study type	Study models/methods	Administered dosage	Biological effects	Ref.
	Methanolic extract	In vitro	DPPH free radical scavenging assay	200, 100, and 50 μ g/mL	Protects the cell from oxidative damage during extended periods of inflammation	[67]
	Methanolic extract	In vitro	DPPH free radical scavenging assay	1 mg/mL	It has DPPH radical scavenging activity, ↓oxygen radical formation	[80]
	Methanolic & ethanolic extract	In vitro	DPPH scavenging assay	20, 40, 60, 80, 100 μg/mL	It prevents oxidative damages	[90]
	Aqueous extract of leaves	In vivo	Swiss-type Albino rats	3 mL/kg body weight	It ↓free radical & exhibit antioxidant activity	[81]
	Ethanolic extract	In vitro	DPPH Radical Scavenging Activity	$10100~\mu\text{g/mL}$	It possesses potential antioxidant activity	[86]
	Aqueous extract with encapsulated	In vitro	DPPH, ABTS (2,2'-azinobis	1-5 mg/mL	Encapsulation †antioxidant efficacy, as assessed by the	[69]
	alginate nanoparticles		(3-ethylbenzothiazoline-6-sulfonic acid)) radical scavenging assays, and FRAP (ferric reducing antioxidant power) assays		ABTS assay, in comparison to AqCG	
	Methanolic extract	In vitro	DPPH free radical scavenging assay	10 μL	It has potential antioxidant activity	[93]
	Hydroalcoholic extract	In vitro	DPPH & H_2O_2 assay	$20, 40, 60, 80~\mu\text{g/mL}$	It has strong antioxidant activity	[69]
Antiulcer	Aqueous extract of leaves	In vivo	Rats	250 & 500 mg/kg	It ↓gastric volume & ↓free acidity	[92]
	Ethanol, aqueous extract	In vivo	Wistar-type albino rats	400 mg/kg	It ↓total acidity, ↓gastric volume, ↓ulcer index & It ↓free acidity, indicating its effectiveness in preventing ulcers through an anti-secretory mechanism	[93]
Anti-inflammatory	Methanolic extract	In vitro	Human Fibroblast (hFB)-Cell and human epidermal keratinocytes (HaCaT)	200 μg/mL	It ↑migratory capacity of cells, which ↑wound healing process	[67]
	Aqueous extract of the leaves	In vivo	Swiss mice & Wistar rat models	50 mg/kg	It has potent anti-inflammatory activity	[94]
	Aqueous extract	In vivo	Swiss-type albino mice & Sprague Dawley rat models	0.2 mL	It has potent anti-inflammatory activity	[95]
	Aqueous extracts	In vivo	Rats	50, 100 & 200 mg/kg	It has potential anti-inflammatory effect	[95]
Antibacterial	Aqueous, ethanol, methanol & petroleum ether extract	In vitro	Bacteria species such as Pseudomonas aeruginosa, Bacillus subtilis, Vibrio anguillarum. Escherichia coli & Staphylococcus aureus	100, 250 & 500 μL	It shows strong antibacterial effects against <i>Vibrio anguillarum</i> , with a zone of inhibition measuring 31 \pm 1.00 mm at a concentration of 500 μL	[96]
	Aqueous & methanolic extract	In vitro	Bacteria species namely Escherichia coli & Staphylococcus aureus	0.1 mL	It exhibits potent antibacterial activities	[97]
Antifungal	Aqueous, ethanolic, methanolic & petroleum ether extract	In vitro	Bacteria species namely Candida albicans, Aspergillus niger, Aspergillus flavus & Aspergillus fumigatus	100, 250 and 500 μL	It displays substantial antifungal effects against Aspergillus niger, with a distinct zone of inhibition (30.33 \pm 1.53 mm) at a concentration of 500 μ L	[96]

Table 4. Continued.

Activity	Type of preparation	Study type	Study models/methods	Administered dosage	Biological effects	Ref.
Antimicrobial	Aqueous extract of the leaves	In vitro	Disc-diffusion assay using bacteria species-Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Serratia marcescens, Vibrio cholerae, Shigella sannei, Klebsiella pneumonia, Proteus vulgaris, Salmonella typhi & Proteus mirabilis	15 mm, 13 mm	Exhibits potential antibacterial efficacy against <i>Vibrio</i> cholerae, Serratia marcescens & Proteus vulgaris with a zone of inhibition measuring 14 mm	[71]
	Ethanolic extract	In vitro	Chequerboard Assay using bacteria species such as Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes, Acinetobacter baumanni, Escherichia coli & Candida albicans	0.0625 to 32 mg/mL	Effectively inhibits the growth of all tested microorganisms	[98]
	Ethanolic extract	In vitro	Disc-diffusion assay using both gram (+) bacteria (Staphylococcus aureus, Sarcina lutea, Bacillus cereus) & gram (-) bacteria (Pseudomonas aeruginosa, Salmonella typhi, Escherichia coli)	300 μg/disc	Showed significant antimicrobial activity	[99]
	Aqueous extract of the leaves	In vitro	Disc-diffusion assay using both gram (+) bacteria (<i>Micrococcus luteus</i> , <i>Staphylococcus aureus</i> , <i>Methicillin resistant</i>) & gram (-) bacteria <i>Escherichia coli</i>	25 μL/disc	Maximum zone of inhibition (33 mm) Micrococcus luteus	[89]
	Aqueous, & hexane extracts of leaves	In vitro	Well-diffusion assay using both gram (+) bacteria (Staphylococcus aureus, Bacillus cereus, Streptococcus pyogene, Corynebacterium diptheriae) & gram (-) bacteria (Shigella boydii, Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Salmonella typhi, Pseudomonas aeruginosa)		The aqueous extract produced moderate effectiveness against <i>Pseudomonas aeruginosa</i> , <i>Klebsiella pneumoniae</i> & <i>Salmonella typhi</i> while the hexane extract demonstrated a moderate level of activity against all bacteria types except <i>Proteus mirabilis</i> , which showed no response	
	Aqueous, hexane & ethyl acetate extract of stem	In vitro	Well-diffusion assay using both gram (+) (Bacillus cereus, Corynebacterium diptheriae, Staphylococcus aureus, Streptococcus pyogene) & gram (-) bacteria (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi & Shigella boydii)		Effectiveness was observed with the aqueous extract exclusively against Shigella boydii, while the hexane extract demonstrated activity against Shigella boydii along with Klebsiella pneumoniae, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa & Salmonella typhi. Similarly, the fraction of ethyl acetate was effective against all the tested bacteria apart from Staphylococcus aureus & Proteus mirabilis	
	Aqueous, acetone & ethanolic extracts	In vitro	Uropathogenic Escherichia coli (UPEC)/agar well diffusion method	200 μg to 1000 μg	It has antimicrobial effects on biofilm formation & uropathogenic <i>Escherichia coli</i> , capable of producing the enzyme Extended Spectrum Beta-Lactamase (ESBL)	[101]

Table 4. Continued.

Activity	Type of preparation	Study type	Study models/methods	Administered dosage	Biological effects	Ref.
	Petroleum ether, chloroform, ethyl acetate, acetone, methanol & aqueous	In vitro	Agar well diffusion assay with Acinetobacter species, Klebsiella species, Pseudomonas	25 mg/mL	It has bactericidal activity	[102]
	extract		aeruginosa, Staphylococcus aureus & Proteus mirabilis			
	Aqueous extract	In vitro	Agar well diffusion assay using both gram (+) bacteria (<i>Staphylococcus aureus</i>) & gram (–)	100 μL	It has potential antibacterial activity	[51]
			bacteria (Escherichia coli)			
Hepatoprotective	Aqueous, petroleum ether, n-hexane,	In vivo	Albino rat models	0.6 mg/g body	It ↓inflammation-related oxidative stress & ↓apoptosis (by	[65]
	chloroform & methanolic extract			weight/day	↓pro-apoptotic mediators & ↓pro-inflammatory factors) thereby protecting the heart & liver	
	Aqueous extract of leaves	In vivo	Wistar-type Albino rats	250 mg/kg body wt	It \alkaline phosphatase (ALP), \alpha aspartate aminotransaminase (AST) & \alpha alanine amino transaminase (ALT)	: [103]
	Methanolic extract	In vivo	Albino rat models (Female)	200 mg/kg	It \downarrow AST, \downarrow ALT & \downarrow ALP enzymes present in the serum	[104]
	Methanolic extract	In vivo	Wistar-type Albino rat models	100, 200 mg/bw	It ↑antioxidant levels, ↓oxidative stress & reverses liver parameters	[105]
	Aqueous & methanolic extract	In vivo	Swiss-type albino mice	200 mg/kg	It has potent hepatoprotective activity	[72]
Cardioprotective	Aqueous, petroleum ether, n-hexane,	In vivo	Albino rat models	0.6 mg/g body	It maintains typical lipid profile, \$\psicon\cellular\text{ toxicity markers}\$	[65]
	chloroform & methanolic extract			weight/day	level, ↓inflammatory responses & ↓programmed cell death	
Larvicidal	Essential oil extracted from leaves	In vitro	Anopheles stephensi, Aedes aegypti & Culex quinquefasciatus	3.125, 6.25, 12.50, 25, 50 and 100 ppm	It exhibits promising larvicidal activity against three mosquito species) [106]
	Ethanol, ethyl acetate, chloroform & aqueous extract	In vitro	Anopheles stephensi, & Aedes aegypti	1 mL	It exhibits promising larvicidal activity	[107]
	Ethanol, ethyl acetate, chloroform & aqueous extract	In vitro	Larvae and pupae of <i>C. quinquefasiatus</i>	20, 40, 60, 80, 100%	It has larvicidal & pupicidal activity	[108]
	Aqueous leaves extract, synthesized silver nanoparticles of <i>C. grandis</i>	In vitro	Aedes aegypti & Culex quinquefasciatus	50–250 ppm	It is effective in controlling <i>Culex quinquefasciatus & Aedes</i> aegypti larvae	[75]
Anti-cancer	Ethanolic extracts	In vitro	Ehrlich Ascites Carcinoma (EAC) cell	200 & 400 mg/kg body	It ↓viable cell & ↑ no. of non-viable cell count showing	[81]
				weight	anticancer property against EAC cells	
Antitussive	Methanolic extract	In vitro	Guinea pigs & Swiss-type albino mice	100, 200 & 400 mg/kg	It has significant antitussive effect	[109]
Anti-Alzheimer	Ethanolic extract	In vivo	Wistar-type albino rats	500 & 1000 mg/kg	It ↑learning & ↑memory activity	[74]

Table 4. Continued.

Activity	Type of preparation	Study type	Study models/methods	Administered	Biological effects	Ref.
				dosage		
Anticataract	Methanolic & aqueous extract	In vivo	Wistar-type albino rat models	200 mg/kg	It has potential anticataract activity	[73]
Antileishmanial	Leaf extract (crude extract)	In vivo	BALB/c mice models (female, adult)	12, 24, 48	Possible immunomodulator for treating visceral leishmaniasis	[110]
				mg/kg		
Anti-anaphylactic	Ethanolic extract	In vivo	Swiss-type albino mice models	100, 125 & 150	It shows potential anti-anaphylactic activity by \$\psi\$histamine	[111]
				mg/kg	release in anaphylactic reaction & \$\psicon\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot	
Antihistaminic	Ethanolic extract	In vivo	Swiss-type albino mice models	100, 125 & 150	It has potential antihistaminic activity	[111]
				mg/kg		
Anthelmintic	Methanolic extract	In vivo	Earth worm, tape worm & round	5, 10 mg/mL	It has significant anthelmintic activity	[68]
			worm			
Wound healing	Aqueous extract	In vivo	Wistar-type albino rat models	0.5 mg/cm	It ↑collagen synthesis & ↑granulation tissue formation	[51]
	Methanolic extract	In vivo	Albino rat models (male)	1.5 mg/g	It has wound healing capacity	[55]
	·		•		<u> </u>	

Upward (\uparrow) and downward (\downarrow) arrows represent increases and decreases in activity or levels, respectively.

cations. This condition stems from inadequate insulin, essential for glucose transport from blood to tissues [112]. Integrative approaches combining herbal and ayurvedic medicine with conventional treatments offer a comprehensive strategy for managing diabetes, with proven safety and effectiveness, particularly when coupled with dietary control and exercise [113–115]. Traditional medicinal plants have gained traction as alternative treatments and novel drug sources for diabetes, aligning with the WHO's guidelines on diabetes care.

For instance, the methanolic extract of C. grandis leaves has demonstrated significant antidiabetic effects in streptozotocin (STZ)-induced diabetic rats at doses of 125, 250, and 500 mg/kg, showing an ability to reduce hyperlipidemia associated with diabetes [84]. Studies using C. grandis fruit extracts have revealed strong antioxidant and radical-scavenging activities, evaluated through nitric oxide and radical-scavenging assays, and inhibitory effects on key enzymes α -glucosidase and α -amylase, with IC50 values of 81.6 and 117.64 µg/mL, respectively [64]. These properties, combined with its ability to lower blood glucose levels in oral glucose tolerance tests (OGTT), suggest C. grandis has a notable antihyperglycemic impact comparable to Glibenclamide, a common diabetes medication [116]. When diabetes was induced in rats using alloxan, an ethanol-based C. grandis leaf extract at 750 mg/kg showed hypoglycemic effects akin to metformin, without statistically significant differences (p > 0.05). This extract also improved pathological markers like serum glutamic oxaloacetic transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), and creatinine levels, indicating potential benefits for diabetic patients while demonstrating safety in non-diabetic models [66]. Furthermore, C. grandis hydroalcoholic stem extract-derived silver nanoparticles (AgNPs) exhibit promising antidiabetic effects in vitro, with effective glucose-lowering properties. The AgNPs were validated using multiple analytical techniques and offered potential applications in targeted drug delivery systems [117].

7.2 Antioxidants

The biological degenerative processes associated with excessive free radicals can result in damaging oxidative reactions within the body [118]. Antioxidant activity, defined as a bioactive compound's ability to neutralize these harmful radicals, plays a crucial role in protecting cellular integrity by inhibiting lipid peroxidation (LPO) and preventing oxidative damage. Antioxidants not only contribute to cellular defense but are essential for various biological functions, including anticancer, anti-inflammatory, and anti-aging effects. Research suggests a link between antioxidant activity and the prevention of chronic diseases like cancer, diabetes, and cardiovascular diseases [119]. Many plants contain potent antioxidants such as carotenoids, phenolics, flavonoids, anthocyanins, unsaturated fatty acids,

vitamins, enzymes, and cofactors—providing therapeutic potential for preventive healthcare. Recent research has further reinforced the antioxidant potential of *C. grandis*. A study evaluating the genetic variability of *C. grandis* germplasm under rainfed semi-arid conditions found significant variations in antioxidant activity among different accessions. High heritability and genetic advance were observed for key antioxidant markers such as total phenols, total flavonoids, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays, suggesting strong genetic control over these traits and highlighting the potential of *C. grandis* for breeding programs aimed at enhancing its antioxidant properties [120].

Studies have highlighted the value of plant-derived antioxidants for disease prevention, showing that diets rich in secondary plant compounds can reduce the risk of degenerative conditions, including cancer and arteriosclerosis [121,122]. Medicinal plants like C. grandis have shown promising antioxidant effects, which are particularly evident in ethanol extracts. For instance, the DPPH free radical scavenging assay demonstrated that C. grandis ethanol extract exhibited significant antioxidant activity (IC₅₀ 1.15 μg/mL), outperforming the standard, ascorbic acid (IC₅₀ 5.80 μg/mL), which displays the highest inhibition of free radical activity [123]. In vitro studies further support the efficacy of C. grandis fractions, revealing their robust hydrogen-donating ability. Chloroform (IC₅₀ $0.135 \,\mu\text{g/mL}$), ethyl acetate (IC₅₀ $0.154 \,\mu\text{g/mL}$), petether (IC₅₀ $0.39 \,\mu g/mL$), and methanolic fractions (IC₅₀ 0.8μg/mL) all exhibited significant antioxidant activity. The methanolic fraction had the highest reducing power (0.426 μg/mL), followed by ethyl acetate, pet-ether, and chloroform fractions. These findings were benchmarked against standards like butylated hydroxytoluene (BHT), ascorbic acid, α -tocopherol, and curcumin, underscoring the comparable efficacy of C. grandis [124]. In animal models, C. grandis extracts restored antioxidant enzyme activity in rats on a high-fat diet, reducing oxidative stress through increased levels of enzymes such as superoxide dismutase (SOD), glutathione (GSH), and catalase. In these studies, C. grandis was nearly as effective as metformin, reducing oxidative markers at doses of 100 mg/kg and 200 mg/kg [125]. The DPPH assay, used to measure antioxidant activity, confirmed that the methanolic extract of C. grandis callus powder showed 46.66% efficacy, surpassing the 30% activity observed in fruit powder and showing effectiveness close to that of ascorbic acid. Rat peritoneal macrophages treated with these extracts showed decreased oxygen radical production, attributed to the DPPH scavenging action [80]. The detailed mechanisms by which C. grandis exerts its antioxidant effects are illustrated in Fig. 4.

7.3 Anti-Microbial Activity

Bacterial infections remain a major global health threat, with rising antimicrobial resistance and biofilm-

associated infections heightening the need for novel antibacterial solutions [126]. The misuse and overuse of antibiotics have accelerated this resistance, rendering many existing drugs ineffective. This issue, deemed by the WHO as one of the most urgent challenges in medicine, highlights the necessity for new antimicrobial agents [127]. Since the late 20th century, resistance has surged among pathogens, complicating treatment options [128]. Reducing dependence on traditional antibiotics by exploring alternative sources, especially medicinal plants, is now critical [129]. Roughly half of existing drugs and nutraceuticals are derived from natural sources, driving researchers to investigate bioactive compounds from plants to combat microbial resistance.

Medicinal plants like Coccinia grandis (ivy gourd) have demonstrated significant antimicrobial effects. The methanol extract of C. grandis showed a 14.10 mm zone of inhibition against Pseudomonas aeruginosa in vitro, close to that of the standard antibiotic ciprofloxacin, which showed a 16.07 mm inhibition zone. C. grandis demonstrated strong activity against various gram-positive and gram-negative bacteria, such as Staphylococcus aureus and Escherichia coli, with minimum inhibitory concentrations (MICs) ranging from 10 to 25 µg/mL and minimum bactericidal concentrations (MBCs) from 25 to 50 µg/mL [130]. Further analysis of C. grandis extracts confirmed antimicrobial activity against a range of pathogens, including gram-positive bacteria like Staphylococcus aureus and gram-negative strains like Klebsiella pneumoniae and Proteus vulgaris. The purified protease inhibitor of C. grandis showed inhibition zones in antimicrobial tests, with K. pneumoniae and Aspergillus flavus being the most sensitive (MIC-0.01 mg/mL and MBC/minimal fungicide concentration (MFC)-0.5 mg/mL). Meanwhile, Staphylococcus aureus and Bacillus subtilis showed relatively higher resistance [131]. In another study, C. grandis ethanol leaf extracts demonstrated antibacterial activity against both grampositive and gram-negative strains, including Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Klebsiella pneumoniae, with MIC values less than 31.5 µg/mL against certain bacteria [132]. The extract also exhibited antifungal effects against Candida albicans and Aspergillus niger, particularly effective against oral and vaginal infection strains. Ethanol extracts showed higher activity against Aspergillus niger, responsible for aspergillosis, compared to aqueous extracts [133].

7.4 Hepatoprotective Activity

The liver, a crucial organ responsible for metabolism, secretion, storage, and detoxification, plays a fundamental role in maintaining overall health [134]. Its vital functions make it susceptible to damage, especially due to continuous exposure to toxins via direct blood flow from the intestines [135,136]. Liver diseases are among the leading causes of global morbidity and mortality, often triggered

by unhealthy habits, excessive alcohol and drug use, sugary diets, and infections from microbes like bacteria, viruses, and parasites, along with autoimmune diseases like hepatitis and cirrhosis [137]. These diseases can be acute or chronic, classified into hepatitis (inflammatory), hepatosis (non-inflammatory), and cirrhosis (degenerative fibrosis) [138,139]. Current treatments for liver disorders are controversial, as synthetic medications often produce significant side effects. For centuries, herbal remedies have offered alternative therapies due to their lower toxicity and fewer adverse effects, leading to modern medicines inspired by medicinal plants [138]. Among these plants, *C. grandis* demonstrates hepatoprotective properties.

Studies indicate that alcoholic extracts from C. grandis fruit can reduce liver damage in rats exposed to carbon tetrachloride (CCl₄), significantly lowering serum enzyme and bilirubin levels, comparable to the effects of the standard drug silymarin [140]. Similarly, an ethanolic extract of C. grandis leaves administered in varying doses has shown hepatoprotective effects against CCl₄ and paracetamol-induced liver damage. Rats treated with the extract exhibited statistically significant reductions in liver enzymes and other biochemical markers of liver damage [141] (Fig. 4). Furthermore, a mechanistic study demonstrated that C. grandis protects against monosodium glutamate and high-lipid diet-induced systemic damage in rats by ameliorating oxidative stress, metabolic disturbances, and inflammatory responses, suggesting its potential as a hepatoprotective agent [142].

7.5 Antileishmanial Activity

Leishmaniasis, a major global health challenge, is a vector-borne disease caused by protozoan parasites of the genus Leishmania and ranks among the top six neglected tropical diseases according to the World Health Organization (WHO). Affecting 98 countries across five continents, it presents two primary clinical forms: visceral leishmaniasis (VL) and cutaneous leishmaniasis, with annual incidences of approximately 0.2–0.4 million VL cases and 0.7–1.2 million cutaneous cases [143]. Due to the high toxicity and emerging resistance of conventional treatments, there is a pressing need for novel therapeutic agents. Natural products, particularly plant derivatives, have shown promise as alternative antileishmanial agents, demonstrating efficacy against *Leishmania major* (causing cutaneous leishmaniasis) and *Leishmania infantum* (responsible for VL) [144].

Research into *C. grandis* has revealed significant antileishmanial potential. The leaf extract of *C. grandis* (Cg-Ex), tested *in vitro* against *Leishmania donovani*, achieved a 50% inhibitory concentration (IC $_{50}$) of 193 \pm 0.78 µg/mL, significantly reducing intracellular parasite load without harming murine RAW 264.7 macrophages. Additionally, Cg-Ex stimulated nitric oxide (NO) and reactive oxygen species (ROS) production, both potent antimicrobial agents, within infected macrophages. Treatment with Cg-

Ex also induced a shift in cytokine profiles, enhancing Th1 cytokines (IL-12, TNF- α) while reducing Th2 cytokines (IL-10, TGF- β), suggesting that serine protease inhibitors in Cg-Ex contribute to its antileishmanial action through immunomodulation [145]. Another study demonstrated the leishmanicidal effects of an ethanolic extract of *C. grandis* leaves (Cg-LE) on *L. donovani* strains, including those resistant to standard treatments like Sodium Stibogluconate (SSG) and Miltefosine (MIL) (Fig. 4).

7.6 Anti-Inflammatory Activity

Inflammation is a complex immune response triggered by microbial infections, tissue damage, or sterile causes [146]. Globally, chronic pain associated with inflammation affects millions, including over 100 million adults in the U.S. and 27% of adults in Europe, with rates in Asia ranging from 7.1% to 61% [146,147]. If untreated, acute pain can lead to delayed wound healing, immune dysfunction, cardiovascular stress, and respiratory issues, while chronic pain disrupts the quality of life, daily activities, sleep, and work productivity, resulting in substantial economic costs [147]. Key immune cells such as leukocytes, macrophages, and mast cells release signaling molecules and activate complement factors, creating a cascade that recruits leukocytes, along with fluid and protein, to inflammation sites. While non-steroidal anti-inflammatory drugs (NSAIDs) and steroidal anti-inflammatory drugs (SAIDs) are widely used to manage inflammation, they pose risks of gastrointestinal (GI) and cardiovascular complications. As a result, plant-derived compounds are increasingly favored as natural anti-inflammatory alternatives with fewer side effects [148,149].

Studies on *C. grandis* have highlighted its anti-inflammatory potential. Using the human red blood cell (HRBC) membrane stabilization method, hydroethanolic leaf extract of *C. grandis* demonstrated dose-dependent HRBC protection rates of 30.7%, 47.11%, 58%, and 62% approaching the efficacy of diclofenac sodium, which showed protection rates of 68.85%, 78.41%, 89.8%, and 92.92% at similar concentrations [150].

In vivo studies showed that a 100 mg/kg dose of C. grandis methanolic leaf extract effectively reduced carrageenan-induced paw edema in rats, achieving similar results to diclofenac sodium, albeit with a 4-hour onset compared to diclofenac's 3-hour effect. The compound C. grandis leaf (CGL) reached 35.84% efficacy, close to diclofenac's 45.28%, and presents a safer, natural option for anti-inflammatory use [53]. Fig. 4 illustrates the mechanisms of C. grandis in modulating anti-inflammatory responses.

7.7 Anti-Ulcer Activity

Ulcers are open sores found on the skin or mucous membranes, characterized by shallow tissue damage. They can develop on the skin of the lower extremities and within

the gastrointestinal (GI) tract, with peptic ulcers being among the most common types [151]. Peptic ulcers involve the erosion of the stomach or duodenal lining and penetrate deep layers, often leading to tissue necrosis, immune cell infiltration, reduced blood flow, oxidative stress, and inflammation [152,153]. These ulcers arise from an imbalance between harmful agents (such as acid, pepsin, and Helicobacter pylori) and protective factors like mucin, prostaglandins, bicarbonate, nitric oxide, and growth factors. Factors such as poor digestion, stress, and metabolic issues can exacerbate ulcer formation [154]. Current treatments include sucralfate, histamine, prostaglandin, muscarinic receptor antagonists, proton pump inhibitors (PPIs), and antacids, though many have adverse side effects like hypersensitivity, fatigue, blood disorders, and arrhythmias. This underscores the need for safer, natural remedies to treat peptic ulcers effectively.

Research has explored various plant-based agents for ulcer treatment, including C. grandis, which has traditional applications in treating gastric and peptic ulcers. Studies using an aspirin-induced ulcer model demonstrated that both C. grandis leaf powder (CGL) and its methanol extract (CGM) significantly reduced ulcer indices in a dosedependent manner (p < 0.05) and lowered lipid peroxidation (LPO) and superoxide dismutase (SOD) levels (p <0.01), while increasing mucus secretion. These extracts inhibited ulcers by 26.76% and 34.84% at 2 g/kg, respectively, approaching the standard drug famotidine's 35.30% inhibition rate. Unlike famotidine, a synthetic drug, CGL, and CGM are natural, suggesting that C. grandis may offer a safer anti-ulcer option with antioxidant properties [155]. Additionally, the ethanol extract of C. grandis leaves was effective in treating indomethacin-induced ulcers in rats, reducing ulcer scores significantly (p < 0.001) and enhancing mucus secretion protection by 69.71%, close to omeprazole's 74.85% [156] (Fig. 4).

Further studies on *C. grandis* ethanol and aqueous extracts in a pylorus-ligated rat model revealed that both extracts reduced total acidity and ulcer index while increasing gastric juice pH in a dose-dependent manner. The ethanol extract showed a substantial ulcer-curative effect (78.57%), with the aqueous extract achieving a 64.28% effect, both comparable to omeprazole's 85.70% effectiveness. Notably, *C. grandis* extracts are natural, unlike omeprazole, a synthetic drug, highlighting the therapeutic value of these extracts, particularly the ethanol variant, in ulcer treatment [157,158]. Mechanisms underlying *C. grandis* anti-ulcer activity are illustrated in Fig. 4.

7.8 Anticancer and Hepatocellular Carcinoma

Cancer remains one of the most common causes of death worldwide [159]. It encompasses a group of diseases characterized by uncontrolled cell proliferation, influenced by multiple factors such as genetic mutations and epigenetic changes in cell cycle-regulating oncogenes [160]. Cancer

cells typically exhibit abnormal apoptosis and altered microtubule dynamics during mitosis. The World Health Organization (WHO) identifies primary cancer-inducing factors, including somatic mutations, ionizing radiation, reactive oxygen species (ROS), and exposure to various chemical and biological agents [161]. While chemotherapy remains a standard treatment, it can damage healthy cells, causing side effects like bone marrow suppression, nausea, vomiting, and hair loss [162]. Consequently, there is an urgent need for novel, safer treatments.

Medicinal plants offer promising alternatives, as their natural compounds may provide effective anticancer therapies [163]. Throughout history, natural products have served as key sources of medicine, offering bioactive compounds for direct therapeutic use [164]. Among these, *C. grandis* has shown notable anticancer properties. In one *in vivo* study, the ethanolic extract of *C. grandis* leaves was administered to mice with benzidine-induced hepatocellular carcinoma (HCC), where it reversed abnormalities in liver enzyme levels and serum proteins at a dose of 250 mg/kg. The tumor marker alpha-fetoprotein (AFP) significantly decreased in the extract-treated group, demonstrating a protective effect against HCC [165]. Fig. 4 illustrates the anticancer activity of *C. grandis*.

Further research using various extraction methods on C. grandis fruit showed that cold extracts more effectively reduced breast cancer cell proliferation in MDA-MB-231 cells compared to hot extracts, while acetone extracts exhibited greater activity than ethanol extracts [166]. Studies with Ehrlich Ascites Carcinoma (EAC) cell-induced tumors in rats also highlighted C. grandis anticancer efficacy, with ethanol extract injections increasing survival rates by up to 97% and reducing viable cell counts, paralleling the effects of vinblastine, a standard cancer treatment [167]. Additionally, the application of C. grandis seed extracts in zinc oxide nanocomposites demonstrated notable anticancer effects on hypertension -29 cells (IC₅₀ = 45.4 μ g/mL), offering a sustainable and cost-effective approach to cancer therapy [168].

7.9 Anti-Alzheimer's Disease

Alzheimer's disease (AD), a leading cause of dementia, represents one of the most pressing medical challenges of the modern era [169–171]. Dementia encompasses various neurodegenerative disorders marked by cognitive decline that disrupts daily functioning, with AD being the most prevalent accounting for 60% to 80% of dementia cases [172]. This neurodegenerative disease is defined by β -amyloid plaques outside cells and tau neurofibrillary tangles inside cells. While AD typically presents as memory loss, it also affects speech, executive functions, and visuospatial skills. Genetic factors in AD are complex, with most cases not inherited in a straightforward pattern [173]. Given public health concerns and the side effects associated with conventional synthetic drugs, medicinal

plants have emerged as promising alternatives for AD treatment. Bioactive compounds and crude extracts from various plants show considerable potential in managing and preventing AD (Fig. 4) [174].

An in vivo study assessed the effects of C. grandis fruits on learning and memory using the Morris Water Maze, Elevated Plus Maze, and Hebb-William Maze tests. Researchers measured the brain concentrations of GSH, SOD, catalase, LPO, and acetylcholine esterase activity. Doses of C. grandis (500 mg/kg, 1000 mg/kg), in addition to diazepam (1 mg/kg), showed reduced transfer latency (TL) and swim latency (SL) compared to diazepam alone. This was accompanied by lower acetylcholine esterase and LPO activity and increased levels of catalase, SOD, and GSH, suggesting C. grandis enhances learning and memory through its antioxidant and neuroprotective effects [74]. Additionally, in silico studies identified β -Sitosterol (– 8.70 Kcal/mol), Pectin (-7.82 Kcal/mol), Retinol (-7.24 Kcal/mol), and Taraxerone (-6.40 Kcal/mol) as superior to the synthetic drug rivastigmine (-5.6 Kcal/mol). Thus, C. grandis fruit consumption may help mitigate AD progression (Fig. 4) [175].

7.10 Larvicidal Activity

The rising environmental toxicity of insecticides can be mitigated by using plant-based alternatives for mosquito control. Coccinia grandis extracts show effective larvicidal properties against Anopheles stephensi and Aedes aegypti. At 100% ethanol concentration, mortality rates reached $73.3 \pm 7.7\%$ for *Anopheles stephensi* and $71.4 \pm 4.4\%$ for Aedes aegypti, with LC₅₀ values of 64.10% and 62.3%, respectively. Ethyl acetate extracts showed the highest activity, achieving 71.1 \pm 5.8% mortality for *Anopheles* stephensi and 74.4 \pm 4.0% for Aedes aegypti, with an LC₅₀ of 74.53%. Aqueous extracts had similar effects, with 72.2 \pm 3.2% mortality for both species and an LC₅₀ of 62.37% for Aedes aegypti. Chloroform extracts at high doses caused $71.1 \pm 5.9\%$ mortality for *Anopheles stephensi* and 68.3 \pm 2.3% for Aedes aegypti, with LC₅₀ values of 74.53% and 62.37%, respectively. These findings demonstrate the significant larvicidal potential of C. grandis fruit extracts against malaria and dengue vectors [107] (Fig. 4).

Further studies on unripe fruit extracts showed strong larvicidal and pupicidal effects against *Culex quinquefasciatus*, with low LC₅₀ values. Ethanol, chloroform, aqueous, and ethyl acetate extracts induced substantial mortality, with aqueous extracts showing the highest mortality (LC₅₀ 61.97%). Statistical analysis revealed significant variations (p < 0.05) in larval mortality [108]. Essential oils from *C. grandis* leaves demonstrated strong larvicidal activity against *Culex quinquefasciatus* (LC₅₀ 52.80 mg/L), *Anopheles stephensi* (LC₅₀ 39.41 mg/L), and *Aedes aegypti* (LC₅₀ 48.20 mg/L) after 24-hour exposure [106,167]. Aqueous leaf extracts showed higher mortality rates than controls, with LC₅₀ and LC₉₀ values of 135.35 and 117.62

ppm for *Aedes aegypti* and 93.73 and 108.26 ppm for *Culex quinquefasciatus*. Silver nanoparticles derived from *C. grandis* aqueous extract increased larvicidal effects, achieving an IC₅₀ of 156.3 ppm for *Aedes aegypti* and 181 ppm for *Culex quinquefasciatus* [75].

7.11 Wound Healing Activity

Infectious diseases caused by microorganisms remain a major global health threat, with wound infections contributing significantly to morbidity and mortality [176]. Wound healing, a complex process of tissue repair, begins with inflammation, followed by collagen production and epithelial regeneration [177]. Disruptions in the inflammatory phase can lead to oxidative stress, delaying healing. Recent studies on *C. grandis* leaf extract, traditionally used for insect bites, revealed its antioxidant potential in wound healing. The extract demonstrated strong antioxidant activity, with an IC₅₀ of 4.85 mg/mL for ROS scavenging and 21.39 mg/mL for iron chelation. It also enhanced cell survival and migration by up to 23%, suggesting its promise in skin care and wound healing applications [51].

Moreover, an investigation into the protein profile of C. indica revealed a significant similarity between the 17 kDa Protein Phosphatase 2 PP2 (CIA17) and phloem lectins within the PP2 superfamily. Mass spectrometry identified 16 probable allelic variants of CIA17, each with slightly varied structural characteristics. A key feature of CIA17, preserved across cucurbit species, is an intramolecular disulfide bond between cysteine residues at positions 34 and 51, essential for carbohydrate binding. Circular dichroism (CD) spectroscopy confirmed that CIA17 is rich in antiparallel β -sheets, akin to PP2 proteins found in Arabidopsis thaliana and Cucurbita maxima, both of which exhibit high thermostability up to 90 °C. Atomic force microscopy further revealed that CIA17 forms filamentous structures at higher concentrations, suggesting its potential role in pathogen defense and wound healing through chitin binding and filament formation [178].

7.12 Antibacterial Activity

The antibacterial properties of *C. grandis* were evaluated through *in vitro* studies using aqueous and organic solvent extracts, including chloroform, ethanol, and petroleum ether. These extracts were tested against *Bacillus subtilis*, *Enterobacter aerogenes*, *Salmonella typhimurium*, *Pseudomonas aeruginosa*, and *Staphylococcus epidermidis* using broth dilution and agar well diffusion techniques. The findings demonstrated notable antibacterial activity, with ethanol and aqueous extracts exhibiting the strongest inhibitory effects [179]. A subsequent study focused on the synthesis of silver nanoparticles (AgNP) using an ethanolic extract of *C. indica* leaves. The extract, prepared by maceration and used to reduce silver nitrate, led to the successful biosynthesis of AgNPs, as confirmed by surface plasmon resonance (SPR) at 425 nm, transmission elec-

tron microscopy (TEM), and scanning electron microscopy (SEM). The AgNPs ranged from 8 to 48 nm and showed a zeta potential of –55.46 mV, indicating moderate stability. Notably, AgNPs exhibited stronger antibacterial activity against gram-negative bacteria compared to gram-positive strains [180]. The antibacterial activity of *C. grandis* is further illustrated in Fig. 4.

Another study utilizing agar well diffusion reported that various solvent extracts, including acetone, ethanol, methanol, aqueous, and hexane, from *C. grandis* leaves exhibited substantial antibacterial activity, with ethanol extracts showing the most potent effects against *S. aureus*, *B. cereus*, *E. coli*, *K. pneumoniae*, and *S. pyogenes*. The minimal inhibitory concentration (MIC) for the ethanol extract ranged from 31.25 µg/mL to 1000 µg/mL, with concentrations below 31.5 µg/mL demonstrating strong inhibition, particularly against *K. pneumoniae*, *S. aureus*, and *E. coli* [132].

Moreover, a study found that hot ethanol and acetone extracts of *C. grandis* showed larger inhibition zones compared to cold extracts, especially against *S. aureus*, *E. coli*, and *Enterococcus faecalis*. In contrast, *P. aeruginosa* exhibited no significant inhibition at these concentrations. The antibacterial activity was comparable to that of the standard erythromycin, with varying MIC values, the highest for *P. aeruginosa* and the lowest for *S. aureus* [170]. Lastly, a screening of human pathogenic bacteria using the disc diffusion method revealed that the chloroform extract of *C. cordifolia* showed moderate antibacterial activity, while the n-hexane and ethyl acetate extracts demonstrated slightly less efficacy [181].

7.13 Antifungal Activity

In vitro assays on C. indica demonstrated antifungal activity against dermatophytes like Candida albicans, Microsporum gypseum, and Microsporum canis using Asthana and Hawker's and Sabouraud's dextrose agar. Methanol and petroleum ether extracts were most effective, particularly from the fruit, which showed larger inhibition zones (3–8 mm) than leaf (2–5 mm), root (1–4 mm), and stem (1–3 mm) extracts [182]. Moreover, ethanolic extracts of C. grandis effectively inhibited C. albicans and A. niger. While A. niger and A. fumigatus are known to cause aspergillosis, C. albicans is associated with conditions like oral and vaginal candidiasis. Fig. 4 illustrates the antifungal effects of C. grandis extracts [170].

A separate investigation explored the antifungal and antibacterial properties of *C. indica* leaves against various pathogens, including Methicillin-Resistant *Staphylococcus aureus* (MRSA), *Streptococcus pyogenes* (multidrugresistant), *Candida auris*, *Trichophyton rubrum*, and *E. coli*. Using tube dilution and disc diffusion methods, the ethanolic extract showed strong inhibition against MRSA, *C. auris* (250 µg/mL), and *S. pyogenes* (200 µg/mL) compared to antibiotics. Higher concentrations were needed

to affect E. coli, while no significant impact was observed on Trichophyton rubrum. These findings highlight concentration-dependent antifungal and antibacterial effects, indicating potential for C. indica ethanolic extracts in addressing multidrug-resistant pathogens [183]. Additionally, methanol root extract (300 µg/disc) and kanamycin (30 µg/disc) were tested against various fungi. The plant extract showed strong antifungal activity, with the largest inhibition zone (19.0 mm) against C. albicans and Colletotrichum falcatum, followed by 17.0 mm against Aspergillus niger. Lesser effects (7.0 mm) were observed against Aspergillus fumigatus, and no inhibition was noted for Aspergillus flavus and T. rubrum. The petroleum ether extracts from leaves and calluses displayed potent antifungal effects at minimal concentrations of 0.3125 μg/100 μL against C. albicans, and 0.625 µg/100 µL against Candida krusei and Candida tropicalis [184].

8. Clinical Trial

The clinical trials conducted to date with *C. grandis* have primarily targeted its antidiabetic effects and potential to improve glucose metabolism in various health conditions (Table 5, Ref. [91,185–191]).

In a double-blind, randomized, placebo-controlled trial on 48 pre-diabetic patients, daily administration of a 500 mg C. grandis tablet twice daily led to significant reductions in fasting glucose and triglyceride levels while enhancing glucose tolerance [185]. Another study with 122 healthy participants assessed the effects of C. grandis leaves, combined with grated coconut and salt, taken as a single 20 g dose with a meal, and reported a substantial drop in blood sugar levels [186]. Further investigations in T2DM patients demonstrated promising outcomes. For instance, a trial involving 158 T2DM patients who received a 500 mg C. grandis gelatin capsule daily observed regulated blood sugar levels alongside reduced activities of α amylase, α -glucosidase, and dipeptidyl peptidase 4(DPP-4) enzymes, coupled with enhanced glucose absorption and antioxidant effects [187]. Similarly, a smaller study on 10 T2DM patients using 3 g of root powder twice daily showed notable reductions in fasting blood glucose [188]. Another double-blind, randomized, placebo-controlled trial with 90 participants, conducted with both diabetic and non-diabetic found that 500 mg capsules taken twice daily effectively lowered fasting blood sugar levels [189].

Additionally, research on herbal capsule formulation in 82 T2DM patients highlighted reductions in blood glucose levels and antioxidant benefits with a twice-daily 500 mg dose [190]. Another study tested a 500 mg herbal formulation in 158 T2DM patients, showing an improvement in glucose tolerance [191]. While these clinical trials indicate a consistent positive impact of *C. grandis* on blood sugar regulation and associated metabolic markers, the studies are preliminary, with varying methodologies and sample sizes. Further large-scale, rigorously controlled tri-

als are necessary to confirm its efficacy and safety as an antidiabetic agent and fully understand its therapeutic potential in chronic disease management.

9. Safety Profile

C. grandis demonstrates a high safety profile, with no significant toxicity or side effects reported in various animal and human studies, supporting its use as a safe natural remedy. Multiple studies show that C. grandis extracts are safe for oral consumption. In acute toxicity tests, ethanolic and methanolic extracts of C. grandis leaves exhibited no toxicity or mortality at doses up to 2000 mg/kg in animal model [84,192,193]. Studies confirm that different plant parts, including leaves and stem, are non-toxic and safe for normal cells, showing no adverse effects on cell lines such as erythrocytes and Human Embryonic Kidney 293 (HEK293) cells [194,195]. Additionally, a 12-week randomized, double-blind clinical trial on prediabetic adults reported no significant adverse effects, suggesting tolerability in humans [155]. In vivo studies further substantiate the plant's safety: no toxicity was observed at doses up to 2.00 g/kg for anti-hyperglycemic effects, while hepatoprotective effects were noted up to 3.2 g/kg in laboratory rats [141,196]. Even at doses as high as 3500 mg/kg, C. grandis extracts were well-tolerated without lethality or toxicity in gastric ulcer models [155]. This extensive evidence suggests that C. grandis is a safe candidate for therapeutic applications, though future studies on drug interactions are recommended to confirm its safety for wider clinical use.

10. Functional Food

Chronic diseases such as heart disease, cancer, and diabetes are major public health concerns, often linked to poor dietary habits, including excessive intake of fats, refined sugars, salt, and cholesterol [197]. These conditions, exacerbated by unhealthy lifestyles, have contributed to a rise in non-communicable diseases [198]. Incorporating functional foods, which are rich in vitamins, minerals, fiber, antioxidants, and probiotics, can reduce the risk of these diseases and enhance both physical and mental health [199]. Functional foods, which resemble traditional foods but provide additional health benefits, help improve bodily functions and prevent diseases by adding beneficial ingredients or removing harmful ones. Such foods can boost immune function, reduce the risk of cardiovascular disease, osteoporosis, obesity, and cancer, and improve cognitive health [198,199]. These foods became widely recognized in Japan in the 1980s and have since spread globally [199,200]. Epidemiological studies indicate that consuming bioactive compounds in fruits and vegetables can lower the risk of metabolic disorders and cancer [199].

C. grandis is an underutilized functional food known for its numerous health benefits. Rich in bioactive compounds such as antioxidants, minerals, and phytochemicals, it offers significant nutritional value [17,201]. The tender

Table 5. Clinical studies conducted out using *C. grandis*.

Administered material	No. of subjects	Health state of the participants	Study model	Dosage regimen	Results	Ref.
Plant powder in tablet	48	Pre-diabetic patients	Double-blind, randomized, placebo-controlled trial	500 mg, one tablet taken twice daily	It ↓fasting glucose, ↑glucose tolerance & regulating TG levels	[185]
Leaves combined with a certain amount of grated coconut & table salt	122	Healthy participants	Double-blind, randomized, placebo-controlled trial	20 g of leaves once with a meal	Its ↓blood sugar level	[186]
Gelatine capsule as dietary supplement	158	Patients with T2DM	Double-blind, randomized, placebo-controlled trial	500 mg once a day	Control blood sugar levels, including $\downarrow \alpha$ -amylase, $\downarrow \alpha$ -glucosidase, $\downarrow DPP-4$ enzymes, \uparrow glucose absorption, & \uparrow antioxidant effects	[91,187]
Root powder	10	Patients with T2DM		3 g twice a day before food	It ↓fasting blood sugar	[188]
Capsule	90	Patients with & without diabetes	Double-blind, randomized, placebo-controlled trial	500 mg twice per day	It ↓fasting blood sugar level	[189]
Herbal capsule	82	Patients with T2DM	Double-blind randomized, placebo-controlled trial	500 mg 1 capsule to be taken twice a day	It ↓blood glucose & has an antioxidant effect	[190]
Herbal formulation	158	T2DM patients	Double-blind randomized, placebo-controlled trial	500 mg once daily	It ↑glucose tolerance	[191]

Upward (\uparrow) and downward (\downarrow) arrows represent increases and decreases in activity or levels, respectively.

leaves are commonly used in salads, while young fruits and shoots are incorporated into various dishes, providing a rich source of vitamins, protein, and minerals [202,203]. Unripe fruits are utilized in soups, and the bitter variants are particularly valued for their leaves and shoots [56]. C. grandis contains a wide range of phytochemicals, including alkaloids, phenolic acids, triterpenoids, carotenoids, flavonoids, saponins, beta-carotene, and polysaccharides. Among these, cucurbitacin, a triterpenoid, is noted for its broad therapeutic potential. Phenolic compounds, such as phenolic acids and flavonoids, exhibit strong antioxidant properties, offering protection against cancer, inflammation, atherosclerosis, and thrombosis [204,205]. Moreover, C. grandis demonstrates significant antioxidant potential and starch hydrolase inhibitory properties, further establishing its role as a functional food [206]. These findings underscore C. grandis as a promising candidate for functional food formulation, owing to its rich phytochemical composition and diverse health benefits.

Nanoparticles and Activated Carbon

The antidiabetic effects of C. grandis encapsulated in alginate nanoparticles were analyzed, revealing significant inhibition of α -amylase (60.8%), α -glucosidase (19.1%), and dipeptidyl peptidase IV (30.3%). Successful encapsulation was confirmed through encapsulation efficiency, loading capacity, and particle size analysis, with particles in the nanometer range. SEM and Fourier Transform Infrared (FTIR) analyses further confirmed the spherical morphology and effective encapsulation [207]. In another study, encapsulated C. grandis aqueous extract was synthesized into alginate nanoparticles and analyzed for antioxidant properties. The nanoparticles showed enhanced activity in DPPH, ABTS, and (FRAP) assays, surpassing the antioxidant effects of the unencapsulated extract. FTIR and SEM analyses confirmed successful encapsulation and particle formation at 71 nm, suggesting the potential for C. grandis encapsulated in alginate nanoparticles as an antioxidant enhancement agent and a foundation for future nano nutraceutical applications [208]. Eco-friendly calcium oxide (CaO) nanoparticles were synthesized using C. grandis fruit extract. These nanoparticles demonstrated effective photocatalytic degradation of dyes such as methyl red, methyl orange, and methylene blue. Additionally, the nanoparticles exhibited antimicrobial activity, inhibiting Aspergillus niger, E. coli, Salmonella typhi, S. mutans, and S. aureus, indicating potential applications in both antimicrobial and environmental fields [207]. Silver nanoparticles (Ag-NPs) synthesized from C. grandis leaf extract demonstrated significant antibacterial, anticandidal, and antibiofilm activities against pathogens associated with head and neck infections, including S. aureus, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, C. albicans, C. tropicalis, C. orthopsilosis, and C. glabrata [68]. Furthermore, gelatin-loaded zinc oxide nanocomposites (GN/ZnONCs) synthesized using *C. indica* seed extract exhibited strong antibacterial activity against both grampositive and gram-negative bacteria. The nanoparticles also showed notable antioxidant properties and promising anticancer activity, along with enhanced wound healing [168].

Activated carbon (AC) synthesized from *C. grandis* leaves (CL-AC) was investigated for its electrochemical properties. The synthesis involved carbonization, impurity removal, and NaOH activation, resulting in a high surface area and nitrogen content. Compared to conventional bamboo-derived AC (B-AC), CL-AC demonstrated improved electrochemical performance, including reduced series and charge transfer resistance due to nitrogen incorporation. These findings suggest that nitrogen-rich *C. grandis* leaves serve as promising precursors for nitrogen-doped AC, offering a cost-effective alternative for electrochemical capacitor applications [209].

11. Conclusion and Future Prospects

Multiple in vitro and in vivo studies on C. grandis have demonstrated its remarkable medicinal potential, particularly in the management of diabetes and related metabolic disorders, providing strong support for its ethnobotanical uses. Various bioactive compounds in C. grandis, including flavonoids, alkaloids, and triterpenoids, have been reported to exhibit significant antidiabetic and antioxidant activities, which warrant further investigation for the development of novel therapies targeting diabetes. In addition, the anti-inflammatory properties of C. grandis may provide new avenues for the treatment of conditions such as arthritis and other inflammatory diseases, which should be explored in future research. The anticancer potential of C. grandis has also been studied, with promising results indicating its ability to inhibit the growth of various cancer cell lines. However, the specific molecular mechanisms involved in these effects have not yet been fully elucidated. Further studies are needed to investigate the underlying molecular pathways, which could lead to the identification of potential chemopreventive agents within C. grandis. Furthermore, the hepatoprotective effects of C. grandis have shown considerable promise, although additional studies are required to verify the compounds responsible for this activity and their safety profile. The use of C. grandis in the treatment of cardiovascular diseases has been supported by several studies, particularly regarding its effects on lipid metabolism and its antioxidant properties. However, conflicting results have been reported in terms of its efficacy in regulating blood pressure, suggesting the need for more comprehensive clinical trials. Bioassay-guided isolation of specific phytoconstituents in C. grandis could help identify the most potent compounds for treating hypertension and related cardiovascular issues. Likewise, the immunomodulatory activity of C. grandis extracts and its phytoconstituents deserves further exploration. Certain compounds in C. grandis have shown the ability to modulate

the immune system, both activating and suppressing immune responses. This dual action presents an interesting area for future research, particularly for conditions involving immune dysregulation, such as autoimmune diseases and chronic inflammation. While C. grandis has demonstrated substantial pharmacological effects, its toxicity profile remains a concern. Toxicological studies have shown that while C. grandis appears to be safe in recommended doses. Therefore, further in-depth investigations into the safety and toxicity of individual compounds, especially at higher doses, are crucial to ensure the plant's therapeutic viability. The promising outcomes from preclinical studies need to be translated into clinical settings to confirm their therapeutic potential. Exploration of various nanoparticles of extracts and constituents, along with their synergistic effects could help develop more potent therapeutic formulations. Additionally, pharmacokinetics and bioavailability studies of these formulations are crucial for attaining consistent therapeutic outcomes. Investigating the potentials of C. grandis in other therapeutic areas, such as neurodegenerative diseases, cardiovascular health, and immune modulation, could open new avenues for its application.

C. grandis shows significant promise as a multifunctional therapeutic agent for a range of diseases, including diabetes, cancer, cardiovascular diseases, and inflammatory disorders. However, to fully realize its potential, further pharmacological, toxicological, and clinical research is needed. Identifying the specific active compounds responsible for their therapeutic effects and assessing their safety profiles will be critical in developing C. grandis as a reliable and effective treatment option.

Abbreviations

2,2'-Azino-bis ABTS, (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt; AD, Alzheimer's disease; AgNPs, Silver nanoparticles; BHT, Butylated hydroxyl toluene; C. grandis, Coccinia grandis; CCl₄ Carbon tetrachloride; CGL, Coccinia grandis leaf; CGM, Coccinia grandis methanolic extract; DM, Diabetes mellitus; DPP-4, Dipeptidyl peptidase 4; DPPH, 2,2diphenyl-1-picrylhydrazyl; EECG, Ethanolic extract of Coccinia grandis; ER, Endoplasmic Reticulum; FRAP, Ferric reducing antioxidant power; Gly, Glycerol; GSH, Glutathione; H₂O₂, Hydrogen peroxide; HDL-C/TC ratio, High Density Lipoprotein-Cholesterol/Total cholesterol ratio; HF, High-fat; HRBC, Human red blood cell; HR-TEM, High-resolution transmission electron microscopy; HT, Hypertension; IC₅₀, Half-maximal inhibitory concentration; IL, Interleukin; LPO, Lipid peroxidation; MBC, Minimal bactericidal concentration; MFC, Minimal fungicide concentration; MIC, Minimum inhibitory concentration; MIL, Miltefosine; NIDDM, Non-insulin dependent diabetes mellitus; NO, Nitric oxide; NSAIDs, Non-steroidal anti-inflammatory drugs; OGTT, Oral Glucose Tolerance Test; PEF, Pet-ether fraction; PP2,

Protein Phosphatase 2; ROS, Reactive Oxygen Species; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SGOT, Serum glutamic oxaloacetic transaminase; SGPT, Serum glutamate pyruvate transaminase; SOD, Superoxide dismutase; SSG, Sodium Stibo Gluconate; STZ, Streptozotocin; T1DM, Type-1 Diabetes Mellitus; T2DM, Type-2 Diabetes Mellitus; TC, Total cholesterol; TG, Triglyceride; TGF- β , Transforming growth factor- β ; TNF-a, Tumor necrosis factor alpha; VL, Visceral leishmaniasis; VLDL-C, Very-low-density lipoprotein; WHO, World Health Organization.

Author Contributions

NHS, NNS, Supervision, Data acquisition, analysis, interpretation, Writing — review & editing, writing — original draft. Both authors read and approved the final manuscript. Both authors have participated sufficiently in the work and agreed to be accountable for all aspects of the work.

Ethics Approval and Consent to Participate

Not applicable.

Acknowledgment

We would like to express our sincere gratitude to Mohammad Abdur Rahim and Dr. Mohammad Zashim Uddin for their valuable assistance in identifying the plant *C. grandis* used in this study.

Funding

This research received no external funding.

Conflict of Interest

The authors declare no conflict of interest.

References

- [1] Uddin MMN, Rizwan A. Effect of ethanol extract of *Coccinia grandis* Linn leaf on glucose and cholesterol lowering activity. British Journal of Pharmaceutical Research. 2013; 3: 1070–1078.
- [2] Arunachalam R, Dhanasingh S, Kalimuthu B, Uthirappan M, Rose C, Mandal AB. Phytosynthesis of silver nanoparticles using *Coccinia grandis* leaf extract and its application in the photocatalytic degradation. Colloids and Surfaces. B, Biointerfaces. 2012; 94: 226–230. https://doi.org/10.1016/j.colsurfb.2012.01. 040.
- [3] Bhaskar Nagilla BN, Reddy KP. Protective effects of *Coccinia grandis* leaf extract: behavioural, electrophysiological, biochemical and histological features of diabetic neuropathy. International Journal of Pharmaceutical Sciences and Research (IJPSR). 2014; 5: 4302–4309.
- [4] Astiti MA, Jittmittraphap A, Leaungwutiwong P, Chutiwitoon-chai N, Pripdeevech P, Mahidol C, et al. LC-QTOF-MS/MS Based Molecular Networking Approach for the Isolation of α-Glucosidase Inhibitors and Virucidal Agents from Coccinia grandis (L.) Voigt. Foods (Basel, Switzerland). 2021; 10: 3041. https://doi.org/10.3390/foods10123041.

- [5] Attanayake AP, Jayatilaka KAPW, Pathirana C, Mudduwa LKB. Antihyperglycemic activity of *Coccinia grandis* (L.) Voigt in streptozotocin induced diabetic rats. Indian Journal of Traditional Knowledge. 2015; 14: 376–381.
- [6] Hasan MF, Sikdar B. Screening of antimicrobial, cytotoxic and pesticidal activities of *Coccinia grandis* (L.) Voigt. Journal of Microbiology, Biotechnology and Food Sciences. 2016; 5: 584– 588
- [7] Sunny B, Mathews MM, Joseph D, Mathew F, George J, Varghese B. Antihyperglycemic status of *Coccinia grandis*: An extensive overview. Research Journal of Pharmacy and Technology. 2020; 13: 1951–1956.
- [8] Thiripurasundari U, Rao MV. Indirect Organogenesis from Nodal Explants of *Coccinia grandis* (L.) Voigt. Indian Journal of Biotechnology. 2012, 11, 352–354.
- [9] Umamaheswari M, Chatterjee TK. In vitro antioxidant activities of the fractions of *Coccinia grandis* L. leaf extract. African Journal of Traditional, Complementary, and Alternative Medicines: AJTCAM. 2008; 5: 61–73.
- [10] Singh G, Gupta P, Rawat P, Puri A, Bhatia G, Maurya R. Antidyslipidemic activity of polyprenol from *Coccinia grandis* in high-fat diet-fed hamster model. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology. 2007; 14: 792–798. https://doi.org/10.1016/j.phymed.2007.06.008.
- [11] Sutradhar BK, Islam MJ, Shoyeb MA, Khaleque HN, Sintaha M, Noor FA, et al. An evaluation of antihyperglycemic and antinociceptive effects of crude methanol extract of *Coccinia grandis* (L.) J. Voigt.(Cucurbitaceae) leaves in Swiss albino mice. Advances in Natural and Applied Sciences. 2011; 5: 1–5
- [12] Pekamwar SS, Kalyankar TM, Kokate SS. Pharmacological Activities of *Coccinia grandis*: Review. Journal of Applied Pharmaceutical Science. 2013; 3: 114–119.
- [13] Jebadurai SG, Raj RE, Sreenivasan VS, Binoj JS. Comprehensive characterization of natural cellulosic fiber from *Coccinia grandis* stem. Carbohydrate Polymers. 2019; 207: 675–683. https://doi.org/10.1016/j.carbpol.2018.12.027.
- [14] Beera AM, Nori LP, Seethamraju SM. Nutritional and therapeutic potential of *Coccinia grandis* (L) Vogit: a wonder vegetable. Pharma Times. 2022; 54: 7.
- [15] Wasantwisut E, Viriyapanich T. Ivy gourd (Coccinia grandis Voigt, Coccinia cordifolia, Coccinia indica) in human nutrition and traditional applications. 2003. Karger eBooks: Switzerland. https://doi.org/10.1159/000069929.
- [16] Putra IMWA, Fakhrudin N, Nurrochmad A, Wahyuono S. Antidiabetic activity of *Coccinia grandis* (L.) Voigt: Bioactive constituents, mechanisms of action, and synergistic effects. Journal of Applied Pharmaceutical Science. 2022; 12: 41–54.
- [17] Areces-Berazain F. Coccinia grandis (Scarlet-Fruited Ivy Gourd). 2022. Available at: https://doi.org/10.1079/cabicompen dium.14659.
- [18] Lim TK. *Coccinia grandis*. In Edible Medicinal and Non-Medicinal Plants (pp. 191–200). Springer: Dordrecht, The Netherlands. 2012.
- [19] Waisundara VY, Watawana MI, Jayawardena N. Costus speciosus and *Coccinia grandis*: Traditional Medicinal Remedies for Diabetes. South African Journal of Botany. 2015; 98: 1–5. https://doi.org/10.1016/j.sajb.2015.01.012.
- [20] Holstein N. Monograph of Coccinia (Cucurbitaceae). PhytoKeys. 2015; 54: 1–166. https://doi.org/10.3897/phytokeys.54. 3285.
- [21] DeFilipps RA, Krupnick GA. The medicinal plants of Myanmar. PhytoKeys. 2018; 1–341. https://doi.org/10.3897/phytokeys.102.24380.
- [22] Shaina TJ, Beevy SS. Morphological Variation and Evolutionary Significance of *Coccinia grandis* (L.) Voigt: An Under-

- Exploited Cucurbitaceous Vegetable Crop. Plant Systematics and Evolution. 2011; 298: 653–659. https://doi.org/10.1007/s00606-011-0574-4.
- [23] Swamy KRM. Origin, Distribution, Taxonomy, Genetic Diversity, Breeding, Uses and Production Technology of Ivy Gourd (*Coccinia grandis* (L.) Voigt). International Journal of Current Research. 2022; 14: 23144–23157. https://doi.org/10.24941/ijcr.44479.12.2022.
- [24] Ilango KB, Gowthaman S, Seramaan KI, Chidambaram K, Bayan MF, Rahamathulla M, et al. Mucilage of Coccinia grandis as an Efficient Natural Polymer-Based Pharmaceutical Excipient. Polymers. 2022; 14: 215. https://doi.org/10.3390/poly m14010215.
- [25] Global Biodiversity Information Facility (GBIF) Secretariat. Coccinia grandis (L.) Voigt. 2023. Available at: https://doi.or g/10.15468/39omei (Accessed: 7 January 2025).
- [26] Fariste Mawla FM, Safiyah Khatoon SK, Fatema Rehana FR, Sharmin Jahan SJ, Shelley MMR, Sophia Hossain SH, et al. Ethnomedicinal plants of folk medicinal practitioners in four villages of Natore and Rajshahi districts, Bangladesh. American-Eurasian Journal of Sustainable Agriculture. 2012; 6: 406–416.
- [27] Zakaria DM, Islam M, Anisuzzaman SM, Kundu SK, Khan MS, Begum AA. Ethnomedicinal survey of medicinal plants used by folk medical practitioners in four different villages of Gazipur district, Bangladesh. Advances in Natural and Applied Sciences. 2011; 5: 392–399.
- [28] Ocvirk S, Kistler M, Khan S, Talukder SH, Hauner H. Traditional medicinal plants used for the treatment of diabetes in rural and urban areas of Dhaka, Bangladesh—an ethnobotanical survey. Journal of Ethnobiology and Ethnomedicine. 2013; 9: 43. https://doi.org/10.1186/1746-4269-9-43.
- [29] Chassagne F, Deharo E, Punley H, Bourdy G. Treatment and management of liver diseases by Khmer traditional healers practicing in Phnom Penh area, Cambodia. Journal of Ethnopharmacology. 2017; 202: 38–53. https://doi.org/10.1016/j.jep.2017. 03.002.
- [30] Addis G, Asfaw Z, Woldu Z. Ethnobotany of wild and semiwild edible plants of Konso ethnic community, South Ethiopia. Ethnobotany Research and Applications. 2013; 11: 121–141.
- [31] Assefa B, Megersa M, Jima TT. Ethnobotanical study of medicinal plants used to treat human diseases in Gura Damole District, Bale Zone, Southeast Ethiopia. Asian Journal of Ethnobiology. 2021; 4: 42–52. https://doi.org/10.13057/asianjethnobio1/v040105.
- [32] Alagesaboopathi C. Ethnomedicinal Plants Used as Medicine by the Kurumba Tribals in Pennagaram Region, Dharmapuri District of Tamil Nadu, India. Asian Journal of Experimental Biological Sciences. 2011; 2: 140–142.
- [33] Alagesaboopathi C. Ethnomedicinal plants and their utilization by villagers in Kumaragiri Hills of Salem district of Tamilnadu, India. African Journal of Traditional, Complementary, and Alternative Medicines: AJTCAM. 2009; 6: 222–227. https://doi. org/10.4314/ajtcam.v6i3.57157.
- [34] Poongodi A, Thilagavathi S, Aravindhan V, Rajendran A. Observations on Some Ethnomedicinal Plants in Sathyamangalam Forests of Erode District, Tamil Nadu, India. Journal of Medicinal Plant Research. 2011; 5: 4709–4714.
- [35] Kamble MY, Mane SS, Murugan C, Jaisankar I. Diversity of Ethno-Medicinal Plants of Tropical Islands–With Special Reference to Andaman and Nicobar Islands. In Biodiversity and climate change adaptation in tropical islands (pp. 55–103). Academic Press: Cambridge, USA. 2008. https://doi.org/10.1016/ B978-0-12-813064-3.00003-X.
- [36] Kasmawati H, Ruslin IS, Yamin MD, Elafita WO. Ethnomedicine studies of traditional medicinal plants of the Muna Tribe in the Village of Bungi Southeast Sulawesi Province of In-

- donesia. International Journal of Science and Research. 2019; 8: 1882–1887. https://doi.org/10.3390/plants12244148.
- [37] Purwanti E, Mahmudati N, Faradila SF, Fauzi A. Utilization of Plants as Traditional Medicine for Various Diseases: Ethnobotany Study in Sumenep, Indonesia. In AIP Conference Proceedings. AIP Publishing. 2020. https://doi.org/10.1063/5.0002430.
- [38] Taek M, Prajogo EWB, Agil M. Ethnomedicinal Plants Used for the Treatment of Malaria in Malaka, West Timor. Journal of Young Pharmacists. 2018; 10: 187–192. https://doi.org/10. 5530/jyp.2018.10.42.
- [39] Kipkore W, Wanjohi B, Rono H, Kigen G. A study of the medicinal plants used by the Marakwet Community in Kenya. Journal of Ethnobiology and Ethnomedicine. 2014; 10: 24. https://doi.org/10.1186/1746-4269-10-24.
- [40] Rak AE, Tharmadurai K, Khanam Z, Omar SA, Appalasamy S. Diversity of Plant Species Abundantly Consumed in Traditional Practice of Siamese Community of Kelantan, Malaysia. In ICASI 2019: Proceedings of the 2nd International Conference On Advance And Scientific Innovation, ICASI 2019, 18 July, Banda Aceh, Indonesia (p. 104). European Alliance for Innovation. 2019. http://dx.doi.org/10.4108/eai.18-7-2019.2288671.
- [41] Ong HG, Ling SM, Win TTM, Kang DH, Lee JH, Kim YD. Ethnomedicinal plants and traditional knowledge among three Chin indigenous groups in Natma Taung National Park (Myanmar). Journal of Ethnopharmacology. 2018; 225: 136–158. https://doi.org/10.1016/j.jep.2018.07.006.
- [42] Abd El-Ghani MM. Traditional Medicinal Plants of Nigeria: An Overview. American Journal of Agricultural and Biological Science. 2016; 7: 220–247.
- [43] Ahmad M, Khan MPZ, Mukhtar A, Zafar M, Sultana S, Jahan S. Ethnopharmacological survey on medicinal plants used in herbal drinks among the traditional communities of Pakistan. Journal of Ethnopharmacology. 2016; 184: 154–186. https://doi.org/10.1016/j.jep.2016.02.039.
- [44] Marwat SK, Rehman F, Khan EA, Khakwani AA, Ullah I, Khan KU, *et al.* Useful ethnophytomedicinal recipes of angiosperms used against diabetes in South East Asian Countries (India, Pakistan & Sri Lanka). Pakistan Journal of Pharmaceutical Sciences. 2014; 27: 1333–1358.
- [45] Al-Fatimi M. Wild edible plants traditionally collected and used in southern Yemen. Journal of Ethnobiology and Ethnomedicine. 2021; 17: 49. https://doi.org/10.1186/s13002-021-00475-8.
- [46] Neamsuvan O, Madeebing N, Mah L, Lateh W. A survey of medicinal plants for diabetes treating from Chana and Nathawee district, Songkhla province, Thailand. Journal of Ethnopharmacology. 2015; 174: 82–90. https://doi.org/10.1016/j.jep.2015. 07.050.
- [47] Phumthum M, Balslev H. Thai Ethnomedicinal Plants Used for Diabetes Treatment. OBM Integrative and Complementary Medicine. 2018; 3: 1–17.
- [48] Pradhan SP, Chaudhary RP, Sigdel S, Pandey BP. Ethnobotanical Knowledge of Khandadevi and Gokulganga Rural Municipality of Ramechhap District of Nepal. Ethnobotany Research and Applications. 2020; 20: 1–32.
- [49] Anywar G, Origa HO, Mugisha MK. Wild Plants Used as Nutraceuticals from Nebbi District, Uganda. European Journal of Medical Plants. 2014; 4: 641–660.
- [50] Omara T, Nakiguli C, Naiyl R, Opondo F, Otieno S, Ndiege M, et al. Medicinal Plants Used as Snake Venom Antidotes in East African Community: Review and Assessment of Scientific Evidences. Journal of Medicinal and Chemical Sciences. 2021; 4: 107–144. https://doi.org/10.26655/JMCHEMSCI.2021.2.4.
- [51] Chanda J, Mukherjee PK, Kar A, Maitra PK, Singha S, Halder PK, et al. LC-QTOF-MS-based metabolite profiling and evaluation of α-glucosidase inhibitory kinetics of Coccinia grandis fruit. Biomedical Chromatography: BMC. 2020; 34: e4950.

- https://doi.org/10.1002/bmc.4950.
- [52] . Singh M, Yerramilli V, Nagar L. Antioxidant assay and GC-MS profiling of methanolic fraction of parent plant parts and calli of *Coccinia grandis* L. The Journal of the Indian Botanical Society. 2021; 101: 146–155.
- [53] Choudhury SN, Paul SB, De B. A Bioactive Alkaloid from the Fruit of Coccinia grandis. Asian Journal of Chemistry. 2013; 25: 9561–9564. https://doi.org/10.14233/ajchem.2013.15078.
- [54] Deb Roy S, Dash S, Dasgupta RK, Chakraborty J. Modulatory potential on immune system of a new alkaloid isolated from Coccinea cordifolia root. International Journal of Biological Macromolecules. 2019; 121: 643–649. https://doi.org/10.1016/j.ijbi omac.2018.10.104.
- [55] Al-Madhagy S, Mostafa NM, Youssef FS, Awad G, Eldahshan OA, Singab ANB. Isolation and structure elucidation of compounds from Coccinia grandis leaves extract. Egyptian Journal of Chemistry. 2019; 62: 1869–1877.
- [56] Lee IY, Joo N. Identification and Quantification of Key Phytochemicals, Phytohormones, and Antioxidant Properties in Coccinia grandis during Fruit Ripening. Antioxidants (Basel, Switzerland). 2022; 11: 2218. https://doi.org/10.3390/antiox11112218.
- [57] Trinh PTN, Nguyen TQ, Van Hau N, Hung QT, Van Du C, Tuan NT, et al. Chemical constituents of the stem of Coccinia grandis. In IOP Conference Series: Materials Science and Engineering (pp. 022080). IOP Publishing. 2020. https://doi.org/10.1088/1757-899x/736/2/022080.
- [58] Kondhare D, Lade H. Phytochemical profile, aldose reductase inhibitory, and antioxidant activities of Indian traditional medicinal *Coccinia grandis* (L.) fruit extract. 3 Biotech. 2017; 7: 378. https://doi.org/10.1007/s13205-017-1013-1.
- [59] Momin YH, Yeligar VC, Saralaya MG, Dharmamoorthy G, Mallikarjuna BP, Jadhav ST, et al. Computational investigation of 2, 4-Di Tert Butyl Phenol as alpha amylase inhibitor isolated from Coccinia grandis (L.) Voigt using molecular docking, and ADMET parameters. Computational Biology and Chemistry. 2024; 110: 108087. https://doi.org/10.1016/j.compbiolch em.2024.108087.
- [60] Ajithabai MD, Sreedevi S, Jayakumar G, Mangalam SN, Deepa PN, Sunitha Rani SP. Phytochemical Analysis and Radical Scavenging Activity of the Extracts of *Costus picatus* Linn and *Coccinia indica* W and A, two Ethnic Medicinal Plants used in the Treatment of Diabetes mellitus. Free Radicals and Antioxidants. 2011; 1: 77–83. https://doi.org/10.5530/ax.2011.1.12.
- [61] Senthilkumar A, Tikar SN, Gopalan N, Sundaramoorthy P, Venkatesalu V. Larvicidal potential of different solvent extracts and oleanolic acid derivative from Coccinia indica against vector mosquitoes. Toxicological & Environmental Chemistry. 2012; 94: 1342–1349. https://doi.org/10.1080/02772248.2012. 705288.
- [62] Kaushik U, Aeri V, Showkat RM, Ali M. Cucurbitane-Type Triterpenoids from the Blood Glucose-Lowering Extracts of Coccinia indica and Momordica balsamina Fruits. Pharmacognosy Magazine. 2017; 13: S115–S121. https://doi.org/10.4103/ 0973-1296.203991.
- [63] LGP RB, Anoop S. Extraction, Isolation and Characterization Screening of Coccinia grandis. Journal of Drug Delivery & Therapeutics. 2019; 9: 238–245. https://doi.org/10.22270/jddt.v9i3.2643.
- [64] Packirisamy M, Sivaprakasam M. Coccinia grandis Extract Exerts Antihyperglycemic Effect through its Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities: An in vitro Study. Asian Journal of Biological and Life Sciences. 2022; 10: 590–596. https://doi.org/10.5530/ajbls.2021.10.78.
- [65] Banerjee A, Mukherjee S, Maji BK. Efficacy of Coccinia grandis against monosodium glutamate induced hepato-cardiac

- anomalies by inhibiting NF-kB and caspase 3 mediated signalling in rat model. Human & Experimental Toxicology. 2021; 40: 1825–1851. https://doi.org/10.1177/09603271211010895.
- [66] Bolay Bhattacharya BB, Pinaki Pal PP, Asif Lalee AL, Mal DK, Amalesh Samanta AS. In vivo and in vitro anticancer activity of Coccinia grandis (L.) Voigt. (Family: Cucurbitaceae) on Swiss albino mice. Journal of Pharmacy Research. 2011; 4: 567–569.
- [67] Namchaiw P, Jaisin Y, Niwaspragrit C, Malaniyom K, Auvuchanon A, Ratanachamnong P. The Leaf Extract of *Coccinia grandis* (L.) Voigt Accelerated In Vitro Wound Healing by Reducing Oxidative Stress Injury. Oxidative Medicine and Cellular Longevity. 2021; 2021: 3963510. https://doi.org/10.1155/2021/3963510.
- [68] Lenka S, Dubey D, Swain SK, Rath G, Mishra A, Bishoyi AK, et al. Implementation of Silver Nanoparticles Green Synthesized with Leaf Extract of Coccinia grandis as Antimicrobial Agents Against Head and Neck Infection MDR Pathogens. Current Pharmaceutical Biotechnology. 2024; 25: 2312–2325. https://doi.org/10.2174/0113892010290653240109053852.
- [69] Chaithada P, Rattanapan P, Supawatin A, Maungchanburee S, Supapan J. Alpha-Glucosidase Inhibitory and Antioxidant Activities from Ethanol Extracts of Six Thai Vegetables. Suranaree Journal of Science and Technology. 2020; 28: 1–6.
- [70] Rahman MA, Sarker J, Akter S, Mamun AA, Azad MAK, Mohiuddin M, et al. Comparative evaluation of antidiabetic activity of crude methanolic extract of leaves, fruits, roots and aerial parts of Coccinia grandis. Journal of Plant Sciences. 2015; 2: 19–23.
- [71] Nayagam V, Gabriel M, Palanisamy K. Green synthesis of silver nanoparticles mediated by *Coccinia grandis* and Phyllanthus emblica: A comparative comprehension. Applied Nanoscience. 2018; 8: 205–219. https://doi.org/10.1007/s13204-018-0739-3.
- [72] Peries CM, Navarthne S, Wijesinghe J, Henagamage AP, Coorey R. Effect of different drying methods on antioxidant activity and availability of phytochemicals in leaves of *Costus speciosus*, *Coccinia grandis* and *Gymnema sylvestre*. Asian Journal of Engineering and Applied Technology. 2022; 11: 29–35. https://doi.org/10.51983/ajeat-2022.11.1.3310.
- [73] Chopra M, Bhaumik A, Prasad M, Krishnamachary K, Rama Devi B. Preliminary phytochemical screening and evaluation of in vivo antihyperlipidemic activity of various extracts of fruit of *Coccinia grandis* in rat model. World Journal of Pharmacy and Pharmaceutical Sciences. 2018; 7:1341–1349.
- [74] Yashashwini YC. Evaluation of Learning and Memory Enhancing Activity of Coccinia Grandis Fruits in Rats. Journal of Drug Delivery and Therapeutics. 2018; 8: 430–436. https://doi.org/10.22270/jddt.v8i5.1944.
- [75] Kotaiah S, Reddy VR, Baburao CH, Rajesh K, Pakash yoganandam G, Pradeep G. Evaluate the Pharmacological Activity of The Fruits of *Coccinia Grandis* (L) Vigot Against Hepatocellular Carcinoma (Hcc) Induced by Aflatoxin B1 And Hepatitis-B Virus. International Journal of Advances in Pharmaceutical Research. 2012; 3:1276–1284.
- [76] Trang DTX, Linh VC, Lan NTA. Antihyperglycemic, Antioxidant, And Antihyperlipidemic Activities of Extract from Coccinia Grandis (L.) Voigt. Leaves by Methanol on Alloxan Induced Hyperglycemic Mice. Vietnam Journal of Biotechnology. 2018; 16: 311–318. https://doi.org/10.15625/1811-4989/16/2/13443.
- [77] Nisu RA, Nadvi FA, Ankhi AA, Suma SR, Papiya IJ, Bose A. An Evaluation of Anti-hyperlipidemic Activity of Ethanolic Extract of *Coccinia grandis* Leaves in High Fat Induced Rodent Model. Cardiology and angiology: An International Journal. 2024; 13: 5–11. https://doi.org/10.9734/ca/2024/v13i1387.
- [78] Meenatchi P, Purushothaman A, Maneemegalai S. Antioxidant, antiglycation and insulinotrophic properties of *Coccinia grandis* (L.) in vitro: Possible role in prevention of diabetic compli-

- cations. Journal of Traditional and Complementary Medicine. 2017; 7: 54–64. https://doi.org/10.1016/j.jtcme.2016.01.002.
- [79] Doss A, Dhanabalan R. Anti-hyperglycaemic and insulin release effects of *Coccinia grandis* (L.) voigt leaves in normal and alloxan diabetic rats. Ethnobotanical Leaflets. 2008; 2008: 155.
- [80] Patel AR, Ishnava KB. In vitro Shoot Multiplication from Nodal Explants of *Coccinia grandis* (L.) Voigt. and It's Antidiabetic and Antioxidant Activity. Asian Journal of Biological Sciences. 2015; 8: 57–71. https://doi.org/10.3923/ajbs.2015.57.71.
- [81] Islam MS, Parvin S, Uddin MN, Mazid MA. Antidiabetic and Antioxidant Activities of Decoctions of *Coccinia grandis* Linn. and *Centella asiatica* (L.) on Alloxan-induced Diabetic rats. Bangladesh Pharmaceutical Journal. 2015; 17: 86–91. https://doi.org/10.3329/bpj.v17i1.22322.
- [82] Pramanik A, Paik D, Pramanik PK, Chakraborti T. Serine protease inhibitors rich *Coccinia grandis* (L.) Voigt leaf extract induces protective immune responses in murine visceral leishmaniasis. Biomedicine & Pharmacotherapy. 2019; 111: 224–235. https://doi.org/10.1016/j.biopha.2018.12.053.
- [83] Meher N, Panda BB, Ray B. In Vivo Antidiabetic Activity of fruit extract of *Coccinia grandis* Linn in Normoglycemic, Adrenaline Induced and Alloxan Induced Diabetic rat. Research Journal of Pharmacy and Technology. 2019; 12: 5917–5922. https://doi.org/10.5958/0974-360x.2019.01026.6.
- [84] Gobinath R, Parasuraman S, Sreeramanan S, Chinni SV. Antidiabetic and Antihyperlipidemic Activities of Methanolic Extract of Leaves of *Coccinia grandis* in Diabetic Rats. International Journal of Research in Pharmaceutical Sciences. 2020; 11: 2324–2331.
- [85] Ramanathan G, Singaravelu S, Muthukumar T, Thyagarajan S, Rathore HS, Sivagnanam UT, et al. Fabrication of Arothron stellatus skin collagen film incorporated with Coccinia grandis as a durable wound construct. International Journal of Polymeric Materials and Polymeric Biomaterials. 2017; 66: 558– 568. https://doi.org/10.1080/00914037.2016.1252351.
- [86] DE Silva WND, Attanayake AP, Arawwawala LDAM, Karunaratne DN, Pamunuwa GK. In vitro antioxidant activity of alginate nanoparticles encapsulating the aqueous extract of *Coccinia grandis* L. Turkish Journal of Chemistry. 2023; 47: 715–725. https://doi.org/10.55730/1300-0527.3573.
- [87] Momin YH, Yeligar VC. The Antidiabetic and Antioxidant Activity of Coccinea Grandis Voigt Stem Extract in Streptozotocin Induced Diabetic Rats. Journal of Drug Delivery and Therapeutics 2019; 9: 390–395. https://doi.org/10.22270/jddt.v9i4-A3438
- [88] Alamgir ANM, Rahman A, Rahman M. Secondary Metabolites and Antioxidant Activity of the Crude Leaf Extract of *Bacopa* monniera (L.) Pennel. and *Coccinia grandis* (L.) J. Voigt. Journal of Pharmacognosy and Phytochemistry. 2014; 3: 226–230.
- [89] Mala M, Hepsibah AH, Jothi GJ. Silver nanoparticles synthesis using *Coccinia Grandis* (L.) voigt and Momordica Charantia L, its characterization and biological screening. Journal of Bionanoscience. 2017; 11: 504–513.
- [90] Muraleedharan A, Bupesh G, Vasanth S, Balaji K. Physicochemical, phytochemical and antioxidant efficacy of the medicinal plant *Coccinia Grandis*. International Journal of Health Sciences. 2022; 6: 7110–7122. https://doi.org/10.53730/ijhs.v6ns4. 10151.
- [91] Ahmed N, Perveen FF, Akter M, Al Mamun A, Islam MN. Harnessing the therapeutic potential of *Coccinia grandis* phytochemicals in diabetes: A computational, DFT calculation and MMGBSA perspective on aldose reductase inhibition. Informatics in Medicine Unlocked. 2024; 46: 101477. https://doi.org/10.1016/j.imu.2024.101477.
- [92] Girish C, Vineela S, NarasimhaReddy Y, Reddy OVS, Rajasekhar KK, Shankarananth V. Evaluation of Antiulcer Activity

- of Coccinia grandis Leaves. Research Journal of Pharmacology and Pharmacodynamics. 2011; 3: 92–95.
- [93] Manoharan P, Shobana J, Upendarrao G, Thangathirupathi A. Anti-ulcer effect of Coccinia grandis (Linn.) on pylorus ligated (albino) rats. International Journal of Research and Development. 2010; 2: 1–9.
- [94] Ramachandran A, Prasath R, Anand A. The Medical Uses of Coccinia Grandis L. Voigt: A Review. International Journal of Pharmacognosy. 2014; 1: 681–690.
- [95] Deshpande SV, Patil MJ, Daswadkar SC, Suralkar U, Agarwal A. A study on anti-inflammatory activity of the leaf and stem extracts of coccinia grandis L. voigt. International Journal of Applied Biology and Pharmaceutical Technology. 2011; 2: 247.
- [96] Muthulakshmi G, Neelanarayanan P. Antibacterial and Antifungal Activity of Coccinia gran-dis Leaves' Extracts against Fish Pathogens. Asian Journal of Biological and Life Sciences. 2020; 9: 424–430. https://doi.org/10.5530/ajbls.2020.9.65.
- [97] Pati SD, Borse LB, Gaikwad AR, Shevalkar GB, Chikhale HU, Aher SB. Evaluation Antioxidant and Antimicrobial Activity from Tablet Formulation of Chloroform Extract of Lagerstroemiaspeciosa and hydro Alcoholic Extract Coccinia grandis. Journal of Pharmaceutical Negative Results. 2023; 14: 1190– 1192.
- [98] Pratoomsoot C, Wongkattiya N, Sanguansermsri D. Synergistic Antimicrobial and Antioxidant Properties of Coccinia grandis (L.) Voigt, Clerodendrum inerme (L.) Gaertn. and Acanthus ebracteatus Vahl. Extracts and Their Potential as a Treatment for Xerosis Cutis. Complementary Medicine Research. 2020; 27: 410–420. https://doi.org/10.1159/000507606.
- [99] Hasanuzzaman M, Sayeed MSB, Islam MS, Sarwar MS, Moghal MMR, Ahmed JU, et al. Preliminary antimicrobial activity and cytotoxicity of plant extracts (roots) of Coccinia grandis (Family: Cucurbitaceae). International Journal of Pharmaceutical Sciences and Research. 2013; 4: 1466–1468.
- [100] Farrukh U, Shareef H, Mahmud S, Ali SA, Rizwani GH. Antibacterial activities of Coccinia grandis L. Pakistan Journal of Botany. 2008; 40: 1259–1262.
- [101] Poovendran P, Vidhya N, Murugan S. Antimicrobial Activity of Coccinia grandis Against Biofilm and ESBL Producing Uropathogenic E. coli. Global Journal of Pharmacology. 2011; 5: 23–26.
- [102] Dubey D, Swain SK, Lenka S, Meher RK, Kar B, Rath S. Evaluation of the antibacterial activity of Coccinia grandis, against bacteria isolated from chronic suppurative otitis media infection. Journal of Applied Biology & Biotechnology. 2022; 11: 139–145. https://doi.org/10.7324/jabb.2023.110119.
- [103] Kumar PV, Sivaraj A, Elumalai EK, Kumar BS. Carbon tetrachloride-induced hepatotoxicity in rats-protective role of aqueous leaf extracts of Coccinia grandis. International Journal of PharmTech Research. 2009; 1: 1612–1615.
- [104] Krishnakumari S, Bhuvaneswari P, Rajeswari P. Ameliorative potential of Coccinia grandis extract on serum and liver marker enzymes and lipid profile in streptozotocin induced diabetic rats. Ancient Science of Life. 2011; 31: 26–30.
- [105] Chidamabaram R, Lakshmi DR, Senthamil SR, Alagendran S, Anusha B. Protective effect of *Coccinia grandis* L. against (Diethylnitrosamine) DEN induced Heptotoxicity in Wistar Albino Rats. Der Pharmacia Lettre. 2016; 8: 160–165.
- [106] Mohammed SI, Vishwakarma KS, Maheshwari VL. Evaluation of Larvicidal Activity of Essential Oil from Leaves of *Coccinia* grandis against Three Mosquito Species. Journal of Arthropodborne Diseases. 2017; 11: 226–235.
- [107] Sreeshivani M, Gayathri RP, Raja S, Premalatha P, Sara-vanan K, Vasanthakumar D, et al. Larvicidal and pupicidal properties of Coccinia grandis gourd fruits against malaria transmitting vector Anopheles stephensi and dengue transmitting

- vector Aedes aegypti. International Journal of Mosquito Research. 2024; 11:168–174. https://doi.org/10.22271/23487941. 2024.v11.ilc.758.
- [108] Saravanan K, Karuppannan P, Revathi G, Elavarasi S, Premalatha P, Egbuna C, et al. Larvicidal and Pupicidal Activity of Unripened Fruit of Coccinia grandis (L) against Filarial Vector Culex quinquefasciatus. IPS Journal of Drug Discovery Research and Reviews. 2022; 1: 1–3.
- [109] Pattanayak SP, Sunita P. In vivo antitussive activity of Coccinia grandis against irritant aerosol and sulfur dioxide-induced cough model in rodents. Bangladesh Journal of Pharmacology. 2009; 4: 84–87. https://doi.org/10.3329/bjp.v4i2.1537.
- [110] Taur DJ, Patil RY. Mast Cell Stabilizing, Antianaphylactic and Antihistaminic Activity of Coccinia grandis Fruits in Asthma. Chinese Journal of Natural Medicine. 2011; 9: 359–362.
- [111] Dewanjee S, Maiti A, Kundu M, Mandal SC. Evaluation of Anthelmintic Activity of Crude Extracts of Diospyros peregrina, Coccinia grandis and Schima wallichii. Dhaka University Journal of Pharmaceutical Sciences. 1970; 6:121–123. https://doi.org/10.3329/dujps.v6i2.687.
- [112] Ghosh S, Roy T. Evaluation of Antidiabetic Potential of Methanolic Extract of Coccinia Indica Leaves in Streptozotocin Induced Diabetic Rats. International Journal of Pharmaceutical Sciences and Research. 2013; 4: 4325–4328.
- [113] Ajay SS. Hypoglycemic activity of Coccinia Indica (Cucurbitaceae) leaves. International Journal of PharmTech Research. 2009: 1: 892–893.
- [114] Gunjan M, Jana GK, Jha AK, Mishra U. Pharmacognostic and antihyperglycemic study of Coccinia indica. International Journal of Phytomedicine. 2010; 2: 36–40.
- [115] Kumar GP, Sudheesh S, Vijayalakshmi NR. Hypoglycaemic effect of Coccinia indica: mechanism of action. Planta Medica. 1993; 59: 330–332. https://doi.org/10.1055/s-2006-959693.
- [116] Packirisamy M, Ayyakkannu P, Sivaprakasam M. Antidiabetic effect of Coccinia grandis (L.) Voigt (Cucurbitales: Cucurbitaceae) on streptozotocin induced diabetic rats and its role in regulating carbohydrate metabolizing enzymes. Brazilian Journal of Biological Sciences. 2018; 5: 683–698. https://doi.org/10. 21472/bjbs.051107.
- [117] Momin YH, Yeligar VC. Synthesis of Coccinia grandis (L.) Voigt extract's silver nanoparticles and it's in vitro antidiabetic activity. Journal of Applied Pharmaceutical Science. 2021; 11: 108–115. https://doi.org/10.7324/japs.2021.110815.
- [118] Munteanu IG, Apetrei C. Analytical Methods Used in Determining Antioxidant Activity: A Review. International Journal of Molecular Sciences. 2021; 22: 3380. https://doi.org/10.3390/iims22073380.
- [119] Zou Z, Xi W, Hu Y, Nie C, Zhou Z. Antioxidant activity of Citrus fruits. Food Chemistry. 2016; 196: 885–896. https://doi. org/10.1016/j.foodchem.2015.09.072.
- [120] Yadav LP, Gangadhara K, Apparao VV, Yadav V, Mishra DS, Singh AK, et al. Genetic diversity, morphological traits, quality traits and antioxidants potentiality of Coccinia grandis germplasm under rainfed semi-arid region. Scientific Reports. 2024; 14: 868. https://doi.org/10.1038/s41598-023-49091-4.
- [121] Khalaf NA, Shakya AK, Al-Othman A, El-Agbar Z, Farah H. Antioxidant activity of some common plants. Turkish Journal of Biology. 2008; 32: 51–55.
- [122] Schlesier K, Harwat M, Böhm V, Bitsch R. Assessment of antioxidant activity by using different in vitro methods. Free Radical Research. 2002; 36: 177–187. https://doi.org/10.1080/ 10715760290006411.
- [123] Laboni FR, Sultana T, Kamal S, Karim S, Das S, Harun-Or-Rashid M, Shahriar M. Biological investigations of the ethanol extract of the aerial part (leaf) of Coccinia grandis L. Journal of Pharmacognosy and Phytochemistry. 2017; 6: 134–138.

- [124] Bhadauria P, Arora B, Vimal B, Kulshrestha A. In vitro Antioxidant Activity of Coccinia Grandis Root Extracts. Indo Global Journal of Pharmaceutical Sciences. 2012; 2: 230–238. https://doi.org/10.35652/igjps.2012.28.
- [125] Siddiqua S, Jyoti FH, Saffoon N, Miah P, Lasker S, Hossain H, et al. Ethanolic extract of Coccinia grandis prevented glucose intolerance, hyperlipidemia and oxidative stress in high fat diet fed rats. Phytomedicine Plus. 2021; 1: 100046. https://doi.org/10.1016/j.phyplu.2021.100046.
- [126] Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: nano-antimicrobial materials. Evidence-based Complementary and Alternative Medicine: ECAM. 2015; 2015: 246012. https://doi.org/10.1155/2015/246012.
- [127] Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms. 2021; 9: 2041. https://doi.org/10.3390/microorganisms9102041.
- [128] Ginovyan M, Petrosyan M, Trchounian A. Antimicrobial activity of some plant materials used in Armenian traditional medicine. BMC Complementary and Alternative Medicine. 2017; 17: 50. https://doi.org/10.1186/s12906-017-1573-y.
- [129] Manandhar S, Luitel S, Dahal RK. In Vitro Antimicrobial Activity of Some Medicinal Plants against Human Pathogenic Bacteria. Journal of Tropical Medicine. 2019; 2019: 1895340. https://doi.org/10.1155/2019/1895340.
- [130] Dewanjee S, Kundu M, Maiti A, Majumdar R, Majumdar A, Mandel SC. In Vitro Evaluation of Antimicrobial Activity of Crude Extract from Plants Diospyros peregrina, Coccinia grandis and Swietenia macrophylla. Tropical Journal of Pharmaceutical Research. 2007; 6: 773–778. https://doi.org/10.4314/tjpr.v6i3.14658.
- [131] Satheesh LS, Murugan K. Antimicrobial activity of protease inhibitor from leaves of Coccinia grandis (L.) Voigt. Indian Journal of Experimental Biology. 2011; 49: 366–374.
- [132] Sivaraj A, Jenifa BP, Kavitha M, Inbasekar P, Senthilkumar B, Panneerselvam A. Antibacterial activity of Coccinia grandis leaf extract on selective bacterial strains. Journal of Applied Pharmaceutical Science. 2011; 1: 120–123.
- [133] Bhattacharya B, Samanta M, Pal P, Chakraborty S, Samanta A. In vitro evaluation of antifungal and antibacterial activities of the plant Coccinia grandis (L.) voigt (Family-Cucurbitaceae). Journal of Phytology. 2010; 2: 52–57.
- [134] Okaiyeto K, Nwodo U, Mabinya L, Okoh A. A review on some medicinal plants with hepatoprotective effects. Pharmacognosy Reviews. 2018; 12: 186–199. https://doi.org/10.4103/phrev.ph rev 52 17.
- [135] Adewusi EA, Afolayan AJ. A review of natural products with hepatoprotective activity. Journal of Medicinal Plants Research. 2010; 4: 1318–1334.
- [136] Delgado-Montemayor C, Cordero-Pérez P, Salazar-Aranda R, Waksman-Minsky N. Models of hepatoprotective activity assessment. Medicina Universitaria. 2015; 17: 222–228. https://doi.org/10.1016/j.rmu.2015.10.002.
- [137] Domitrović R, Potočnjak I. A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives. Archives of Toxicology. 2016; 90: 39–79. https://doi.org/10.1007/s00204-015-1580-z.
- [138] Asadi-Samani M, Kafash-Farkhad N, Azimi N, Fasihi A, Alinia-Ahandani E, Rafieian-Kopaei M. Medicinal plants with hepatoprotective activity in Iranian folk medicine. Asian Pacific Journal of Tropical Biomedicine. 2015; 5:146–157. https://doi.org/10.1016/s2221-1691(15)30159-3.
- [139] Ganesan K, Jayachandran M, Xu B. A critical review on hepatoprotective effects of bioactive food components. Critical Re-

- views in Food Science and Nutrition. 2017; 58: 1165–1229. https://doi.org/10.1080/10408398.2016.1244154.
- [140] Vadivu R, Krithika A, Biplab C, Dedeepya P, Shoeb N, Lakshmi KS. Evaluation of hepatoprotective activity of the fruits of coccinia grandis linn. International Journal of Health Research. 2010; 1: 163–168. https://doi.org/10.4314/ijhr.v1i3.55366.
- [141] Kundu M, Mazumder R, Kushwaha MD. Evaluation of hepatoprotective activity of ethanol extract of Coccinia grandis (L.) Voigt. leaves on experimental rats by acute and chronic models. Oriental Pharmacy and Experimental Medicine. 2012; 12: 93– 97. https://doi.org/10.1007/s13596-012-0057-3.
- [142] Banerjee A, Das D, Paul R, Roy S, Das U, Saha S, et al. Mechanistic study of attenuation of monosodium glutamate mixed high lipid diet induced systemic damage in rats by Coccinia grandis. Scientific Reports. 2020; 10: 15443. https://doi.org/10.1038/s41598-020-72076-6.
- [143] Ribeiro TG, Chávez-Fumagalli MA, Valadares DG, Franca JR, Lage PS, Duarte MC, et al. Antileishmanial activity and cytotoxicity of Brazilian plants. Experimental Parasitology. 2014; 143: 60–68. https://doi.org/10.1016/j.exppara.2014.05.004.
- [144] Bouyahya A, Et-Touys A, Dakka N, Fellah H, Abrini J, Bakri Y. Antileishmanial potential of medicinal plant extracts from the North-West of Morocco. Beni-Suef University Journal of Basic and Applied Sciences. 2018; 7: 50–54. https://doi.org/10.1016/j.bjbas.2017.06.003.
- [145] Pramanik A, Paik D, Naskar K, Chakraborti T. Coccinia grandis (L.) Voigt Leaf Extract Exhibits Antileishmanial Effect Through Pro-inflammatory Response: An In Vitro Study. Current Microbiology. 2017; 74: 59–67. https://doi.org/10.1007/s00284-016-1151-4.
- [146] Maleki SJ, Crespo JF, Cabanillas B. Anti-inflammatory effects of flavonoids. Food Chemistry. 2019; 299: 125124. https://doi. org/10.1016/j.foodchem.2019.125124.
- [147] Brune K, Patrignani P. New insights into the use of currently available non-steroidal anti-inflammatory drugs. Journal of Pain Research. 2015; 8: 105–118. https://doi.org/10.2147/JP R.S75160.
- [148] Mohamed Zaki LR, Hairi NN. A Systematic Review of the Prevalence and Measurement of Chronic Pain in Asian Adults. Pain Management Nursing: Official Journal of the American Society of Pain Management Nurses. 2015; 16: 440–452. https: //doi.org/10.1016/j.pmn.2014.08.012.
- [149] Nigussie D, Makonnen E, Tufa TB, Brewster M, Legesse BA, Fekadu A, et al. Systematic review of Ethiopian medicinal plants used for their anti-inflammatory and wound healing activities. Journal of Ethnopharmacology. 2021; 276: 114179. https://doi. org/10.1016/j.jep.2021.114179.
- [150] Majumder T, Nagaraju K, Sreelekha K, Nikitha M. Evaluation of Pharmacological Activity of Hydroethanolic Extract Coccinia grandis Linn. Leaves. Scholars Academic Journal of Pharmacy. 2015; 6: 149–157.
- [151] Vimala G, Gricilda Shoba F. A review on antiulcer activity of few Indian medicinal plants. International Journal of Microbiology. 2014; 2014: 519590. https://doi.org/10.1155/2014/519590.
- [152] Jain P. Secondary metabolites for antiulcer activity. Natural Product Research. 2015; 30: 640–656. https://doi.org/10.1080/ 14786419.2015.1036269.
- [153] Sharifi-Rad M, Fokou PVT, Sharopov F, Martorell M, Ademiluyi AO, Rajkovic J, et al. Antiulcer Agents: From Plant Extracts to Phytochemicals in Healing Promotion. Molecules (Basel, Switzerland). 2018; 23: 1751. https://doi.org/10.3390/molecules23071751.
- [154] Choudhary MK, Bodakhe SH, Gupta SK. Assessment of the antiulcer potential of Moringa oleifera root-bark extract in rats. Journal of Acupuncture and Meridian Studies. 2013; 6: 214– 220. https://doi.org/10.1016/j.jams.2013.07.003.

- [155] Mazumder PM, Sasmal D, Nambi RA. Antiulcerogenic and antioxidant effects of Coccinia grandis (Linn) Voigt aspirininduced gastric ulcer in rats. Natural Product Radiance. 2007; 7: 15–18.
- [156] Datchanamurty B, Mythireyi D, Divyashanthi CM. Evaluation of antiulcer activity of ethanolic leaf extract of Coccinia grandis in indomethacin induced gastric ulcer model. International Journal of Basic & Clinical Pharmacology. 2019; 8: 629–634. https://doi.org/10.18203/2319-2003.ijbcp20191094.
- [157] Ancita Lobo JSS. Pharmacological Review on Coccinia grandis Leaves. International Journal of Pharmaceutical Sciences Review and Research. 2022; 74: 96–99. https://doi.org/10.47583/ijpsrr.2022.v74i02.014.
- [158] Santharam B, Divya VV, Thirupathi T. Anti-ulcer activity of ethanolic, aqueous and total aqueous extracts of coccinia grandis linn. Voigt in pyloric ligature induced ulcers in albino rats. International Journal of Pharmacy and Pharmaceutical Sciences. 2013; 5: 104–106.
- [159] Min HY, Lee HY. Molecular targeted therapy for anticancer treatment. Experimental & Molecular Medicine. 2022; 54: 1670–1694. https://doi.org/10.1038/s12276-022-00864-3.
- [160] Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, et al. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules (Basel, Switzerland). 2022; 27: 8367. https://doi.org/10.3390/molecules27238367.
- [161] Garcia-Oliveira P, Otero P, Pereira AG, Chamorro F, Carpena M, Echave J, et al. Status and Challenges of Plant-Anticancer Compounds in Cancer Treatment. Pharmaceuticals (Basel, Switzerland). 2021; 14: 157. https://doi.org/10.3390/ph 14020157.
- [162] Nguyen NH, Ta QTH, Pham QT, Luong TNH, Phung VT, Duong TH, et al. Anticancer Activity of Novel Plant Extracts and Compounds from Adenosma bracteosum (Bonati) in Human Lung and Liver Cancer Cells. Molecules (Basel, Switzerland). 2020; 25: 2912. https://doi.org/10.3390/molecules25122912.
- [163] Alami Merrouni I, Elachouri M. Anticancer medicinal plants used by Moroccan people: Ethnobotanical, preclinical, phytochemical and clinical evidence. Journal of Ethnopharmacology. 2021; 266: 113435. https://doi.org/10.1016/j.jep.2020.113435.
- [164] Siddiqui AJ, Jahan S, Singh R, Saxena J, Ashraf SA, Khan A, et al. Plants in Anticancer Drug Discovery: From Molecular Mechanism to Chemoprevention. BioMed Research International. 2022; 2022: 5425485. https://doi.org/10.1155/2022/5425485.
- [165] Sampathkumar P, Prabhakaran K, Dheeba B, Vinothkannan R, Vinothprasanna G, Sheikabdulla S. Antitumour Promoting Potential of Coccinia Indica Against Benzidine Induced Hepatocellular Carcinoma in Mice. Journal of Cell and Tissue Research. 2008: 8: 1599–1603.
- [166] Sakharkar P, Chauhan B. Antibacterial, antioxidant and cell proliferative properties of Coccinia grandis fruits. Avicenna Journal of Phytomedicine. 2017; 7: 295–307.
- [167] Hossain MS, Jahan I, Islam M, Nayeem J, Anzum TS, Afrin NA, et al. Coccinia grandis: Phytochemistry, pharmacology and health benefits. Clinical Traditional Medicine and Pharmacology. 2024; 5: 200150. https://doi.org/10.1016/j.ctmp.2024. 200150.
- [168] Senthikumar K, Rajkumar M, Vimala K, Thangaraj R, Kannan S. Biosynthesis of Gelatin-coated Zinc oxide nanocomposite from Coccinia indica extract and its antibacterial, antioxidant, anticancer and wound-healing properties. BioNanoScience. 2024. https://doi.org/10.21203/rs.3.rs-3969985/v1.
- [169] Yiannopoulou KG, Papageorgiou SG. Current and Future Treatments in Alzheimer Disease: An Update. Journal of Central Nervous System Disease. 2020; 12: 1179573520907397. https://doi.org/10.1177/1179573520907397.

- [170] Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer's disease. The Lancet. 2021; 397: 1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4.
- [171] Self WK, Holtzman DM. Emerging diagnostics and therapeutics for Alzheimer disease. Nature Medicine. 2023; 29: 2187–2199. https://doi.org/10.1038/s41591-023-02505-2.
- [172] Calabrò M, Rinaldi C, Santoro G, Crisafulli C. The biological pathways of Alzheimer disease: a review. AIMS Neuroscience. 2020; 8: 86–132. https://doi.org/10.3934/Neuroscience.2021005.
- [173] Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, et al. Alzheimer disease. Nature Reviews. Disease Primers. 2021; 7: 33. https://doi.org/10.1038/s41572-021-00269-y.
- [174] Nagori K, Nakhate KT, Yadav K, Ajazuddin, Pradhan M. Unlocking the Therapeutic Potential of Me-dicinal Plants for Alzheimer's Disease: Preclinical to Clinical Trial Insights. Future Pharmacology. 2023; 3: 877–907. https://doi.org/10.3390/ futurepharmacol3040053.
- [175] Shalini G, Ravikumar P, Jeyam M. An In Silico Evaluation of Coccinia Grandis Fruits Against Alzheimers Disease. Journal of Pharmaceutical & Scientific Innovation. 2014; 3: 328–332. http s://doi.org/10.7897/2277-4572.034166.
- [176] Ambrogi V, Pietrella D, Donnadio A, Latterini L, Di Michele A, Luffarelli I, et al. Biocompatible alginate silica supported silver nanoparticles composite films for wound dressing with antibiofilm activity. Materials Science Engineering. C, Materials for Biological Applications. 2020; 112: 110863. https://doi.org/10.1016/j.msec.2020.110863.
- [177] Garg VK, Paliwal SK. Wound-healing activity of ethanolic and aqueous extracts of Ficus benghalensis. Journal of Advanced Pharmaceutical Technology & Research. 2011; 2: 110–114. https://doi.org/10.4103/2231-4040.82957.
- [178] Bobbili KB, Pohlentz G, Narahari A, Sharma K, Surolia A, Mormann M, et al. Coccinia indica agglutinin, a 17kDa PP2 like phloem lectin: Affinity purification, primary structure and formation of self-assembled filaments. International Journal of Biological Macromolecules. 2018; 108: 1227–1236. https://doi.org/10.1016/j.ijbiomac.2017.11.024.
- [179] Hussain A, Wahab S, Zarin I, Hussain MS. Antibacterial Activity of the Leaves of Coccinia indica (W. and A) Wof India. Advances in Biological Research. 2010; 4: 241–248.
- [180] Shaheen SZ, Krishna G, Charya MS. Antifungal Activity of Coccinia Indica Extracts Against Fungal Pathogens. International Journal of Pharmaceutical Science Invention. 2018; 7: 06-10
- [181] Chinni SV, Gopinath SC, Anbu P, Fuloria NK, Fuloria S, Mariappan P, et al. Characterization and Antibacterial Re-sponse of Silver Nanoparticles Biosynthesized Using an Ethanolic Extract of Coccinia indica Leaves. Crystals. 2021; 11: 97. https://doi.org/10.3390/cryst11020097.
- [182] Bulbul IJ, Nahar L, Haque M. Antibacterial, cytotoxic and antioxidant activity of chloroform, n-hexane and ethyl acetate extract of plant Coccinia cordifolia. Agriculture and Biology Journal of North America. 2011; 2: 713–719. https://doi.org/10.5251/abjna.2011.2.4.713.719.
- [183] Alshahrani MY, Ibrahim EH, Asiri M, Kilany M, Alshehri A, Alkhathami AG, et al. Inhibition realization of multidrug resistant bacterial and fungal isolates using Coccinia indica extracts. Saudi Journal of Biological Sciences. 2022; 29: 3207–3212. https://doi.org/10.1016/j.sjbs.2022.01.045.
- [184] Jayalakshmi V, Anbumalarmathi J, Sharmili SA. In vitro Callus Induction of Coccinia indica (W. and A) and Analysis of Its Phytochemical, Antimicrobial, Antioxidant and α-Amylase Inhibitory Activity A Comparative Study. International Jour-

- nal of Biochemistry Research & Review. 2019; 28: 1–16. https://doi.org/10.9734/ijbcrr/2019/v28i330141.
- [185] Pickering E, Steels E, Castaneda R, Steadman KJ. Effect of Coccinia grandis (Linn.) Voigt extract on glucose metabolism markers in a prediabetic population: A double-blind randomised clinical trial. Phytomedicine Plus. 2023; 3: 100487. https://doi. org/10.1016/j.phyplu.2023.100487.
- [186] Munasinghe MAAK, Abeysena C, Yaddehige IS, Vidanapathirana T, Piyumal KPB. Blood sugar lowering effect of *Coccinia grandis* (L.) J. Voigt: path for a new drug for diabetes mellitus. Experimental Diabetes Research. 2011; 2011: 978762. https://doi.org/10.1155/2011/978762.
- [187] Wasana KGP, Attanayake AP, Arawwawala LDAM, Weerarathna TP, Jayatilaka KAPW. Chemical composition of the dietary supplement *Coccinia grandis* (L.) Voigt, and its effect on antioxidant status and inflammatory markers in patients with type 2 diabetes mellitus. International Food Research Journal. 2023; 30: 1437–1449. https://doi.org/10.47836/ifrj.30.6.07.
- [188] Vasavda Krup VK, Prakash LH, Harini A, Mohammad Altaf MA. Anti-Hyperglycemic Effect of Root Powder of Coccinia Grandis L. Voigt with Special Reference to Madhumeha: A Pilot Study. International Journal of Research in Ayurveda & Pharmacy. 2014; 5: 605–608. https://doi.org/10.7897/2277-4343. 055123.
- [189] Steels E. Placebo-controlled, double-blind study for efficacy of two herbal sup-plements (*Trigonella foenum-graecum* Seed Extract and *Coccinia Grandis* Extract) for Normalizing Elevated (pre-diabetic) blood Glucose and improving Insulin Sensitivity a 3-arm study. World Health Organization. 2022. Available at: https://trialsearch.who.int/Trial2.aspx?TrialID=A CTRN12618000031268 (Accessed: 18 June 2024).
- [190] Attanayake AP. Effect of a Standardized Herbal Capsule of Coccinia Grandis (L.) Voigt on Selected Metabolic Parameters in Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Trial. 2018. Available at: https://slctr.lk/trials/ slctr-2018-012 (Accessed: 18 June 2024).
- [191] Wasana KGP, Attanayake AP, Weerarathna TP, Jayatilaka KAPW. Efficacy and safety of a herbal drug of Coccinia grandis (Linn.) Voigt in patients with type 2 diabetes mellitus: A double blind randomized placebo controlled clinical trial. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology. 2021; 81: 153431. https://doi.org/10.1016/j.phymed.2020.153431.
- [192] Jose E, Usha PTA. Evaluation of Antidiabetic Efficacy of Coccinia indica in Rats. Indian Journal Animal Research. 2010; 44: 168–172.
- [193] Mohammed SI, Chopda MZ, Patil RH, Vishwakarma KS, Maheshwari VL. In vivo antidiabetic and antioxidant activities of Coccinia grandis leaf extract against streptozotocin induced diabetes in experimental rats. Asian Pacific Journal of Tropical Disease. 2016; 6: 298–304. https://doi.org/10.1016/ s2222-1808(15)61034-9.
- [194] Quamri MA, Begum S, Siddiqui MA, Alam MA. Efficacy of Kanduri (Coccinia indica) in diabetes associated dyslipidemia-A randomized single blind standard controlled study. International Journal of Unani and Integrative Medicine. 2017; 1: 01–04. ht tps://doi.org/10.33545/2616454x.2017.v1.i1a.1.
- [195] Tupe RS, Sankhe NM, Shaikh SA, Kemse NG, Khaire AA, Phatak DV, et al. Nutraceutical properties of dietary plants extracts: prevention of diabetic nephropathy through inhibition of glycation and toxicity to erythrocytes and HEK293 cells. Pharmaceutical Biology. 2014; 53: 40–50. https://doi.org/10.3109/ 13880209.2014.910236.
- [196] Attanayake AP, Jayatilaka KAPW, Pathirana C, Mudduwa

- LKB. Efficacy and toxicological evaluation of Coccinia grandis (Cucurbitaceae) extract in male Wistar rats. Asian Pacific Journal of Tropical Disease. 2013; 3: 460–466. https://doi.org/10.1016/s2222-1808(13)60101-2.
- [197] Baker MT, Lu P, Parrella JA, Leggette HR. Consumer Acceptance toward Functional Foods: A Scoping Review. International Journal of Environmental Research and Public Health. 2022; 19: 1217. https://doi.org/10.3390/ijerph19031217.
- [198] Topolska K, Florkiewicz A, Filipiak-Florkiewicz A. Functional Food-Consumer Motivations and Expectations. International Journal of Environmental Research and Public Health. 2021; 18: 5327. https://doi.org/10.3390/ijerph18105327.
- [199] Essa MM, Bishir M, Bhat A, Chidambaram SB, Al-Balushi B, Hamdan H, et al. Functional foods and their impact on health. Journal of Food Science and Technology. 2023; 60: 820–834. https://doi.org/10.1007/s13197-021-05193-3.
- [200] Nataraj BH, Ali SA, Behare PV, Yadav H. Postbioticsparabiotics: the new horizons in microbial biotherapy and functional foods. Microbial Cell Factories. 2020; 19: 168. https: //doi.org/10.1186/s12934-020-01426-w.
- [201] Peduruhewa PS, Jayathunage KGLR, Liyanage R. Phytochemical screening and antioxidants in vitro bioaccessibility of Coccinia grandis: an underutilized wild edible plant in Sri Lanka. In IOP Conference Series: Earth and Environmental Science (pp. 012007). IOP Publishing. 2022. https://doi.org/10.1088/1755-1315/1094/1/012007.
- [202] Shanmuganathan E, Arawwawala LDAM, Wasana KGP, Attanayake AP. Selection and optimisation of ex-traction technique for the preparation of phenolic- and flavonoid-rich extract of leafy vegetable, Coccinia grandis (Linn.) Voigt. International Food Research Journal. 2022; 29: 1032–1042. https://doi.org/10.47836/ifrj.29.5.06.
- [203] Kunwar RM, Sher H, Bussmann RW. Ethnobotany of the Hi-malayas. 1st edn. Springer Cham: Cham, Switzerland. 2021. https://doi.org/10.1007/978-3-030-57408-6.
- [204] Bussmann RW. Ethnobotany of the Mountain Regions of Africa. 1st edn. Springer Cham: Cham, Switzerland. 2021. https://doi.org/10.1007/978-3-030-38386-2.
- [205] Motiwala MN, Dumore MN, Rokde VV, Bodhe MM, Gupta RA, Dumore NG, et al. Characterization and antioxidant potential of Coccinia indica fruit mucilage: Evaluation of its binding properties. Bioactive Carbohydrates and Dietary Fibre. 2015; 6: 69–74. https://doi.org/10.1016/j.bcdf.2015.09.001.
- [206] Lee YH, Choo C, Watawana MI, Jayawardena N, Waisundara VY. An appraisal of eighteen commonly consumed edible plants as functional food based on their antioxidant and starch hydrolase inhibitory activities. Journal of the Science of Food and Agriculture. 2014; 95: 2956–2964. https://doi.org/10.1002/jsfa.7039.
- [207] Brindhadevi K, M R, Albeshr MF, Pallath N. Bio-fabrication of calcium oxide nanoparticles from Coccinia grandis as a potential photocatalyst for dye degradation with antimicrobial activity. Environmental Research. 2024; 258: 119449. https://doi. org/10.1016/j.envres.2024.119449.
- [208] De Silva ND, Attanayake AP, Karunaratne DN, Arawwawala LDAM, Pamunuwa GK. Synthesis and bioactivity assessment of *Coccinia grandis* L. extract encapsulated alginate nanoparticles as an antidiabetic drug lead. Journal of Microencapsulation. 2024; 41: 1–17. https://doi.org/10.1080/02652048.2023. 2282964
- [209] Dulyaseree P, Fujishige M, Yoshida I, Toya Y, Banba Y, Tanaka YS, et al. Nitrogen-rich green leaves of papaya and Coccinia grandis as precursors of activated carbon and their electrochemical properties. RSC Advances. 2017; 7: 42064–42072. https://doi.org/10.1039/c7ra06048c.

