

Review

Current Evidence on the Potential Role of Endothelial *SHP-1* in Pulmonary Vascular Remodeling Associated With Pulmonary Hypertension

Xinting Zhang^{1,2,†}, Jiao Yang^{3,†}, Zeyuan Yang^{4,5}, Ting Liu¹, Bingqian Zeng¹, Mingxi Ma¹, Ying Liu¹, Shuanglan Xu^{1,*}, Xiqian Xing^{1,6,*}

¹Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Yunnan University, 650021 Kunming, Yunnan, China

²College of Clinical Medicine, Dali University, 671003 Dali, Yunnan, China

³Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China

⁴State Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan, China

⁵Institute of Primate Translational Medicine, Kunming University of Sciences and Technology, 650500 Kunming, Yunnan, China

⁶Key Laboratory of Respiratory Disease Research of Department of Education of Yunnan Province, 650021 Kunming, Yunnan, China

*Correspondence: xushuanglan99@163.com (Shuanglan Xu); xingqian@ynu.edu.cn; xingqiankm@163.com (Xiqian Xing)

†These authors contributed equally.

Academic Editor: Sarah Jane George

Submitted: 16 March 2025 Revised: 24 July 2025 Accepted: 25 August 2025 Published: 13 January 2026

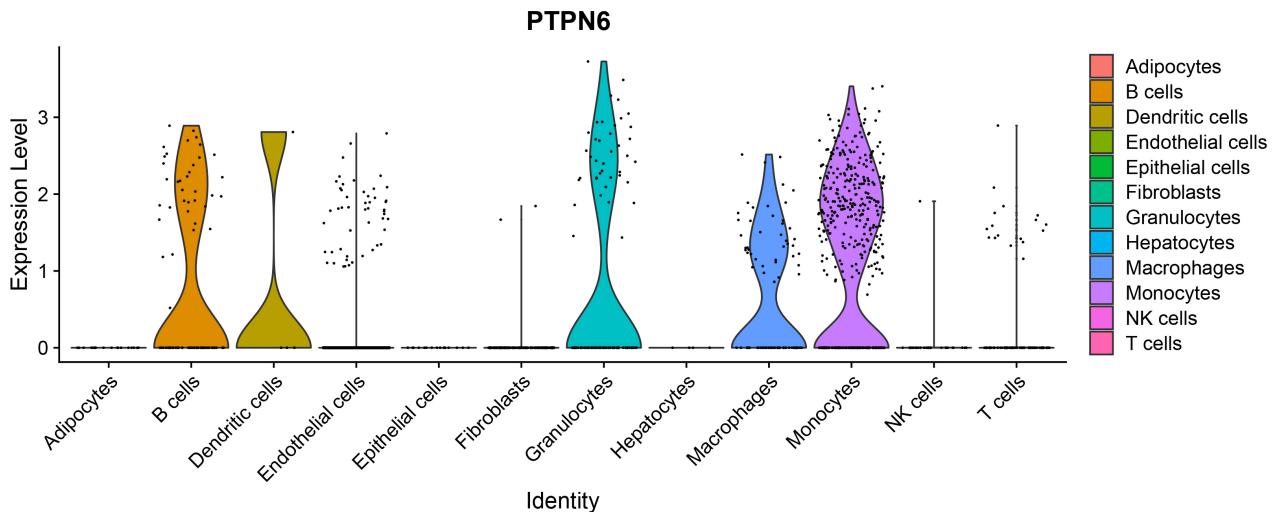
Abstract

Pulmonary hypertension (PH) is characterized by an abnormally high pressure within the pulmonary arteries, which can be attributed to various factors. Severe diseases affecting pulmonary vessels may result in heart failure and potentially lead to death; these conditions are linked to significant mortality and unfavorable outcomes. Approximately 1% of adults worldwide have PH, and this condition may affect up to 10% of people older than 65 years. Currently, the mechanisms involved in the development of PH are not fully known and are thought to result from multiple coordinated factors. This lack of understanding remains a bottleneck in clinical practice. Numerous studies have confirmed that pulmonary artery endothelial cell (PAEC) dysfunction plays an important role in occlusive pulmonary vascular remodeling and the pathogenesis of PH. Src homology region 2 domain-containing phosphatase-1 (*SHP-1*) is a regulatory molecule that negatively modulates various cellular mediators and growth factors, primarily playing a negative regulatory role in signal transduction pathways. This review mainly presents an in-depth exploration of the key signaling pathways through which *SHP-1* regulates the expression of endothelial cells (ECs), thereby influencing various physiological functions, including proliferation, migration, oxidative stress, angiogenesis, apoptosis, autophagy, the inflammatory response, and vascular permeability. Furthermore, the potential mechanisms through which endothelial *SHP-1* plays a role in pulmonary vascular remodeling in PH are discussed. These findings underscore *SHP-1* as an encouraging therapeutic target for preventing and managing PH.

Keywords: pulmonary hypertension; *SHP-1*; endothelial cells; vascular remodelling

1. Introduction

Pulmonary hypertension refers to a disease that involves increased pulmonary vascular resistance. The pathological process of PH is characterized by pulmonary vascular remodelling, which involves excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) and pulmonary artery endothelial cells (PAECs), distal pulmonary artery muscularization, vascular occlusion, plexiform lesions, and abnormal accumulation of inflammatory cells [1–4]. Alterations in pulmonary vascular tone and remodelling contribute to a progressive increase in pulmonary vascular resistance, ultimately culminating in a spectrum of clinical syndromes associated with right heart failure and, in severe cases, death [5]. The diagnostic criteria for haemodynamics are outlined as follows: A mean pulmonary artery pressure (mPAP) of ≥ 20 mmHg, as assessed through right heart catheterization, indicates the presence of pulmonary hypertension (PH) under resting conditions at sea level [6].


One percent of adults across the globe are afflicted with PH, whereas its prevalence can reach 10% among individuals older than 65 years [7]. Currently, several drugs with vasodilatory effects, such as endothelin, nitric oxide, and prostacyclin, have been successfully developed to treat PH [6,8].

Recent research has shown that among individuals undergoing standard treatment for PH, the use of sotatercept results in decreased pulmonary vascular resistance and increased haemodynamic metrics and exercise ability, as evaluated using the 6-minute walk test [9,10]. These findings provide a new potential treatment strategy for PH [11]. Although current treatment methods can improve the quality of life of patients, none are curative, which presents a significant challenge in clinical practice [12]. In the early stages of PH development, EC injury and apoptosis are predominant [13–15]. Conversely, in the later stages of PH, EC overproliferation and antiapoptotic mech-

Copyright: © 2026 The Author(s). Published by IMR Press.
This is an open access article under the CC BY 4.0 license.

Publisher's Note: IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fig. 1. *SHP-1* expression in different cell subpopulations was analysed using the GEO database GSE154959 [26]. *SHP-1*, Src homology region 2 domain-containing phosphatase-1; GEO, Gene Expression Omnibus; NIK, natural killer T cells, NKT cells; *PTPN6*, protein tyrosine phosphatase non-receptor type 6.

anisms prevail, resulting in significant vascular remodelling [16]. Recent studies have shown that endothelial cell dysfunction, injury, and immune–inflammatory responses, along with metabolic abnormalities, epigenetic changes, endothelial–mesenchymal transition (*EndMT*), and the release of growth factors and chemokines from endothelial cells (ECs), induce the proliferation of SMCs and play a role in the structural changes associated with pulmonary vascular remodelling. This process increases pulmonary artery pressure and pulmonary vascular resistance [17].

Src homology region 2 protein tyrosine phosphatase-1 (*SHP-1*), which is encoded by the gene protein tyrosine phosphatase non-receptor type 6 (*PTPN6*), is an essential component of the protein tyrosine phosphatase (*PTP*) family [18,19]. *SHP-1* functions as a negative regulator in various cellular signalling pathways [19,20], primarily by dephosphorylating tyrosine residues on various signalling proteins (such as signal transducer and activator of transcription (*STAT*), protein kinase B (*Akt*) and *Src*). This dephosphorylation modulates tumour, inflammatory, and metabolic pathways [21], inhibiting signal transduction by targeting tyrosines in proteins. These factors significantly influence various critical biological activities of related cells and are essential for maintaining normal cellular functions and the integrity of the immune system [18]. Although *SHP-1* is predominantly expressed in haematopoietic cells, it has also been identified in nonhaematopoietic cells, such as ECs [22]. Research indicates that bovine aortic ECs contain endogenous *SHP-1* [23]. Additionally, this molecule functions as a negative modulator, blocking superoxide generation in these cells [24]. In ECs under hypoxia, *SHP-1* inhibits reactive oxygen species (ROS) generation, reduces the stability of hypoxia-inducible factor 1-

alpha (*HIF-1α*), and promotes the secretion of vascular endothelial growth factor (*VEGF*) to inhibit cell growth [25].

We analysed the cell-type specific expression of *SHP-1* based on single-cell RNA-seq data derived from the lung tissue samples of PH mice and retrieved from the GSE154959 dataset in the Gene Expression Omnibus (GEO) database. Specifically, *SHP-1* is highly expressed in several immune cell populations, including macrophages, B cells, monocytes, granulocytes and dendritic cells. In contrast, *SHP-1* expression is significantly inhibited in ECs, whereas *SHP-1* expression is almost absent in nonimmune cells, such as adipocytes, epithelial cells, and hepatocytes (Fig. 1, Ref. [26]). This unique expression profile suggests that *SHP-1* is involved primarily in the regulation of immune cell functions. However, its low-level expression in ECs may indicate a specific role in vascular homeostasis or pulmonary vascular remodelling.

Therefore, the aim of this review is to explore the role and mechanisms of PAECs in the pathogenesis of PH. The possible mechanisms of endothelial *SHP-1* in PH-related pulmonary vascular remodelling are discussed in detail, which may provide novel therapeutic targets and insights for the prevention and treatment of PH.

2. Role and Mechanisms of PAECs in the Pathogenesis of PH

2.1 Roles of Genetic and Epigenetic Inheritance in PH

The genetic roles and mechanisms of PAECs in PH encompass multiple aspects, including abnormalities in transcription factors [27–29], mitochondrial dysfunction [30, 31], cell death pathways [30,32], *EndMT* [33,34], genetic variations, and metabolic abnormalities [34,35]. Together, these mechanisms lead to PAEC dysfunction, which results

in changes in the pulmonary vasculature and advances the progression of PH. Importantly, the most frequently identified genetic factor associated with familial PH is bone morphogenetic protein receptor type II (*BMPR2*) [35]. Some individuals with PH have a genetic predisposition, such as patients carrying a heterozygous abnormality in the gene encoding *BMPR2* and a mutation in the activin-like kinase (*Alk*)-1 receptor [5,36,37]. Mutant mice have increased susceptibility to hypoxia-induced PH, along with impaired endothelium-dependent vasodilation within the pulmonary vasculature [38]. Heterozygous *Bmpr2* knockout leads to EC injury and persistent PH in mice.

Epigenetic inheritance describes how gene expression can be altered without any modification to the DNA sequence itself. This mechanism is influenced by factors such as DNA methylation, histone modifications, and noncoding RNA [39]. A recent epigenome-wide association study (EWAS) revealed a total of 865,848 differentially methylated cytosine-phosphate-guanine (*CpG*) sites in the peripheral blood samples of patients suffering from PH [40], underscoring the widespread occurrence of epigenetic dysregulation. Within vascular ECs, modifications to histones are crucial for disease progression. The targeted inhibition of important elements within the histone H3 lysine 4 (*H3K4*) methyltransferase complex, specifically absent, small, or homeotic 2 (*ASH2*) and WD repeat-containing protein 5 (*WDR5*), significantly ameliorates hypoxia-induced PH in mice, confirming the critical role of histone methylation regulation [41].

Furthermore, studies utilizing the pulmonary thromboembolism (PTE) rat model have demonstrated that the miR-124/polypyrimidine tract binding protein 1 (*PTBP1*)/pyruvate kinase M (*PKM*) signalling axis facilitates pulmonary artery intimal remodelling through the mediation of metabolic reprogramming [42]. Collectively, these findings indicate that (1) epigenetic mechanisms, including DNA methylation and histone modifications, drive abnormal endothelial cell proliferation and vascular remodelling by regulating the expression of key genes and that (2) energy metabolism disorders resulting from metabolic reprogramming further exacerbate the pathological thickening of the pulmonary artery intima. These two mechanisms may be interrelated and jointly contribute to the progression of pulmonary hypertension.

2.2 Role of PAEC Dysfunction in PH

The primary trigger for PH is the dysfunction of PAECs, which is predominantly characterized by the generation of associated active factors and alterations in coagulation within the pulmonary endothelium. This dysfunction leads to abnormal contractions of the pulmonary vasculature, *in situ* thrombosis, and the remodelling of vascular structures, ultimately contributing to the onset and progression of PH. This condition represents an endothelial pathological state resulting from an imbalance between

substances that induce contraction and those that promote vasodilation [43].

Studies have confirmed that PAEC dysfunction disrupts the pathological proliferation and migration of adjacent PASMCs, ultimately leading to thickening of the vascular wall's medial layer and a progressive increase in pulmonary vascular resistance [44,45].

Mice with defects in ECs and haematopoietic cells that encode prolyl-4 hydroxylase 2 (*PHD2*) exhibit severe occlusive vascular remodelling and right heart failure. In particular, the pulmonary vascular lesions of these mice significantly increased EC proliferation. Reactivation of hypoxia-inducible factor 2 α (*HIF-2 α*) signalling in ECs is a crucial factor in the development of PH. Endothelial *HIF-2 α* activation is the primary mechanistic link for the development of PH after *PHD2* deficiency [46,47]. Additionally, a reduction in pulmonary endothelial *HIF-2 α* causes a significant loss of hypoxia-induced PH in these mice [48]. Studies have shown that P-selectin and von Willebrand factor (*vWF*) are procoagulant factors located on pulmonary ECs. Increases in these factors reflect damage and dysfunction [49,50].

The above studies elucidate the central role of EC dysfunction in the pathogenesis of PH. This dysfunction leads to pulmonary vasoconstriction, thrombus formation, and medial thickening through an imbalance of active factors, coagulation abnormalities, and *HIF-2 α* -driven vascular remodelling, ultimately resulting in increased pulmonary vascular resistance and right heart failure.

2.3 Role of the Immune Inflammatory Response in PH

In PH, inflammation is characterized by (1) elevated levels of cytokines, chemokines, and adipokines and (2) varying degrees of inflammatory and immune cell infiltration surrounding and within the walls of small pulmonary arteries [51]. Furthermore, one study revealed the presence of tertiary lymphoid tissues (tLTs) in the lungs of patients with idiopathic pulmonary arterial hypertension (IPAH), which may be associated with aberrant immune system activation and autoantibody production [52]. Another study demonstrated that anti-endothelial cell antibodies (*AECAs*) are detectable in patients with systemic sclerosis (SSc) and are correlated with a greater incidence of vascular lesions and related symptoms. *AECAs* can activate ECs and lead to apoptosis in patients. Additionally, PH can also occur in patients, contributing to increased mortality [53]. A study conducted by Sasaki N's team [54] suggested that the induction of PAEC apoptosis by a combination of anti-endothelial cell antibodies and activated natural killer cells may play a crucial role in the vascular damage associated with PH in patients with mixed connective tissue disease. These findings underscore the significant role of the immune system in PH.

2.4 Role of Oxidative Stress in PH

Oxidative stress is recognized as a critical factor leading to EC injury and functional impairment [55]. Increases in ROS production lead to an imbalance in the signalling between reactive nitrogen species (RNS) and nitric oxide (NO) [56], as well as to DNA damage [57]. This imbalance results in abnormal proliferation, injury, and apoptosis of ECs. Oxidative stress can also promote the development of PH by disrupting the NO signalling pathway. As a crucial vasodilatory mediator, the synthesis of NO is regulated primarily by endothelial nitric oxide synthase (*eNOS*). Under pathological conditions associated with PH, dysfunction of *eNOS* leads to its uncoupling, subsequently disrupting NO signalling and significantly impairing the capacity for vasodilation. This pathological alteration not only exacerbates vasoconstrictive responses but also further accelerates the progression of pulmonary arterial hypertension [56].

2.5 Role of Autophagy in PH

Research has demonstrated that oestradiol directly inhibits the proliferation of ECs and improves haemodynamics. By enhancing mitochondrial autophagy, oestradiol also inhibits PH [58]. Conversely, it enhances EC angiogenesis in foetal lambs with persistent PH, which reduces the expression of the autophagy protein beclin-1, leading to autophagy defects [59]. Moreover, autophagy accelerates the transition from an apoptotic phenotype to a hyperproliferative phenotype in pulmonary vascular ECs associated with HIV-related PH [60].

Singh *et al.* [61] reported increased expression and activity of fatty acid synthase (*FAS*) in hypoxic human pulmonary artery smooth muscle cells (HPASMCs). The inhibition of *FAS* promotes HPASMC apoptosis and reduces autophagy, which reduces pulmonary vascular remodelling and endothelial dysfunction [61].

2.6 Role of EndMT in PH

EndMT induced by dysfunctional PAECs is considered the initial step and a key pathological factor in the occurrence of PH [62]. In PH, *EndMT* directly promotes structural changes in the vascular wall by causing PAECs to lose their endothelial characteristics and acquire the migratory and proliferative abilities of mesenchymal cells [33,62,63]. In PH associated with congenital heart disease, high shear stress (HSS) can directly induce *EndMT*, thereby initiating vascular remodelling [64]. Numerous studies have demonstrated that apoptosis, inflammation, and metabolic abnormalities, such as oxidative stress in PAECs, can induce *EndMT*. These findings suggest that *EndMT* may serve as a compensatory response following endothelial injury [65]. This dual regulatory role positions *SHP-1* as a pivotal therapeutic target for modulating vascular remodelling processes [66].

3. The Expression and Regulation of *SHP-1* in eECs

3.1 Expression Characteristics of *SHP-1* in ECs

Studies have demonstrated that *SHP-1* is expressed in various epithelial tissues, including haematopoietic cells and ECs [24,67]; however, its expression level in ECs remains relatively low. In human microvascular endothelial cells (HMECs), *SHP-1* is predominantly localized in the nucleus, with only moderate expression observed in the cytoplasm [25].

3.2 Core Role of *SHP-1* in Vascular Homeostasis and Disease

SHP-1 plays a critical role in ECs by protecting them from the upregulation of adhesion molecules and the harmful effects of thrombosis under inflammatory conditions. Under hypoxic or ischaemic conditions, *SHP-1* promotes the development of blood vessels by suppressing oxidative stress. In ischaemic illnesses, *SHP-1* suppresses the production of ROS, which in turn inhibits the proliferation and survival of ECs [25].

For example, in a diabetic mouse model, hyperglycaemia impairs the vascular regenerative capacity of ischaemic muscles by upregulating *SHP-1* expression in ECs, which inhibits the activity of angiogenic factors [68]. In an *in vitro* model of chronic obstructive pulmonary disease (COPD), the expression level of *SHP-1* was significantly decreased. *SHP-1* overexpression reversed the effects of cigarette smoke extract (CSE) on endothelial cell migration, epithelial–mesenchymal transition (EMT), and the production of proinflammatory factors. Moreover, it mitigated the inflammatory response by inhibiting the P65 and *PJ3K/AKT* signalling pathways [69]. In the diabetic state, *SHP-1* promotes endothelial cell senescence and contributes to abnormal collateral vessel formation by diminishing the proangiogenic effects of nuclear factor erythroid 2-related factor 2 (*Nrf2*) and *VEGF*, ultimately impeding blood flow reperfusion. However, the overexpression of dominant-negative *SHP-1* (*dnSHP-1*) effectively reverses these pathological effects [62]. In diabetic peripheral arterial disease, *SHP-1* reduces endothelial cell migration and capillary formation by negatively regulating the vascular endothelial growth factor receptor 2 (VEGFR2) and platelet derived growth factor receptor beta (*PDGFR-β*) signalling pathways [70].

Comprehensive evidence indicates that maintaining moderately high *SHP-1* expression is crucial for controlling inflammation and ensuring endothelial homeostasis. The lack of expression of this molecule has emerged as a common pathological feature in various vascular diseases. These findings underscore the importance of *SHP-1* as a vital target for research in the context of vascular diseases and inflammatory responses.

4. The Key Signalling Pathway That Regulates the Expression of *SHP-1*

4.1 *SHP-1* Regulates the Phosphorylation Level of *VEGFR2*

4.1.1 Target Action

SHP-1 can indirectly affect the phosphorylation of *VEGFR2* by dephosphorylating Src family kinases (such as *Lyn* and *Fyn*) [71]. This dephosphorylation depends on the interaction between *SHP-1* and the *SH2* domain of Src family receptors [72]. Upon *VEGF* stimulation, the phosphatase activity of *SHP-1* is activated, leading to the dephosphorylation of specific tyrosine residues (such as Y996, Y1059, and Y1175) on *VEGFR2*, thereby inhibiting *VEGFR2* signalling. This dephosphorylation attenuates *VEGFR2*-mediated downstream signalling pathways, such as the activation of extracellular signal-regulated kinase (*ERK*) and *Akt*, consequently suppressing the proliferation and DNA synthesis of vascular ECs [71]. Cellular communication network factor 1 (*CCNI*), also known as cysteine-rich protein sixty-one, is a stromal cell protein that interacts with integrins and is secreted by the cell. Cardiovascular system development is highly important in human life. *CCNI* enhances *SHP-1* activity by binding to *VEGFR2*, leading to *VEGFR2* dephosphorylation and the inhibition of endothelial cell proliferation [73].

4.1.2 Evidence of Inhibiting Angiogenesis Through the Regulation of *SHP-1*

Furthermore, this study revealed that acetyl-11-ketoboswellie acid (*AKBA*) can upregulate the expression and activity of *SHP-1*. The upregulation of *SHP-1* by *AKBA* leads to reduced *VEGF* expression and downregulated phosphorylation of *VEGFR2* and *STAT3*, thus inhibiting angiogenesis. Overall, these findings underscore the critical role of *SHP-1* in regulating endothelial cell angiogenesis [74].

4.1.3 Evidence to Support That Regulating *SHP-1* Inhibits Vascular Permeability

Clearly distinguishing the mechanisms underlying changes in vascular permeability between PH and acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is crucial. Both ALI and ARDS are marked by a breakdown of the alveolar-capillary barrier, which is evident through a strong inflammatory reaction that causes damage to both endothelial and alveolar epithelial cells injury, ultimately culminating in the accumulation of protein-rich pulmonary edema [75]. ARDS signifies the critical phase of ALI, marked by significant formation of hyaline membranes, collapse of alveoli, and persistent hypoxemia [76,77]. Conversely, the changes in vascular permeability seen in PH mainly stem from endothelial dysfunction that occurs throughout the chronic remodeling of the pulmonary vasculature. This condition presents as perivascular edema rather than as exudation into the alveolar spaces, and the un-

derlying mechanisms differ fundamentally from the acute inflammatory damage seen in ALI/ARDS [78].

Cytokine TNF superfamily member 15 (*TNFSF15*) is produced primarily by vascular ECs, and receptor activation leads to trimerization with *VEGFR2* and death receptor 3 (*DR3*). This process affects the activity of *SHP-1* phosphatase, which further inhibits the phosphorylation of *VEGFR2* [79]. In addition, Chu *et al.* [80] reported that thrombospondin-1 (*TSP-1*) binds to *VEGFR2* via its interaction with *STAT3* while recruiting *SHP-1* to inhibit the phosphorylation of *VEGFR2*; thus, *TSP-1* reduces the phosphorylation level of *VEGFR2* and *VEGF*-induced endothelial cell migration. The thrombospondin type 1 repeat (*TSR*) domain inhibits tube formation [80].

Additionally, *SHP-1* phosphatase activity is enhanced by a novel aliphatic isohydroxamic acid ester derivative (*WMJ-S-001*), resulting in the inhibition of *VEGFR2* phosphorylation within the *VEGF-A-VEGFR2* signalling pathway, which ultimately decreases the cytogenic activity of vascular ECs [81].

4.1.4 Role of *SHP-1* in the Pathological Environment

Studies have shown that hyperglycaemic and hypoxic environments upregulate the phosphatase activity of *SHP-1*, which inhibits *VEGF* signalling. This process impairs the functional ability of ECs and inhibits angiogenesis [25,82,83]. In addition, N(ε)-carboxymethyl lysine (CML) activates ROS signalling via NADPH oxidase, which in turn enhances *SHP-1* activity. Consequently, *SHP-1* damages ECs by dephosphorylating *VEGFR-2*, which results in EC dysfunction [84].

4.1.5 Gene Intervention and Animal Model Validation

In an *in vitro* study, *SHP-1* inhibition promoted the ability of TNF- α to impede the *VEGF*-driven phosphorylation of *VEGFR-2*, which promoted the growth of ECs. In a rat model of hind limb ischaemia, the expression levels of *SHP-1* and *VEGF* were elevated *in vivo*. Treatment with siRNA that suppressed *SHP-1* gene expression significantly increased both *VEGFR-2* phosphorylation and capillary density, indicating that *SHP-1* is a negative regulator of angiogenesis [85]. Treatment with *VEGF* resulted in the c-Src kinase-dependent activation of *SHP-1* phosphatase activity. Inhibition of *SHP-1* with siRNA or c-Src results in elevated tyrosine phosphorylation levels of *VEGFR-2* and phosphorylation extracellular signal-regulated kinase (*pERK*), which enhances DNA synthesis and promotes EC proliferation. These results show that *SHP-1* is essential for the regulation of ECs [80].

4.2 *SHP-1* Regulates the *JAK2/STAT3* Signalling Pathway

4.2.1 Target Action

As a tyrosine phosphatase with an SH2 domain, *SHP-1* can directly bind to *JAK2* and dephosphorylate its substrate *STAT3*. As a result, it negatively regulates the acti-

vation of the *JAK/STAT3* signalling pathway, which helps maintain ECs under normal conditions [86,87].

4.2.2 Abnormal Regulation of SHP-1 Under Pathological Conditions

The levels and activity of *SHP-1* control critical functions of ECs, such as proliferation, migration, and angiogenesis. For example, in a high-glucose environment, the inhibition of *SHP-1* activity can result in hyperactivation of the *JAK/STAT3* signalling pathway, leading to abnormal endothelial cell injury and angiogenesis [88]. Additionally, the expression and activity of *SHP-1* are modulated by various factors. Under certain pathological conditions, *SHP-1* expression may be downregulated, or its activity may be suppressed, resulting in the aberrant activation of the *JAK/STAT3* signalling pathway [89–91].

4.2.3 Pharmacological Intervention and Therapeutic Potential

This study revealed that naringenin can inhibit *JAK2/STAT3* signalling pathway activation while increasing the expression of *SHP-1*, which improved hypertension during pregnancy. Sufficient evidence indicates that *SHP-1* must be expressed and activated to suppress oxidative stress, inflammatory responses, and *JAK2/STAT3* signalling pathway activity. This alleviation of damage to vascular endothelial cell damage and vasoconstriction further regulates the development and differentiation of ECs [92]. Angiopoietin 1 (*Ang1*) inhibits cell proliferation; in this context, the induction of *SHP-1* dampens Ang1-mediated interleukin 6 (*IL-6*)-induced stimulation of the *JAK/STAT3* signalling pathway, thus reducing *IL-6*-induced endothelial cell permeability and suppressing the vascular immune–inflammatory response [93]. Moreover, some studies have shown that inhibiting Phloretin activates *SHP-1* to phosphorylate *STAT3*. This process can ultimately induce apoptosis and autophagy in vascular ECs [94,95].

4.3 SHP-1 Regulates ERK Phosphorylation

4.3.1 Target Action

SHP-1 can bind to epidermal growth factor receptor (*EGFR*) and dephosphorylate its downstream substrates, thereby suppressing EGFR-mediated *ERK* activation [96]. *SHP-1* suppresses angiogenesis and inflammatory responses through the dephosphorylation of key signalling molecules, such as *ERK* and c-Jun N-terminal kinase (*JNK*) [97,98].

4.3.2 Functional Verification

Stimulation of bovine aortic ECs with *VEGF* and epidermal growth factor (*EGF*) significantly increased the phosphorylation of *ERK*. However, treatment with *TNF- α* for 10 minutes attenuated the phosphorylation of *ERK*. Importantly, the overexpression of *SHP-1* effectively prevented the inhibition of *ERK* phosphorylation induced by

TNF- α . *TNF- α* blocks the growth factor-induced phosphorylation of *ERK*-induced EC proliferation by activating *SHP-1*. The activation of *SHP-1* suppresses the phosphorylation of *E23RK* induced by growth factors, including *VEGF*, *EGF*, and platelet-derived growth factor (*PDGF*). Endothelial cell proliferation, differentiation, and transformation are downregulated [23,70].

4.3.3 Animal Model Validation

Knockout of the connexin 37 (*Cx37*) gene in mice might increase *SHP-1* activity, which in turn could lead to the dephosphorylation of proteins such as myosin light chain 2 (*MLC2*), *ERK*, and protein kinase B through various mechanisms. The angiotensin II (*Ang II*) signalling cascade involves the phosphorylation of proteins generated after the activation of *Ang II* at the AT1 receptor (*AT1R*) in ECs. Protein dephosphorylation may interfere with important cellular physiological processes, such as contraction, proliferation, and survival [99].

4.4 SHP-1 is Involved in Regulating the Levels of ROS and HIF-1

4.4.1 The Oxygen-dependent Regulatory Mechanism of HIF-1 α

HIF-1 consists of an oxygen-regulated α subunit and a constitutively expressed β subunit [100,101]. Under normoxia, prolyl hydroxylase facilitates the degradation of *HIF-1 α* , whereas hypoxia blocks this process, leading to the stabilization and accumulation of *HIF-1 α* [102,103]. *HIF-1 α* is an important transcription factor under low-oxygen conditions. It can regulate the production of *VEGF* [104,105].

4.4.2 Regulation of the ROS/HIF-1 α /VEGF Axis by SHP-1

Under hypoxic conditions, *SHP-1* knockdown increases ROS in ECs and further induces ROS to upregulate the expression of the *HIF-1 α* protein [25]. The synthesis and production of *VEGF* are increased when *SHP-1* is knocked down. Moreover, *SHP-1* also negatively regulates the production of ROS. ROS increase the stability of *HIF-1 α* by inhibiting the enzyme activity of prolyl hydroxylase, leading to its degradation [106]. Thus, *SHP-1* knockdown leads to an increase in ROS, which stabilizes *HIF-1 α* . In summary, *SHP-1* regulates cell proliferation and *VEGF* synthesis by altering the *HIF-1 α* and ROS levels [25].

4.5 Other Avenues

Under hyperglycaemic conditions, *SHP-1* is activated and binds to DR3, the receptor for tumour necrosis factor ligand-related molecule 1A (*TL1A*). This activation inhibits the dephosphorylation of Src by *SHP-1*. Consequently, when glucose levels are elevated, *SHP-1* binds to the receptor of *TL1A*, also called death receptor 3 (*DR3*). This action of *SHP-1* prevents the dephosphorylation of Src, which then

Table 1. Differential regulation of endothelial cell function by *SHP-1* activity status.

Inhibits phosphorylation levels of <i>VEGFR2</i>				
<i>SHP-1</i> activation	Nature of study	Regulation	EC dysfunction	Reference
↑	<i>In vitro, in vivo</i>	—	Proliferation	[73]
↑	<i>In vitro, in vivo</i>	—	Vascular permeability	[79]
↑	<i>In vitro, in vivo</i>	—	Angiogenesis	[74]
↑	<i>In vitro, in vivo</i>	—	Angiogenesis	[81]
↑	<i>In vitro, in vivo</i>	—	Migrate	[80]
↑	<i>In vitro, in vivo</i>	—	Angiogenesis	[25,82,83]
↑	<i>In vitro, in vivo</i>	—	Oxidative stress	[84]
↓	<i>In vitro, in vivo</i>	+	Angiogenesis	[85]
↓	<i>In vitro</i>	+	Proliferation	[110]
Inhibits the <i>JAK2/STAT3</i> signalling pathways				
<i>SHP-1</i> activation	Nature of study	Regulation	EC dysfunction	Reference
↓	<i>In vitro</i>	+	Angiogenesis	[88]
			Endothelial cell injury	
↑	<i>In vivo</i>	—	Growth	[92]
↑	<i>In vitro</i>	—	Immune inflammation	[93]
↑	<i>In vitro, in vivo</i>	—	Apoptosis, autophagy	[94,95]
Inhibits <i>ERK</i> phosphorylation				
<i>SHP-1</i> activation	Nature of study	Regulation	EC dysfunction	Reference
↑	<i>In vitro, in vivo</i>	—	Angiogenesis	[97]
			inflammation	[98]
↑	<i>In vitro, in vivo</i>	—	Proliferation	[23,70]
↑	<i>In vivo</i>	—	Proliferation	[99]
<i>SHP-1</i> is involved in regulating the levels of ROS and <i>HIF-1</i>				
<i>SHP-1</i> activation	Nature of study	Regulation	EC dysfunction	Reference
↑	<i>In vivo</i>	—	Proliferation	[25]
Other avenues				
<i>SHP-1</i> activation	Nature of study	Regulation	EC dysfunction	Reference
↑	<i>In vitro, in vivo</i>	—	Immune inflammation	[107]
↑	<i>In vivo</i>	—	inflammation	[24]
↑	<i>In vitro</i>	—	Oxidative stress	[108]
↑	<i>In vitro</i>	—	Proliferation	[23]
↓	<i>In vitro</i>	+	Proliferation	[109]

Signals may initiate (↑) or inhibit (↓) *SHP-1* activity. Positively (+) or negatively (—) regulate endothelial cell (EC) functions.

SHP-1, Src homology region 2 domain-containing phosphatase-1; *VEGFR2*, vascular endothelial growth factor receptor 2; EC, endothelial cell; *JAK2*, janus kinase 2; *STAT3*, signal transducer and activator of transcription 3; *ERK*, extracellular signal-regulated kinase; ROS, reactive oxygen species; *HIF-1*, hypoxia-inducible factor 1.

activates vascular endothelial-cadherin (*VE-cadherin*). As a result, EC integrity is impaired, leading to vascular leakage [107].

SHP-1 plays a crucial role in maintaining vascular haemostasis within the body. During the inflammation of ECs caused by *TNF-α*, *SHP-1* inhibition enhances interactions between platelets and ECs, ultimately leading to arterial thrombosis. This autoinhibitory feedback mechanism of phosphatases is believed to prevent excessive inflammation and thrombosis [108]. *TNF-α* inhibits *VEGF*- and *EGF*-stimulated EC proliferation via *SHP-1* activation.

Under hypoxia, blocking tumor necrosis factor receptor 1 (*TNFR-1*) or *SHP-1* in human umbilical vein endothelial cells (HUEVCs) upregulated the expression of proangiogenic genes (*VEGFR2* and *eNOS*) and a prosurvival gene (*Bcl-xL*) while downregulating the expression of a proapoptotic gene (*Bax*). Inhibiting *TNFR-1* or *SHP-1* with siRNA leads to increased HUEVC growth and differentiation [109].

Many findings present strong evidence that *SHP-1* negatively regulates endothelial cell function via tyrosine phosphatase activity. The activation of *SHP-1* inhibits the

coagulant activity of ECs; however, loss of function or expression is able to attenuate this effect (Table 1, Ref. [23–25,70,73,74,79–85,88,92–95,97–99,107–110]).

5. Potential Mechanism of Endothelial *SHP-1* in PH-Related Pulmonary Vascular Remodelling

5.1 Suppression of the Proliferation, Migration and Angiogenesis of ECs

SHP-1 plays a crucial role in regulating EC function and angiogenesis by modulating the phosphorylation of *VEGFR2* and its downstream signalling pathways. Molecules such as *CCNI*, limonin, *AKBA*, and *WMJ-S-001* activate *SHP-1* and inhibit *VEGFR2* phosphorylation, thereby suppressing endothelial cell proliferation, migration, and angiogenesis [73,74,81]. Under conditions such as hyperglycaemia and hypoxia, the activity of *SHP-1* is increased. By suppressing the overactivation of the *VEGF* and *JAK/STAT3* signalling pathways, *SHP-1* contributes to endothelial cell dysfunction and impaired angiogenesis [25,82,83]. Furthermore, the inhibition of *SHP-1* in HUVECs promotes *VEGFR2* expression and drives endothelial cell proliferation [109]. The activation of *SHP-1* induces dephosphorylation of the *ERK* protein, thereby modulating endothelial cell proliferation [23,70,99]. Under hypoxic conditions, *SHP-1* regulates endothelial cell proliferation by controlling *HIF-1α* and ROS levels [25,102,103]. Collectively, these studies demonstrate that the deletion or reduction of *SHP-1* leads to excessive endothelial cell proliferation and migration as well as abnormal vascular formation.

5.2 Regulating Endothelial Apoptosis and Autophagy

Phloretin inhibits the phosphorylation of *STAT3* by activating *SHP-1*, which induces apoptosis and autophagy in ECs [94,95]. Under hypoxic conditions, the inhibition of *TNFR-1* or *SHP-1* in HUVECs significantly increases the expression of the antiapoptotic factor *Bcl-xL* while decreasing the expression of the proapoptotic factor *Bax*, thereby effectively suppressing apoptosis in these cells [109].

5.3 Regulating the Inflammatory Response

SHP-1 suppresses angiogenesis and inflammatory responses by dephosphorylating key signalling molecules, including *ERK* and *JNK* [97,98]. Studies have shown that *Ang1* activates *SHP-1* to inhibit IL-6-induced endothelial cell permeability and inflammatory responses [108]. Furthermore, the inhibition of *SHP-1* exacerbates *TNF-α*-induced endothelial inflammation, while its self-inhibitory feedback mechanism serves to prevent excessive inflammatory activation [108].

5.4 Regulation of Vascular Permeability

Under hyperglycaemic conditions, *SHP-1* is activated and binds to *DR3*, impairing its ability to dephosphorylate

Src. This process induces the activation of *VE-cadherin*, which destabilizes endothelial cell integrity and contributes to vascular leakage [107].

5.5 Regulation of the Oxidative Stress Response

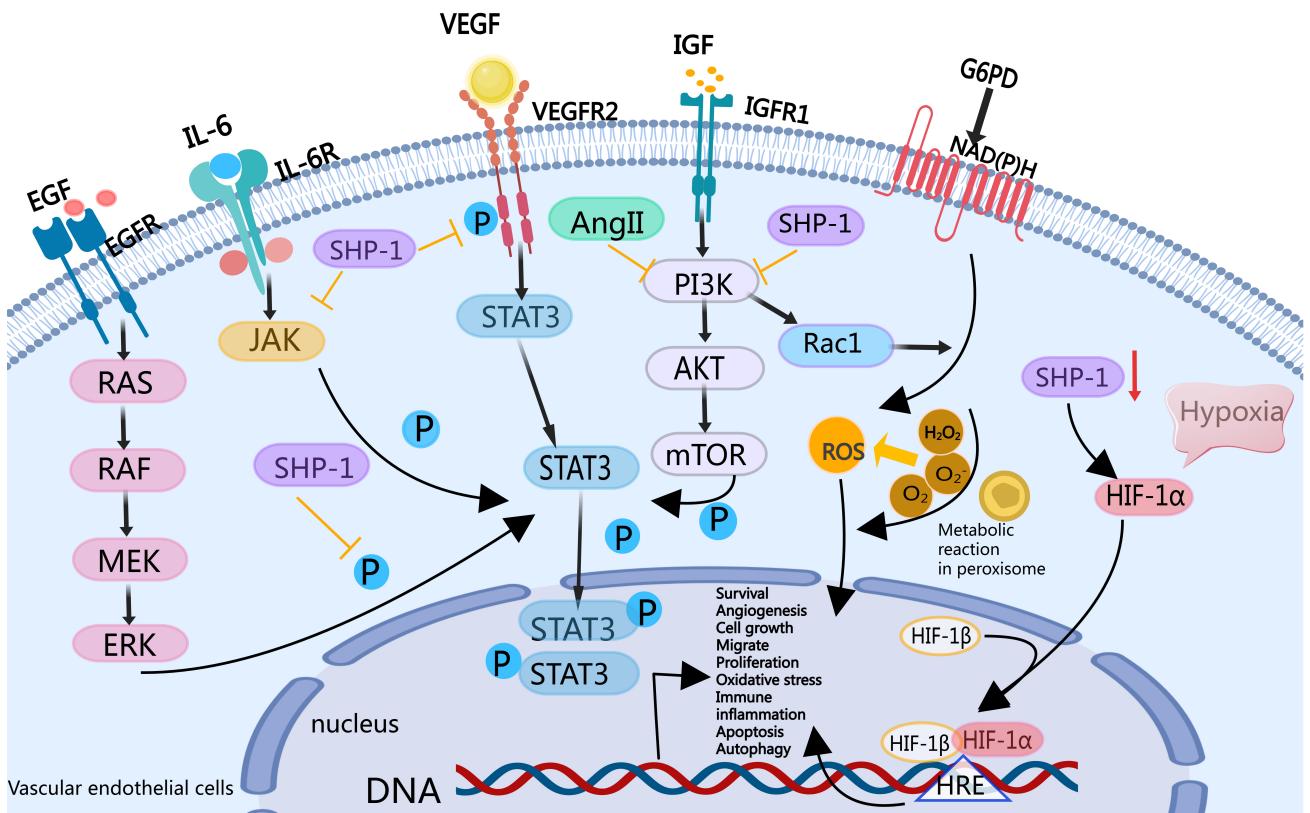
In HUVECs, *SHP-1* negatively regulates *Rac1* activation by suppressing PI3K activity, thereby modulating NAD(P)H oxidase-dependent superoxide production and significantly reducing oxidative stress levels in ECs [24].

5.6 Summary

In summary, endothelial *SHP-1* may suppress the development and progression of PH through multiple mechanisms. Specifically, *SHP-1* inhibits EC migration and proliferation, reducing key drivers of vascular remodelling; *SHP-1* modulates immune-inflammatory responses and oxidative stress to mitigate endothelial cell damage; *SHP-1* suppresses pathological angiogenesis by inhibiting signalling pathways such as *VEGF*; and *SHP-1* regulates vascular permeability while inhibiting apoptosis and autophagy to maintain endothelial cell function and stability. These combined effects inhibit pulmonary vascular remodelling and prevent the progression of PH, highlighting *SHP-1* as a potential therapeutic target for PH treatment (Fig. 2).

6. Therapeutic Prospects of *SHP-1* Activators/Inhibitors in Vascular Diseases

6.1 Therapeutic Potential of *SHP-1* Activators


The *SHP-1* activators exert antiproliferative and pro-apoptotic effects by inhibiting B cell receptor (*BCR*) signalling pathway, as evidenced by the downregulation of p-Lyn. This inhibition may also indirectly influence tumour angiogenesis [111,112]. The overexpression of *SHP-1* counteracts the migration of endothelial cells and the release of inflammatory factors triggered by CSE, indicating that *SHP-1* has a protective function in chronic inflammatory vascular conditions, including vascular lesions associated with COPD [69]. Angiogenesis is influenced by *SHP-1* through the regulation of *TGF-β1* signalling, potentially facilitating the development of collateral circulation in models of ischaemia [113].

6.2 Potential Risks of *SHP-1* Inhibitors

In certain types of cancer, the activation of *SHP-1* may foster a microenvironment that is favourable for tumours, indicating that caution is warranted when using *SHP-1* inhibitors to treat vascular-related tumours [87]. *SHP-1* suppresses overly active immune responses within Treg cells; nonetheless, a lack of this protein might result in T-cell impairment, which can influence the development of vascular autoimmune disorders [114].

6.3 Summary

Modulators of *SHP-1* have the potential to play dual roles in vascular disease treatment: they may enhance the

Fig. 2. *SHP-1* may regulate PAEC function to inhibit signalling pathways that result in PH vascular remodelling. *SHP-1* inhibits VEGFR2/IGFR1, the EGFR/ERK-mediated STAT3 signalling pathway, and the IL-6-induced JAK/STAT3 signalling pathway; and the PI3K/Rac1 signalling pathway negatively regulates NADPH oxidase (NOX)/vascular peroxidase 1 (VPO1) pathway-derived ROS. *SHP-1* inhibits EC migration and proliferation, immune inflammation, activation, oxidative stress, vasoconstriction, generation, vascular permeability, apoptosis, autophagy, and other important pathophysiological processes in the development of PH. Additionally, the silencing of *SHP-1* leads to an increase in ROS and hypoxia-inducible factor 1 alpha (HIF-1 α), which may further increase the proliferation of ECs and influence pulmonary vascular remodelling in PH. Created with MedPeer (medpeer.cn). HRE, hypoxia response element; PAEC, pulmonary artery endothelial cell; PH, pulmonary hypertension; VEGFR2, vascular endothelial growth factor receptor 2; EGFR, epidermal growth factor receptor; ERK, extracellular signal-regulated kinase; IL-6, interleukin 6; PI3K, Phosphoinositide 3-Kinase; ROS, reactive oxygen species; EC, endothelial cell; EGF, epidermal growth factor; STAT3, signal transducer and activator of Transcription 3; JAK, janus kinase; Rac1, rac family small GTPase 1; NADPH, nicotinamide adenine dinucleotide phosphate; IGFR1, insulin-like growth factor receptor 1; G6PD, glucose-6-phosphate dehydrogenase; Ang II, angiotensin II; RAS, renin-angiotensin system; RAF, rapidly accelerated fibrosarcoma; MEK, MAPK/ERK kinase.

healing of atherosclerotic or diabetic vascular lesions by providing anti-inflammatory benefits and protecting endothelial cells as an activator, whereas they may facilitate the regeneration of blood vessels in ischaemic tissues under certain circumstances as an inhibitor. Additional research is essential to clarify the mechanisms specific to different tissues and explore avenues for clinical application.

7. Conclusion and Clinical Implications

On the basis of current knowledge, *SHP-1* is suspected to play a significant role in the development and maintenance of pulmonary endothelial dysfunction associated with PH, potentially offering new therapeutic innovations for this condition. Several experiments could be conducted

to test this hypothesis, including *in situ* studies on tissues from patients with and without PH to verify the expression and localization of the *SHP-1* protein in various cell types within remodelled pulmonary artery walls. Because PH is typically diagnosed at advanced stages and patients are often treated with multiple therapeutic agents, tracking *SHP-1* expression and its targets in preclinical models of PH at different stages of its development is crucial. Such analyses include using the chronic Sugen-hypoxia model, models severe PH induced by monocrotaline, and the combination model in rats. Furthermore, *in vitro* experiments could be designed to investigate the molecular mechanisms regulated by *SHP-1* in dysfunctional PAECs from PH patients by manipulating *SHP-1* expression levels in PAECs.

from patients without PH. Using haemodynamic data from adult knockout or conditionally overexpressing *SHP-1* mice or rats and evaluating the efficacy of *SHP-1* agonist treatments in preclinical models are both essential to strengthening these observations. In these *in vivo* studies, it will be important to thoroughly assess cardiac function to ensure that these approaches do not negatively impact ventricular performance, including adaptive hypertrophy of the right ventricle. Taken together, these data could be used to determine whether restoring *SHP-1* expression is a promising novel intervention in the treatment of PH.

Abbreviations

PH, pulmonary hypertension; PAECs, pulmonary artery endothelial cells; SHP-1, Src homology region 2 domain-containing phosphatase-1; mPAP, mean pulmonary artery pressure; EMT, endothelial mesenchymal transition; PTP, protein tyrosine phosphatase; GEO, Gene Expression Omnibus; ECs, endothelial cells; BMPR2, type II bone morphogenetic protein receptor; Alk, activin-like kinase; ASH2, absent, small, or homeotic 2; WDR5, WD repeat-containing protein 5; VEGF, vascular endothelial growth factor; PHD2, prolyl-4 hydroxylase 2; Cas, Crk-associated substrate; VWF, von Willebrand factor; IL-6, interleukin 6; JNK, c-Jun N-terminal kinase; NOX, NADPH oxidase; VPO1, vascular peroxidase 1; FAS, fatty acid synthase; HPASMCs, human pulmonary artery smooth muscle cells; EndMT, endothelial-mesenchymal transition; siRNA, small-interfering RNA; HIF-2 α , hypoxia-inducible factor 2 α ; CCN1, cellular communication network factor 1; TNFSF15, TNF superfamily member 15; DR3, death receptor 3; AKBA, acetyl-11-keto-b-boswellic acid; CML, carboxymethyl lysine; Ang1, angiopoietin 1; EGF, epidermal growth factor; ERK, extracellular signal-regulated kinase; PDGF, platelet-derived growth factor; Cx37, connexin 37; VE-cadherin, vascular endothelial cadherin; PI3K, phosphoinositide 3-Kinase; NO, nitric oxide; HUVECs, human umbilical vein endothelial cells; ALI, acute lung injury; ARDS, acute respiratory distress syndrome.

Availability of Data and Materials

The datasets [ANALYZED] for this study can be found in the [Gene Expression Omnibus] [<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154959>].

Author Contributions

XZ wrote the article, SX drafted the manuscript, and both XZ and SX participated in the revision of the article and made significant contributions to the main concept and design of the article. XX and JY proposed the topic of the article, provided help and advice in writing the article, critically reviewed important intellectual content. ZY analysis and interpretation Fig. 1. TL and BZ helped perform the analysis the article with a constructive conclusion. MM

and YL co-founded Table 1. All authors contributed to the conception and editorial changes in the manuscript. All authors read and approved of the final manuscript. All authors have participated sufficiently in the work and agreed to be accountable for all aspects of the work.

Ethics Approval and Consent to Participate

Not applicable.

Acknowledgment

Not applicable.

Funding

This work was supported by the National Natural Science Foundation of China [grant numbers 82160016, 82560078]; Famous Doctors of High-level Talent Training Support Program of Yunnan Province [grant numbers YNWR-MY-2020-013]; The Special and Joint Program of the Yunnan Provincial Science and Technology Department and Kunming Medical University [grant numbers 202201AY070001-265, 202301AY070001-189]; The Science Research Foundation of Yunnan Provincial Education Department [grant numbers 2024J0016, 2024Y918]; Yunnan Provincial Innovation Team for Respiratory and Pulmonary Circulation Diseases [grant numbers 202405AS350018]; Yunnan Fundamental Research Projects [grant numbers 202501CF070056]; The Yunnan University Medical Research Foundation [grant numbers YDYXJJ2024-0026].

Conflict of Interest

The authors declare no conflict of interest.

References

- [1] Ruopp NF, Cockrill BA. Diagnosis and Treatment of Pulmonary Arterial Hypertension: A Review. *JAMA*. 2022; 327: 1379–1391. <https://doi.org/10.1001/jama.2022.4402>.
- [2] Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension. *The Journal of Clinical Investigation*. 2012; 122: 4306–4313. <https://doi.org/10.1172/JCI60658>.
- [3] Stacher E, Graham BB, Hunt JM, Gandjeva A, Groshong SD, McLaughlin VV, et al. Modern age pathology of pulmonary arterial hypertension. *American Journal of Respiratory and Critical Care Medicine*. 2012; 186: 261–272. <https://doi.org/10.1164/rccm.201201-0164OC>.
- [4] Rabinovitch M. Pathobiology of pulmonary hypertension. *Annual Review of Pathology*. 2007; 2: 369–399. <https://doi.org/10.1146/annurev.pathol.2.010506.092033>.
- [5] Evans CE, Cober ND, Dai Z, Stewart DJ, Zhao YY. Endothelial cells in the pathogenesis of pulmonary arterial hypertension. *The European Respiratory Journal*. 2021; 58: 2003957. <https://doi.org/10.1183/13993003.03957-2020>.
- [6] Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. *The European Respiratory Journal*. 2023; 61: 2200879. <https://doi.org/10.1183/13993003.00879-2022>.
- [7] Hoeper MM, Humbert M, Souza R, Idrees M, Kawut SM, Sliwa

Hahn K, *et al.* A global view of pulmonary hypertension. *The Lancet. Respiratory Medicine*. 2016; 4: 306–322. [https://doi.org/10.1016/S2213-2600\(15\)00543-3](https://doi.org/10.1016/S2213-2600(15)00543-3).

[8] Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, *et al.* 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. *European Heart Journal*. 2022; 43: 3618–3731. <https://doi.org/10.1093/eurheartj/ehac237>.

[9] Humbert M, McLaughlin V, Gibbs JSR, Gomberg-Maitland M, Hoeper MM, Preston IR, *et al.* Sotatercept for the Treatment of Pulmonary Arterial Hypertension. *The New England Journal of Medicine*. 2021; 384: 1204–1215. <https://doi.org/10.1056/NEJMoa2024277>.

[10] Hoeper MM, Badesch DB, Ghofrani HA, Gibbs JSR, Gomberg-Maitland M, McLaughlin VV, *et al.* Phase 3 Trial of Sotatercept for Treatment of Pulmonary Arterial Hypertension. *The New England Journal of Medicine*. 2023; 388: 1478–1490. <https://doi.org/10.1056/NEJMoa2213558>.

[11] Madonna R, Biondi F. Perspectives on Sotatercept in Pulmonary Arterial Hypertension. *Journal of Clinical Medicine*. 2024; 13: 6463. <https://doi.org/10.3390/jcm13216463>.

[12] Zhang MQ, Wang CC, Pang XB, Shi JZ, Li HR, Xie XM, *et al.* Role of macrophages in pulmonary arterial hypertension. *Frontiers in Immunology*. 2023; 14: 1152881. <https://doi.org/10.3389/fimmu.2023.1152881>.

[13] Lévy M, Maurey C, Celermajer DS, Vouhé PR, Danel C, Bonnet D, *et al.* Impaired apoptosis of pulmonary endothelial cells is associated with intimal proliferation and irreversibility of pulmonary hypertension in congenital heart disease. *Journal of the American College of Cardiology*. 2007; 49: 803–810. <https://doi.org/10.1016/j.jacc.2006.09.049>.

[14] Masri FA, Xu W, Comhair SAA, Asosingh K, Koo M, Vasanji A, *et al.* Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. *American Journal of Physiology. Lung Cellular and Molecular Physiology*. 2007; 293: L548–L554. <https://doi.org/10.1152/ajplung.00428.2006>.

[15] Sakao S, Tatsumi K, Voelkel NF. Endothelial cells and pulmonary arterial hypertension: apoptosis, proliferation, interaction and transdifferentiation. *Respiratory Research*. 2009; 10: 95. <https://doi.org/10.1186/1465-9921-10-95>.

[16] Ranchoux B, Harvey LD, Ayon RJ, Babicheva A, Bonnet S, Chan SY, *et al.* Endothelial dysfunction in pulmonary arterial hypertension: an evolving landscape (2017 Grover Conference Series). *Pulmonary Circulation*. 2018; 8: 2045893217752912. <https://doi.org/10.1177/2045893217752912>.

[17] Humbert M, Guignabert C, Bonnet S, Dorfmüller P, Klinger JR, Nicolls MR, *et al.* Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. *The European Respiratory Journal*. 2019; 53: 1801887. <https://doi.org/10.1183/13993003.01887-2018>.

[18] Tonks NK. Protein tyrosine phosphatases: from genes, to function, to disease. *Nature Reviews. Molecular Cell Biology*. 2006; 7: 833–846. <https://doi.org/10.1038/nrm2039>.

[19] Poole AW, Jones ML. A SHPing tale: perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail. *Cellular Signalling*. 2005; 17: 1323–1332. <https://doi.org/10.1016/j.cellsig.2005.05.016>.

[20] Wang N, Tan S, Liu H, Nie Y, Wang M, Liu H, *et al.* SHP-1 negatively regulates LPS-induced M1 polarization, phagocytic activity, inflammation and oxidative stress in primary macrophages of Chinese tongue sole (*Cynoglossus semilaevis*). *Fish & Shellfish Immunology*. 2025; 163: 110375. <https://doi.org/10.1016/j.fsi.2025.110375>.

[21] Zhao Y, Jiang L. Targeting SHP1 and SHP2 to suppress tumors and enhance immunosurveillance. *Trends in Cell Biology*. 2025; 35: 667–677. <https://doi.org/10.1016/j.tcb.2024.10.008>.

[22] Yu Z, Su L, Hoglinger O, Jaramillo ML, Banville D, Shen SH. SHP-1 associates with both platelet-derived growth factor receptor and the p85 subunit of phosphatidylinositol 3-kinase. *The Journal of Biological Chemistry*. 1998; 273: 3687–3694. <https://doi.org/10.1074/jbc.273.6.3687>.

[23] Nakagami H, Cui TX, Iwai M, Shiuchi T, Takeda-Matsubara Y, Wu L, *et al.* Tumor necrosis factor-alpha inhibits growth factor-mediated cell proliferation through SHP-1 activation in endothelial cells. *Arteriosclerosis, Thrombosis, and Vascular Biology*. 2002; 22: 238–242. <https://doi.org/10.1161/hq0202.104001>.

[24] Krötz F, Engelbrecht B, Buerkle MA, Bassermann F, Bridell H, Gloe T, *et al.* The tyrosine phosphatase, SHP-1, is a negative regulator of endothelial superoxide formation. *Journal of the American College of Cardiology*. 2005; 45: 1700–1706. <https://doi.org/10.1016/j.jacc.2005.02.039>.

[25] Alig SK, Stampnuk Y, Pircher J, Rotter R, Gaitzsch E, Ribeiro A, *et al.* The tyrosine phosphatase SHP-1 regulates hypoxia inducible factor-1 α (HIF-1 α) protein levels in endothelial cells under hypoxia. *PLoS One*. 2015; 10: e0121113. <https://doi.org/10.1371/journal.pone.0121113>.

[26] The datasets generated during the current study are available in the GEO repository. 2021. Available at: <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154959> (Accessed: 26 January 2025).

[27] Lee DH, Kim M, Chang SS, Lee R, Jang AJ, Kim J, *et al.* PPAR γ /ETV2 axis regulates endothelial-to-mesenchymal transition in pulmonary hypertension. *Pulmonary Circulation*. 2024; 14: e12448. <https://doi.org/10.1002/pul2.12448>.

[28] Toyama T, Kudryashova TV, Ichihara A, Lenna S, Looney A, Shen Y, *et al.* GATA6 coordinates cross-talk between BMP10 and oxidative stress axis in pulmonary arterial hypertension. *Scientific Reports*. 2023; 13: 6593. <https://doi.org/10.1038/s41598-023-33779-8>.

[29] Park CS, Kim SH, Yang HY, Kim JH, Schermuly RT, Cho YS, *et al.* Sox17 Deficiency Promotes Pulmonary Arterial Hypertension via HGF/c-Met Signaling. *Circulation Research*. 2022; 131: 792–806. <https://doi.org/10.1161/CIRCRESAHA.122.320845>.

[30] Zhang H, Chen L, Li J, Sun J, Zhao Q, Wang S, *et al.* STAT3 phosphorylation at Tyr705 affects DRP1 (dynamin-related protein 1) controlled-mitochondrial fission during the development of apoptotic-resistance in pulmonary arterial endothelial cells. *Genes & Genomics*. 2024; 46: 751–762. <https://doi.org/10.1007/s13258-024-01522-w>.

[31] Xia H, Duan J, Li M, Chen N, Zhong W, Zhou Y, *et al.* CD137 Signaling Mediates Pulmonary Artery Endothelial Cell Proliferation Under Hypoxia By Regulating Mitochondrial Dynamics. *Journal of Cardiovascular Translational Research*. 2024; 17: 859–869. <https://doi.org/10.1007/s12265-024-10493-y>.

[32] Jiang Y, Huang J, Xia Y, Sun Z, Hu P, Wang D, *et al.* Hypoxia activates GPR146 which participates in pulmonary vascular remodeling by promoting pyroptosis of pulmonary artery endothelial cells. *European Journal of Pharmacology*. 2023; 941: 175502. <https://doi.org/10.1016/j.ejphar.2023.175502>.

[33] Kang K, Xiang J, Zhang X, Xie Y, Zhou M, Zeng L, *et al.* N6-methyladenosine modification of KLF2 may contribute to endothelial-to-mesenchymal transition in pulmonary hypertension. *Cellular & Molecular Biology Letters*. 2024; 29: 69. <https://doi.org/10.1186/s11658-024-00590-w>.

[34] Austin ED, Aldred MA, Alotaibi M, Gräf S, Nichols WC, Trembath RC, *et al.* Genetics and precision genomics approaches to pulmonary hypertension. *The European Respiratory Journal*. 2024; 64: 2401370. <https://doi.org/10.1183/13993003.01370-2024>.

[35] Deliu N, Das R, May A, Newman J, Steele J, Duckworth M, *et al.* StratosPHere 2: study protocol for a response-adaptive randomised placebo-controlled phase II trial to evaluate hydrox-

ychloroquine and phenylbutyrate in pulmonary arterial hypertension caused by mutations in BMPR2. *Trials*. 2024; 25: 680. <https://doi.org/10.1186/s13063-024-08485-z>.

[36] Girerd B, Montani D, Coulet F, Sztrymf B, Yaici A, Jaïs X, *et al.* Clinical outcomes of pulmonary arterial hypertension in patients carrying an ACVRL1 (ALK1) mutation. *American Journal of Respiratory and Critical Care Medicine*. 2010; 181: 851–861. <https://doi.org/10.1164/rccm.200908-1284OC>.

[37] Thenappan T, Ormiston ML, Ryan JJ, Archer SL. Pulmonary arterial hypertension: pathogenesis and clinical management. *BMJ (Clinical Research Ed.)*. 2018; 360: j5492. <https://doi.org/10.1136/bmj.j5492>.

[38] Frank DB, Lowery J, Anderson L, Brink M, Reese J, de Caestecker M. Increased susceptibility to hypoxic pulmonary hypertension in Bmpr2 mutant mice is associated with endothelial dysfunction in the pulmonary vasculature. *American Journal of Physiology. Lung Cellular and Molecular Physiology*. 2008; 294: L98–L109. <https://doi.org/10.1152/ajplung.00034.2007>.

[39] Dave J, Jagana V, Janostiak R, Bisserier M. Unraveling the epigenetic landscape of pulmonary arterial hypertension: implications for personalized medicine development. *Journal of Translational Medicine*. 2023; 21: 477. <https://doi.org/10.1186/s12967-023-04339-5>.

[40] Ulrich A, Wu Y, Draisma H, Wharton J, Swietlik EM, Cebola I, *et al.* Blood DNA methylation profiling identifies cathepsin Z dysregulation in pulmonary arterial hypertension. *Nature Communications*. 2024; 15: 330. <https://doi.org/10.1038/s41467-023-44683-0>.

[41] Chen D, Yang Y, Cheng X, Fang F, Xu G, Yuan Z, *et al.* Megakaryocytic leukemia 1 directs a histone H3 lysine 4 methyltransferase complex to regulate hypoxic pulmonary hypertension. *Hypertension (Dallas, Tex.: 1979)*. 2015; 65: 821–833. <https://doi.org/10.1161/HYPERTENSIONAHA.114.04585>.

[42] Yang MX, Wu ZZ, Wu DW, Liao XY, Wu QX, Shao N, *et al.* miR-124/PTBP1/PKM axis modulates pulmonary artery endothelial metabolism in a pulmonary thromboembolism rat model. *Journal of Thoracic Disease*. 2025; 17: 2217–2226. <https://doi.org/10.21037/jtd-24-1806>.

[43] Haworth SG. Role of the endothelium in pulmonary arterial hypertension. *Vascular Pharmacology*. 2006; 45: 317–325. <https://doi.org/10.1016/j.vph.2006.08.006>.

[44] Ye L, Wang B, Xu H, Zhang X. The Emerging Therapeutic Role of Prostaglandin E2 Signaling in Pulmonary Hypertension. *Metabolites*. 2023; 13: 1152. <https://doi.org/10.3390/metabolites13111152>.

[45] Tuder RM. Pulmonary vascular remodeling in pulmonary hypertension. *Cell and Tissue Research*. 2017; 367: 643–649. <https://doi.org/10.1007/s00441-016-2539-y>.

[46] Dai Z, Li M, Wharton J, Zhu MM, Zhao YY. Prolyl-4 Hydroxylase 2 (PHD2) Deficiency in Endothelial Cells and Hematopoietic Cells Induces Obliterative Vascular Remodeling and Severe Pulmonary Arterial Hypertension in Mice and Humans Through Hypoxia-Inducible Factor-2 α . *Circulation*. 2016; 133: 2447–2458. <https://doi.org/10.1161/CIRCULATIONAHA.116.021494>.

[47] Kapitsinou PP, Rajendran G, Astleford L, Michael M, Schonfeld MP, Fields T, *et al.* The Endothelial Prolyl-4-Hydroxylase Domain 2/Hypoxia-Inducible Factor 2 Axis Regulates Pulmonary Artery Pressure in Mice. *Molecular and Cellular Biology*. 2016; 36: 1584–1594. <https://doi.org/10.1128/MCB.01055-15>.

[48] Hu CJ, Poth JM, Zhang H, Flockton A, Laux A, Kumar S, *et al.* Suppression of HIF2 signalling attenuates the initiation of hypoxia-induced pulmonary hypertension. *The European Respiratory Journal*. 2019; 54: 1900378. <https://doi.org/10.1183/13993003.00378-2019>.

[49] Collados MT, Sandoval J, López S, Massó FA, Páez A, Borbolla JR, *et al.* Characterization of von Willebrand factor in primary pulmonary hypertension. *Heart and Vessels*. 1999; 14: 246–252. <https://doi.org/10.1007/BF01747854>.

[50] Müller AM, Skrzynski C, Skipka G, Müller KM. Expression of von Willebrand factor by human pulmonary endothelial cells *in vivo*. *Respiration; International Review of Thoracic Diseases*. 2002; 69: 526–533. <https://doi.org/10.1159/000066471>.

[51] Huertas A, Tu L, Humbert M, Guignabert C. Chronic inflammation within the vascular wall in pulmonary arterial hypertension: more than a spectator. *Cardiovascular Research*. 2020; 116: 885–893. <https://doi.org/10.1093/cvr/cvz308>.

[52] Perros F, Dorfmüller P, Montani D, Hammad H, Waelput W, Girerd B, *et al.* Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension. *American Journal of Respiratory and Critical Care Medicine*. 2012; 185: 311–321. <https://doi.org/10.1164/rccm.201105-0927OC>.

[53] Dib H, Tamby MC, Bussone G, Regent A, Berezné A, Lafine C, *et al.* Targets of anti-endothelial cell antibodies in pulmonary hypertension and scleroderma. *The European Respiratory Journal*. 2012; 39: 1405–1414. <https://doi.org/10.1183/09031936.00181410>.

[54] Sasaki N, Kurose A, Inoue H, Sawai T. A possible role of anti-endothelial cell antibody in the sera of MCTD patients on pulmonary vascular damage relating to pulmonary hypertension. *Ryumachi*. 2002; 42: 885–894. (In Japanese)

[55] Peng J, Liu B, Ma QL, Luo XJ. Dysfunctional endothelial progenitor cells in cardiovascular diseases: role of NADPH oxidase. *Journal of Cardiovascular Pharmacology*. 2015; 65: 80–87. <https://doi.org/10.1097/FJC.0000000000000166>.

[56] Tabima DM, Frizzell S, Gladwin MT. Reactive oxygen and nitrogen species in pulmonary hypertension. *Free Radical Biology & Medicine*. 2012; 52: 1970–1986. <https://doi.org/10.1016/j.freeradbiomed.2012.02.041>.

[57] Ranchoux B, Meloche J, Paulin R, Boucherat O, Provencher S, Bonnet S. DNA Damage and Pulmonary Hypertension. *International Journal of Molecular Sciences*. 2016; 17: 990. <https://doi.org/10.3390/ijms17060990>.

[58] Lahm T, Frump AL, Albrecht ME, Fisher AJ, Cook TG, Jones TJ, *et al.* 17 β -Estradiol mediates superior adaptation of right ventricular function to acute strenuous exercise in female rats with severe pulmonary hypertension. *American Journal of Physiology. Lung Cellular and Molecular Physiology*. 2016; 311: L375–L388. <https://doi.org/10.1152/ajplung.00132.2016>.

[59] Teng RJ, Du J, Welak S, Guan T, Eis A, Shi Y, *et al.* Cross talk between NADPH oxidase and autophagy in pulmonary artery endothelial cells with intrauterine persistent pulmonary hypertension. *American Journal of Physiology. Lung Cellular and Molecular Physiology*. 2012; 302: L651–L663. <https://doi.org/10.1152/ajplung.00177.2011>.

[60] Dalvi P, Sharma H, Chinnappan M, Sanderson M, Allen J, Zeng R, *et al.* Enhanced autophagy in pulmonary endothelial cells on exposure to HIV-Tat and morphine: Role in HIV-related pulmonary arterial hypertension. *Autophagy*. 2016; 12: 2420–2438. <https://doi.org/10.1080/15548627.2016.1238551>.

[61] Singh N, Manhas A, Kaur G, Jagavelu K, Hanif K. Inhibition of fatty acid synthase is protective in pulmonary hypertension. *British Journal of Pharmacology*. 2016; 173: 2030–2045. <https://doi.org/10.1111/bph.13495>.

[62] Yao M, Zhong K, Zheng X, Yang Z, Li C, Gu Y, *et al.* Identification of LDHA as a Potential Therapeutic Target for Pulmonary Hypertension Through Modulation of Endothelial-To-Mesenchymal Transition. *Journal of Cellular and Molecular Medicine*. 2025; 29: e70692. <https://doi.org/10.1111/jcmm.70692>.

[63] Zou X, Yuan M, Zhou W, Cai A, Cheng Y, Zhan Z, *et al.* SOX17 Prevents Endothelial-Mesenchymal Transition of Pul-

monary Arterial Endothelial Cells in Pulmonary Hypertension through Mediating TGF- β /Smad2/3 Signaling. *American Journal of Respiratory Cell and Molecular Biology*. 2025; 72: 364–379. <https://doi.org/10.1165/rcmb.2023-0355OC>.

[64] Shinohara T, Moonen JR, Chun YH, Lee-Yow YC, Okamura K, Szafron JM, *et al.* High Shear Stress Reduces ERG Causing Endothelial-Mesenchymal Transition and Pulmonary Arterial Hypertension. *Arteriosclerosis, Thrombosis, and Vascular Biology*. 2025; 45: 218–237. <https://doi.org/10.1161/ATVBAH.124.321092>.

[65] Shen YH, Ding D, Lian TY, Qiu BC, Yan Y, Wang PW, *et al.* Panorama of artery endothelial cell dysfunction in pulmonary arterial hypertension. *Journal of Molecular and Cellular Cardiology*. 2024; 197: 61–77. <https://doi.org/10.1016/j.yjmcc.2024.10.004>.

[66] Gaikwad AV, Eapen MS, Dey S, Bhattacharai P, Shahzad AM, Chia C, *et al.* TGF- β 1, pSmad-2/3, Smad-7, and β -Catenin Are Augmented in the Pulmonary Arteries from Patients with Idiopathic Pulmonary Fibrosis (IPF): Role in Driving Endothelial-to-Mesenchymal Transition (EndMT). *Journal of Clinical Medicine*. 2024; 13: 1160. <https://doi.org/10.3390/jcm13041160>.

[67] López-Ruiz P, Rodriguez-Ubreva J, Cariaga AE, Cortes MA, Colás B. SHP-1 in cell-cycle regulation. *Anti-cancer Agents in Medicinal Chemistry*. 2011; 11: 89–98. <https://doi.org/10.2174/187152011794941154>.

[68] Nadeau A, Ouellet M, Béland R, Mercier C, Robillard S, Lizotte F, *et al.* Endothelial SHP-1 regulates diabetes-induced abnormal collateral vessel formation and endothelial cell senescence. *Journal of Molecular and Cellular Cardiology*. 2025; 202: 50–63. <https://doi.org/10.1016/j.yjmcc.2025.03.005>.

[69] He Q, Xu S, Ma X, Qian Y, Lu X, Feng W, *et al.* SHP-1 mediates cigarette smoke extract-induced epithelial-mesenchymal transformation and inflammation in 16HBE cells. *Open Medicine (Warsaw, Poland)*. 2024; 19: 20240991. <https://doi.org/10.1515/med-2024-0991>.

[70] Mercier C, Rousseau M, Geraldes P. Growth Factor Deregulation and Emerging Role of Phosphatases in Diabetic Peripheral Artery Disease. *Frontiers in Cardiovascular Medicine*. 2021; 7: 619612. <https://doi.org/10.3389/fcvm.2020.619612>.

[71] Sim KH, Lee E, Shrestha P, Choi BH, Hong J, Lee YJ. Isobavachin attenuates Fc ϵ RI-mediated inflammatory allergic responses by regulating SHP-1-dependent Fyn/Lyn/Syk/Lck signaling. *Biochemical Pharmacology*. 2025; 232: 116698. <https://doi.org/10.1016/j.bcp.2024.116698>.

[72] Frank C, Burkhardt C, Imhof D, Ringel J, Zschörnig O, Wieligmann K, *et al.* Effective dephosphorylation of Src substrates by SHP-1. *The Journal of Biological Chemistry*. 2004; 279: 11375–11383. <https://doi.org/10.1074/jbc.M309096200>.

[73] Chintala H, Krupska I, Yan L, Lau L, Grant M, Chaqueiro B. The matricellular protein CCN1 controls retinal angiogenesis by targeting VEGF, Src homology 2 domain phosphatase-1 and Notch signaling. *Development (Cambridge, England)*. 2015; 142: 2364–2374. <https://doi.org/10.1242/dev.121913>.

[74] Lulli M, Cammalleri M, Fornaciari I, Casini G, Dal Monte M. Acetyl-11-keto- β -boswellic acid reduces retinal angiogenesis in a mouse model of oxygen-induced retinopathy. *Experimental Eye Research*. 2015; 135: 67–80. <https://doi.org/10.1016/j.exer.2015.04.011>.

[75] Quan M, Guo Q, Yan X, Yu C, Yang L, Zhang Y, *et al.* Parkin deficiency aggravates inflammation-induced acute lung injury by promoting necroptosis in alveolar type II cells. *Chinese Medical Journal Pulmonary and Critical Care Medicine*. 2024; 2: 265–278. <https://doi.org/10.1016/j.pccm.2024.11.004>.

[76] Pelosi P, D'Onofrio D, Chiumello D, Paolo S, Chiara G, Capelozzi VL, *et al.* Pulmonary and extrapulmonary acute respiratory distress syndrome are different. *The European Respiratory Journal. Supplement*. 2003; 42: 48s–56s. <https://doi.org/10.1183/09031936.03.00420803>.

[77] Su Y, Lucas R, Fulton DJR, Verin AD. Mechanisms of pulmonary endothelial barrier dysfunction in acute lung injury and acute respiratory distress syndrome. *Chinese Medical Journal Pulmonary and Critical Care Medicine*. 2024; 2: 80–87. <https://doi.org/10.1016/j.pccm.2024.04.002>.

[78] Li L, Cook C, Liu Y, Li J, Jiang J, Li S. Endothelial glycocalyx in hepatopulmonary syndrome: An indispensable player mediating vascular changes. *Frontiers in Immunology*. 2022; 13: 1039618. <https://doi.org/10.3389/fimmu.2022.1039618>.

[79] Yang GL, Zhao Z, Qin TT, Wang D, Chen L, Xiang R, *et al.* TN-FSF15 inhibits VEGF-stimulated vascular hyperpermeability by inducing VEGFR2 dephosphorylation. *FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology*. 2017; 31: 2001–2012. <https://doi.org/10.1096/fj.201600800R>.

[80] Chu LY, Ramakrishnan DP, Silverstein RL. Thrombospondin-1 modulates VEGF signaling via CD36 by recruiting SHP-1 to VEGFR2 complex in microvascular endothelial cells. *Blood*. 2013; 122: 1822–1832. <https://doi.org/10.1182/blood-2013-01-482315>.

[81] Chang YF, Hsu YF, Chiu PT, Huang WJ, Huang SW, Ou G, *et al.* WMJ-S-001, a novel aliphatic hydroxamate derivative, exhibits anti-angiogenic activities via Src-homology-2-domain-containing protein tyrosine phosphatase 1. *Oncotarget*. 2015; 6: 85–100. <https://doi.org/10.18632/oncotarget.2765>.

[82] Croteau L, Mercier C, Fafard-Couture É, Nadeau A, Robillard S, Breton V, *et al.* Endothelial deletion of PKC δ prevents VEGF inhibition and restores blood flow reperfusion in diabetic ischemic limb. *Diabetes & Vascular Disease Research*. 2021; 18: 1479164121999033. <https://doi.org/10.1177/1479164121999033>.

[83] Paquin-Viellette J, Lizotte F, Robillard S, Béland R, Breton MA, Guay A, *et al.* Deletion of AT2 Receptor Prevents SHP-1-Induced VEGF Inhibition and Improves Blood Flow Reperfusion in Diabetic Ischemic Hindlimb. *Arteriosclerosis, Thrombosis, and Vascular Biology*. 2017; 37: 2291–2300. <https://doi.org/10.1161/ATVBAHA.117.309977>.

[84] Liu SH, Sheu WHH, Lee MR, Lee WJ, Yi YC, Yang TJ, *et al.* Advanced glycation end product N ϵ -carboxymethyllysine induces endothelial cell injury: the involvement of SHP-1-regulated VEGFR-2 dephosphorylation. *The Journal of Pathology*. 2013; 230: 215–227. <https://doi.org/10.1002/path.4045>.

[85] Sugano M, Tsuchida K, Maeda T, Makino N. SiRNA targeting SHP-1 accelerates angiogenesis in a rat model of hindlimb ischemia. *Atherosclerosis*. 2007; 191: 33–39. <https://doi.org/10.1016/j.atherosclerosis.2006.04.021>.

[86] Jiao H, Berrada K, Yang W, Tabrizi M, Platanias LC, Yi T. Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1. *Molecular and Cellular Biology*. 1996; 16: 6985–6992. <https://doi.org/10.1128/MCB.16.12.6985>.

[87] Lim S, Lee KW, Kim JY, Kim KD. Consideration of SHP-1 as a Molecular Target for Tumor Therapy. *International Journal of Molecular Sciences*. 2023; 25: 331. <https://doi.org/10.3390/ijms25010331>.

[88] Amiri F, Venema VJ, Wang X, Ju H, Venema RC, Marrero MB. Hyperglycemia enhances angiotensin II-induced janus-activated kinase/STAT signaling in vascular smooth muscle cells. *The Journal of Biological Chemistry*. 1999; 274: 32382–32386. <https://doi.org/10.1074/jbc.274.45.32382>.

[89] Beldi-Ferchiou A, Skouri N, Ben Ali C, Safra I, Abdelkefi A, Ladeb S, *et al.* Abnormal repression of SHP-1, SHP-2 and SOCS-1 transcription sustains the activation of the JAK/STAT3

pathway and the progression of the disease in multiple myeloma. *PLoS One*. 2017; 12: e0174835. <https://doi.org/10.1371/journal.pone.0174835>.

[90] Chim CS, Fung TK, Cheung WC, Liang R, Kwong YL. SOCS1 and SHP1 hypermethylation in multiple myeloma: implications for epigenetic activation of the Jak/STAT pathway. *Blood*. 2004; 103: 4630–4635. <https://doi.org/10.1182/blood-2003-06-2007>.

[91] Bian Y, Yuan L, Yang X, Weng L, Zhang Y, Bai H, et al. SMURF1-mediated ubiquitylation of SHP-1 promotes cell proliferation and invasion of endometrial stromal cells in endometriosis. *Annals of Translational Medicine*. 2021; 9: 362. <https://doi.org/10.21037/atm-20-2897>.

[92] Duan B, Li Y, Geng H, Ma A, Yang X. Naringenin prevents pregnancy-induced hypertension via suppression of JAK/STAT3 signalling pathway in mice. *International Journal of Clinical Practice*. 2021; 75: e14509. <https://doi.org/10.1111/ijcp.14509>.

[93] Yun JH, Han MH, Jeong HS, Lee DH, Cho CH. Angiopoietin 1 attenuates interleukin-6-induced endothelial cell permeability through SHP-1. *Biochemical and Biophysical Research Communications*. 2019; 518: 286–293. <https://doi.org/10.1016/j.bbrc.2019.08.048>.

[94] Kumar S, Nanduri R, Bhagyaraj E, Kalra R, Ahuja N, Chacko AP, et al. Vitamin D3-VDR-PTPN6 axis mediated autophagy contributes to the inhibition of macrophage foam cell formation. *Autophagy*. 2021; 17: 2273–2289. <https://doi.org/10.1080/15548627.2020.1822088>.

[95] Saraswati S, Alhaider A, Abdelgadir AM, Tanwer P, Korashy HM. Phloretin attenuates STAT-3 activity and overcomes sorafenib resistance targeting SHP-1-mediated inhibition of STAT3 and Akt/VEGFR2 pathway in hepatocellular carcinoma. *Cell Communication and Signaling: CCS*. 2019; 17: 127. <https://doi.org/10.1186/s12964-019-0430-7>.

[96] Keilhack H, Tenev T, Nyakatura E, Godovac-Zimmermann J, Nielsen L, Seedorf K, et al. Phosphotyrosine 1173 mediates binding of the protein-tyrosine phosphatase SHP-1 to the epidermal growth factor receptor and attenuation of receptor signaling. *The Journal of Biological Chemistry*. 1998; 273: 24839–24846. <https://doi.org/10.1074/jbc.273.38.24839>.

[97] Zhuang X, Ma J, Xu S, Sun Z, Zhang R, Zhang M, et al. SHP-1 suppresses endotoxin-induced uveitis by inhibiting the TAK1/JNK pathway. *Journal of Cellular and Molecular Medicine*. 2021; 25: 147–160. <https://doi.org/10.1111/jcmm.15888>.

[98] Geng Q, Xian R, Yu Y, Chen F, Li R. SHP-1 acts as a tumor suppressor by interacting with EGFR and predicts the prognosis of human breast cancer. *Cancer Biology & Medicine*. 2021; 19: 468–485. <https://doi.org/10.20892/j.issn.2095-3941.2020.0501>.

[99] Le Gal L, Pellegrin M, Santoro T, Mazzolai L, Kurtz A, Meda P, et al. Connexin37-Dependent Mechanisms Selectively Contribute to Modulate Angiotensin II -Mediated Hypertension. *Journal of the American Heart Association*. 2019; 8: e010823. <https://doi.org/10.1161/JAHA.118.010823>.

[100] Semenza GL. Hypoxia-inducible factors in physiology and medicine. *Cell*. 2012; 148: 399–408. <https://doi.org/10.1016/j.cell.2012.01.021>.

[101] Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. *Journal of Applied Physiology (Bethesda, Md.: 1985)*. 2000; 88: 1474–1480. <https://doi.org/10.1152/jappl.2000.88.4.1474>.

[102] Brahimi-Horn MC, Pouysségur J. HIF at a glance. *Journal of Cell Science*. 2009; 122: 1055–1057. <https://doi.org/10.1242/jcs.035022>.

[103] Semenza G. Signal transduction to hypoxia-inducible factor 1. *Biochemical Pharmacology*. 2002; 64: 993–998. [https://doi.org/10.1016/s0006-2952\(02\)01168-1](https://doi.org/10.1016/s0006-2952(02)01168-1).

[104] Tang N, Wang L, Esko J, Giordano FJ, Huang Y, Gerber HP, et al. Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. *Cancer Cell*. 2004; 6: 485–495. <https://doi.org/10.1016/j.ccr.2004.09.026>.

[105] Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, et al. Autocrine VEGF signaling is required for vascular homeostasis. *Cell*. 2007; 130: 691–703. <https://doi.org/10.1016/j.cell.2007.06.054>.

[106] Klimova T, Chandel NS. Mitochondrial complex III regulates hypoxic activation of HIF. *Cell Death and Differentiation*. 2008; 15: 660–666. <https://doi.org/10.1038/sj.cdd.4402307>.

[107] Li J, Xie R, Jiang F, Li Y, Zhu Y, Liu Z, et al. Tumor necrosis factor ligand-related molecule 1A maintains blood-retinal barrier via modulating SHP-1-Src-VE-cadherin signaling in diabetic retinopathy. *FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology*. 2021; 35: e22008. <https://doi.org/10.1096/fj.202100807RR>.

[108] Koch E, Pircher J, Czermak T, Gaitzsch E, Alig S, Mannell H, et al. The endothelial tyrosine phosphatase SHP-1 plays an important role for vascular haemostasis in TNF- α -induced inflammation *in vivo*. *Mediators of Inflammation*. 2013; 2013: 279781. <https://doi.org/10.1155/2013/279781>.

[109] Cho SW, Hartle L, Son SM, Yang F, Goldberg M, Xu Q, et al. Delivery of small interfering RNA for inhibition of endothelial cell apoptosis by hypoxia and serum deprivation. *Biochemical and Biophysical Research Communications*. 2008; 376: 158–163. <https://doi.org/10.1016/j.bbrc.2008.08.123>.

[110] Bhattacharya R, Kwon J, Wang E, Mukherjee P, Mukhopadhyay D. Src homology 2 (SH2) domain containing protein tyrosine phosphatase-1 (SHP-1) dephosphorylates VEGF Receptor-2 and attenuates endothelial DNA synthesis, but not migration*. *Journal of Molecular Signaling*. 2008; 3: 8. <https://doi.org/10.1186/1750-2187-3-8>.

[111] Chen JL, Chu PY, Huang CT, Huang TT, Wang WL, Lee YH, et al. Interfering B cell receptor signaling via SHP-1/p-Lyn axis shows therapeutic potential in diffuse large B-cell lymphoma. *Molecular Medicine (Cambridge, Mass.)*. 2022; 28: 93. <https://doi.org/10.1186/s10020-022-00518-0>.

[112] Liu X, He Q, Sun S, Lu X, Chen Y, Lu S, et al. Research progress of SHP-1 agonists as a strategy for tumor therapy. *Molecular Diversity*. 2024. <https://doi.org/10.1007/s11030-024-11059-5>. (online ahead of print)

[113] Wang C, Nistala R, Cao M, Li DP, Pan Y, Golzy M, et al. Repair of Limb Ischemia Is Dependent on Hematopoietic Stem Cell Specific-SHP-1 Regulation of TGF- β 1. *Arteriosclerosis, Thrombosis, and Vascular Biology*. 2023; 43: 92–108. <https://doi.org/10.1161/ATVBAHA.122.318205>.

[114] Gu Q, Tung KS, Lorenz UM. Treg-specific deletion of the phosphatase SHP-1 impairs control of inflammation *in vivo*. *Frontiers in Immunology*. 2023; 14: 1139326. <https://doi.org/10.3389/fimmu.2023.1139326>.