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Abstract

The wingless-int1/3-catenin (Wnt/3-catenin) signaling pathway plays a key role in left ventricular hypertrophy (LVH) and arrhythmias,
which significantly contribute to global morbidity and mortality. Activation of Wnt/3-catenin signaling induces oxidative stress in
cardiomyocytes by regulating mitochondrial function, reactive oxygen species (ROS) production, fibrosis, metabolic reprogramming,
and cell death in LVH and arrhythmias. Additionally, Wnt/3-catenin signaling promotes cardiomyocyte hypertrophy and cardiac fibrosis
by interacting with transforming growth factor beta (TGF-/), mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-xB),
extracellular signal-related kinase (ERK), and other signaling pathways. In addition, activation of Wnt/-catenin signaling can induce
cardiomyocyte apoptosis by interfering with normal glucose or lipid metabolism. However, this opposing effect is evident in epicardial
preadipocytes, where pathway activation may instead alleviate adipogenesis. This reflects the complexity of Wnt/[3-catenin signaling
in the metabolic reprogramming of cardiac cells. In this review, we discuss potential therapeutic strategies targeting the Wnt/3-catenin
signaling pathway to mitigate LVH and arrhythmias.
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1. Introduction

According to the World Health Organization, heart
disease is one of the leading causes of global mortality
and morbidity, accounting for approximately 17.9 million
deaths annually. Heart diseases such as left ventricular hy-
pertrophy (LVH) and arrhythmia are particularly common,
which poses a significant health burden [1]. These dis-
eases not only lead to acute illnesses such as heart attacks
and strokes but also contribute to long-term complications
such as heart failure (HF), placing a heavy burden on global
healthcare systems. LVH is a pathological state of car-
diac structural remodeling, characterized by hypertrophy
and hyperplasia of the left ventricular (LV) myocardium. It
typically occurs due to prolonged pressure or volume over-
load (such as hypertension, valve disease, or heart failure)
as a compensatory response, leading to LV wall thicken-
ing, narrowing or dilation of the cavity, and eventual loss
of compliance [2,3]. This pathologic change not only indi-
cates target organ damage in patients with hypertension but

is also an important risk factor for congestive heart failure
(CHF), arrhythmia, and stroke [4,5]. Arrhythmia, charac-
terized by an irregular heart rhythm due to abnormal elec-
trical activity, usually manifests as tachycardia, bradycar-
dia, or atrial fibrillation (AF), all of which increase the risk
of stroke and CHF [6,7]. An increasing number of stud-
ies indicate that the wingless-intl (Wnt)/3-catenin signal-
ing pathway plays a key role in their development and pro-
gression.

The canonical Wnt/3-catenin pathway comprises four
essential elements: @ Wnt proteins (ligands), @ Recep-
tor complex, Frizzled (primary receptor), LRP5/6 (co-
receptors), @ Dishevelled (Dvl) (scaffold protein for sig-
nal transduction), @ S-catenin (nuclear transcriptional ef-
fector). In the absence of Wnt ligands, [-catenin is phos-
phorylated and degraded by the “destruction complex”
(Axin/APC/CK1a/GSK-33). Upon Wnt activation, the lig-
and binds to the Frizzled-LRP5/6 receptor complex, leading
to the recruitment of Dvl protein and the disassembly of the
[-catenin destruction complex. This results in the stabiliza-
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tion and nuclear accumulation of 5-catenin. Subsequently,
[-catenin forms a transcriptional complex with TCF/LEF
factors to activate target genes [8] (Fig. 1). The Wnt/3-
catenin pathway critically regulates embryonic develop-
ment through cell proliferation, differentiation and migra-
tion [9,10]. Its dysregulation contributes to various diseases
including cancer, stroke, myocardial infarction (MI), LVH
and arrhythmias by modulating multiple cellular processes
[11-14]. Aberrant activation exacerbates oxidative stress,
inflammation and cell death [15,16].

Significant crosstalk exists between Wnt/3-catenin
signaling and other key cellular signaling pathways, such as
Notch, transforming growth factor beta (TGF-/), mitogen-
activated protein kinase (MAPK), nuclear factor-kappa B
(NF-xB), extracellular signal-regulated kinase (ERK), and
phosphoinositide 3-kinase/Akt (PI3K/Akt), further compli-
cating its role in regulating LVH and arrhythmia. Therefore,
an in-depth study of the specific mechanisms of the Wnt/3-
catenin signaling pathway in LVH and arrhythmia can help
reveal its key role in disease development and provide a
theoretical basis for the development of multi-target thera-
peutic strategies, which may open up new avenues for the
precision treatment of related cardiovascular diseases.

2. Wnt/[-catenin Signaling Pathway in the
Regulation of LVH

LVH is an adaptive structural change caused by pro-
longed pressure overload, characterized by ventricular wall
thickening and changes in the ventricular cavity size [17,
18]. As the condition progresses, LVH can lead to impaired
cardiac function and HF [19]. The Wnt/-catenin signal-
ing pathway plays a critical regulatory role in the onset and
progression of LVH, significantly accelerating the process
through its involvement in pathological myocardial hyper-
trophy, fibrosis, and metabolic reprogramming [20].

2.1 Activation of the Wnt/(B-catenin Signaling Pathway
Promotes Cardiomyocyte Hypertrophy and Apoptosis

Moderate activation of the Wnt/3-catenin signaling
pathway plays a crucial physiological protective role in
cardiac repair and regeneration. In hemodialysis pa-
tients, lower serum levels of sclerostin and Dickkopf-
related protein-1 (Dkk-1) are negatively correlated with
LVH severity, with Dkk-1 independently predicting left
ventricular mass (LVM) and LVM index (LVMI) [21].
This suggests that reduced inhibition of the Wnt/3-catenin
pathway may drive cardiac remodeling, highlighting scle-
rostin and Dkk-1 as potential therapeutic targets. In hu-
man acute infarction tissues and rat hypertension heart tis-
sues, activation of the Wnt/3-catenin signaling pathway
triggers MAPK signaling, including extracellular signal-
regulated kinase 1 and 2 (ERK1/2), c-Jun N-terminal ki-
nase (JNK), and p38, leading to the upregulation of hy-
pertrophic markers such as atrial natriuretic peptide (ANP),
brain natriuretic peptide (BNP), nuclear factor of activated

T cells 3 (NFATc3), and phosphorylated GATA-binding
protein 4 (GATA4), thereby promoting cardiomyocyte hy-
pertrophy and pathological remodeling, which may ulti-
mately result in LVH [22]. In non-ischemic transmural
samples from failing human left ventricles, increased ex-
pression of the Wnt signaling antagonists secreted frizzled-
related protein (sFRP) 3 and 4 (sFRP3 and sFRP4) sup-
presses the Wnt/3-catenin pathway, accompanied by an el-
evated Fas/FasExo6Del ratio and downregulation of bcl-
xL expression, promoting a proapoptotic cardiomyocyte
phenotype. These changes may drive cardiac remodeling
and compensatory hypertrophy, ultimately contributing to
the development and progression of LVH [23]. In An-
giotensin II (Ang IT)-induced ventricular hypertrophy mod-
els in mice and rats, downregulation of protein arginine
methyltransferase 7 (PRMT?7) activates the Wnt/3-catenin
pathway, leading to upregulation of hypertrophic markers
such as atrial natriuretic peptide (4NP), brain natriuretic
peptide (BNP), and collagen type [ alpha 1 chain (COLIAI),
thereby promoting cardiomyocyte hypertrophy and colla-
gen deposition [24]. Such activation contributes to adap-
tive changes in LVH and cardiac function, highlighting the
protective role of this pathway under stress conditions.

However, excessive activation of this pathway can
trigger pathological myocardial hypertrophy, cardiac re-
modeling, and HF development. In Ang II-induced neona-
tal rat cardiomyocytes and C57BL/6J mouse models, in-
creased expression of methyltransferase-like 3 (METTL3)
enhances m6A methylation, promoting pri-miR-221/222
expression, and activates the Wnt//3-catenin signaling path-
way by inhibiting Dickkopf2 (DKK?2), thereby promoting
myocardial hypertrophy [25]. In the mouse LVH model
induced by transverse aortic constriction (TAC), Wnt/3-
catenin signaling is activated, upregulating nuclear factor-
kappa B (NF-kB), S-myosin heavy chain (3-MHC), TNF-
a, fibronectin (FN), and collagen type I (Col I), leading to
cardiomyocyte hypertrophy and fibrosis. As the disease
progresses, it further upregulates angiotensin-converting
enzyme (ACE), renin, and Ang II type 1 receptor (AT1), ac-
tivates the renin—angiotensin—aldosterone system (RAAS),
induces myocardial cell apoptosis, and exacerbates LVH
[26].

Integrin beta-like 1 (ITGBL1) is an extracellular ma-
trix protein associated with (-integrins that can activate
the Wnt/S-catenin signaling pathway [27,28]. In TAC-
induced mice, elevated ITGBLI1 activates Wnt/3-catenin
signaling, mediating fibroblast—cardiomyocyte crosstalk.
In cardiomyocytes, this pathway upregulates S-MHC and
FN, promoting hypertrophy, while in fibroblasts, it en-
hances TGF-{ expression and interacts with the TGF-
B/Smad2/3 pathway, accelerating collagen deposition and
fibrosis [29]. In the isoproterenol (ISO)-induced mouse
model of myocardial hypertrophy, the activation of the
Wnt/[-catenin signaling pathway promotes hypertrophy by
upregulating cell cycle related protein (Cyclin D1) and c-
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Fig. 1. Wnt/(-catenin signaling pathway. (Left) In the absence of Wnt ligands, S-catenin binds to AXIN and APC and is phosphorylated

by GSK-38 and CKla. Once the complex is formed, phosphorylated [-catenin binds to the Proteasome and is degraded, and gene

transcription cannot be interrupted in the nucleus. (Right) In the present of Wnt ligands. Upon binding of Wnt ligands to LRP5/6 and

Frizzled ligands, LRP5/6 phosphorylates and recruits Dvl proteins to the plasma membrane. Subsequently, Dvl recruits the destruction

complex simultaneously to the cell membrane, and S-catenin dissociates in the cytoplasm and enters the nucleus, where it binds to the

TCF/LEF complex and initiates gene transcription. Dvl, dishevelled; APC, adenomatous polyposis coli protein; CK1a, casein kinase

lay; GSK-373, glycogen synthase kinase 33; TCF, T cell factor; LEF, lymphocyte enhancer factor-1.

Mpyc. Concurrently, sodium/calcium exchanger-1 (NCX1)
overexpression triggers Ca?t overload, activating calcium—
calmodulin-dependent protein kinase II (CaMKII) and cal-
cineurin (CaN), which induces apoptosis and activates
MAPK signaling via the nuclear factor of activated T-cells
(NFAT)/ETS transcription factor 2 (ETS2) complex, ex-
acerbating hypertrophy and remodeling [30,31]. Collec-
tively, these findings highlight the dual role of Wnt/j3-
catenin signaling in cardiac physiology and pathology. The
differences in experimental models and activation levels are
likely the key factors underlying the inconsistent findings
regarding the role of this pathway in cardiac function ob-
served in previous studies.
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2.2 Activation of the Wnt/[3-catenin Signaling Pathway
Promotes Fibroblast Fibrosis

Myocardial fibrosis (MF) is one of the main histo-
logical features of LVH and often leads to severe cardiac
insufficiency [32,33]. The Wnt/3-catenin signaling path-
way participates in regulating the pathological process of
LVH through crosstalk with other signaling pathways such
as NF-xB, TGF-3, and ERK, playing a crucial role, partic-
ularly in fibroblast-mediated fibrosis.

The synergistic interaction between Wnt/[3-catenin
and TGF-f signaling significantly exacerbates MF. In pa-
tients with chronic kidney disease (CKD), elevated levels
of TGF-S1 suppress the cardiac expression of endogenous
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Klotho, leading to activation of the Wnt/3-catenin signal-
ing pathway. This, in turn, upregulates the expression of
profibrotic markers such as fibronectin, type I collagen,
PAI-1, and MMP-2/9, thereby promoting cardiac fibroblast-
mediated fibrosis [34]. In TGF-S-stimulated human cardiac
fibroblasts, activation of the Wnt/3-catenin signaling path-
way is enhanced synergistically by exogenous WNT3a and
the GSK-34 inhibitor CHIR99021, leading to increased in-
terleukin (IL)-11 production and secretion. Concurrently,
TGF-$ promotes phosphorylation of TGF-3-activated ki-
nase 1 (TAK1), which further stimulates IL-11 expression
and upregulates fibrosis-related genes such as COLIAI and
FNI, thereby accelerating fibroblast activation, cardiac fi-
brosis, and contributing to the progression of LVH [35].
In an acute myocardial infarction (AMI) rat model, Wnt2
and Wnt4 activate [-catenin by interacting with Fzd2/4
and LRP6, further activating the NF-xB signaling pathway,
which upregulates fibrosis-related genes such as COLIA1
and FNI, ultimately worsening cardiac fibrosis and car-
diac dysfunction [36]. sFRPs, by antagonizing the Wnt/3-
catenin pathway, inhibit fibroblast activation and collagen
synthesis, thus slowing the progression of cardiac fibrosis
[37]. In sFRP1 knockout mice, the excessive activation of
the Wnt/SB-catenin pathway promotes fibroblast prolifera-
tion, alpha-smooth muscle actin (a-SMA) expression, and
collagen synthesis, ultimately leading to MF and LVH [38].
Inatype 1 diabetes mellitus rat model induced by streptozo-
tocin, NF-xB cooperates with the Wnt/3-catenin/GSK-3/3
pathway to activate the expression of pro-inflammatory cy-
tokines tumor necrosis factor (TNF)-a and IL-2, thereby
inducing myocardial hypertrophy and interstitial fibrosis
[39]. In an ISO-induced MF rat model, activation of the
Wnt/B-catenin pathway upregulates 5-catenin, c-Myc, and
Cyclin D1 expression, enhancing fibroblast proliferation
and differentiation, thereby exacerbating MF and cardiac
dysfunction [40]. In a high-fat diet-induced hyperlipi-
demia mouse model, obesity-induced hypertrophy activates
the TGF-3/Wnt/3-catenin pathway, promoting a-SMA and
TGF-f expression and inducing MF. Additionally, the acti-
vation of mast cells induced by obesity leads to elevated ex-
pression of serine proteases, such as tryptase and chymase,
which are closely associated with cardiac fibrosis primarily
by indirectly activating the TGF-/3 and Wnt/[-catenin sig-
naling pathways, thereby promoting cardiac collagen depo-
sition and myocardial fibrosis, resulting in cardiac dysfunc-
tion [41].

2.3 Activation of the Wnt/B-catenin Signaling Pathway
Promotes Metabolic Reprogramming

The activation of the Wnt/3-catenin signaling path-
way contributes to the development of LVH by modu-
lating mitochondrial dynamics, lipid metabolism, glucose
metabolism, and other aspects of metabolic reprogram-
ming.

In spontaneously hypertensive rats, Wnt/3-catenin ac-
tivation enhances sterol regulatory element-binding pro-
tein 1 (SREBP1), upregulates fatty acid (FA) synthe-
sis genes (e.g., stearoyl-CoA desaturase 1 (SCD1) and
acetyl-CoA carboxylase (ACC)), reduces FA transport
proteins (CD36, FATP1), suppresses AMP-activated pro-
tein kinase (AMPK) and carnitine palmitoyltransferase 1
(CPT1), thereby promoting FA accumulation and impair-
ing [-oxidation, contributing to left ventricular hypertro-
phy LVH [42]. In a 3-catenin haploinsufficient (WT/CKO)
mouse model, suppression of the Wnt/S-catenin signal-
ing pathway reduces adipose triglyceride lipase (ATGL)
and hormone-sensitive lipase (HSL) activity, leading to
triglyceride (TAG) accumulation and limited fatty acid /-
oxidation. Meanwhile, upregulation of glucose transporter
4 (GLUT4) and downregulation of pyruvate dehydroge-
nase kinase 1 (PDK1) enhance glucose utilization, ele-
vate the NADH/NAD" ratio, and impair oxidative phos-
phorylation (OXPHOS) complex I, disrupting mitochon-
drial metabolism [43]. These de novo metabolic distur-
bances occur in the absence of spontaneous LVH, but di-
rectly blunt physiological cardiomyocyte growth and limit
training-induced adaptive cardiac hypertrophy. This find-
ing suggests that while Wnt/S8-catenin activation is known
to promote pathological cardiac remodeling, its suppression
may conversely constrain the heart’s adaptive growth ca-
pacity under physiological conditions and potentially re-
strain pathological remodeling under stress, thus affect-
ing LVH development. In the volume overload-induced
HF model, elevated TNF-o« and IL-6 activate Wnt/3-
catenin signaling, downregulating proliferator-activated re-
ceptor alpha (PPAR«) and PPAR-gamma coactivator 1 al-
pha (PGC-1q), reducing CPT1B and ACADM expression,
impairing FA oxidation. Simultaneously, upregulation of
c-Myc enhances the activity of glycolytic enzymes hex-
okinase 2 (HK2) and 6-phosphofructo-2-kinase/fructose-
2,6-bisphosphatase 3, disturbing the glucose and lipid
metabolism. Furthermore, Wnt//3-catenin signaling acti-
vates the mammalian target of rapamycin (mTOR) path-
way, inhibits mitophagy, promotes reactive oxygen species
(ROS) production, and aggravates metabolic dysfunc-
tion and cardiomyocyte apoptosis, ultimately leading to
energy imbalance and worsening cardiac function [44—
46]. In hypoxia/reoxygenation rats, upregulated miR-423-
5p inhibits Myb-related protein B (MYBL2), activates
Wnt/3-catenin signaling, enhances caspase 3/7 activity and
Bax/cleaved caspase-3 (c-casp-3) expression, while pro-
moting Drpl-mediated mitochondrial fission, causing mi-
tochondrial membrane potential (MMP) loss, ROS over-
production, ATP suppression, and cardiomyocyte apopto-
sis [47]. Therefore, Drpl acetylation may be an early key
eventin LVH. In TAC-induced heart—kidney syndrome type
2 mice, Wnt/3-catenin activation inhibits antioxidant en-
zymes superoxide dismutase (SOD) and catalase, and acti-
vates NADPH oxidase (NOX), causing ROS accumulation,
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cytochrome C release, and apoptosis. ROS suppress Bcl-
2/Bcl-xL and activate Bax/Bad, aggravating mitochondrial
permeability transition and promoting cardiomyocyte apop-
tosis [26].

The evidence suggests that activation of the Wnt/3-
catenin signaling pathway contributes to ventricular hy-
pertrophy by upregulating hypertrophy-related genes and
exacerbating pathological myocardial hypertrophy through
crosstalk with the MAPK and NF-xB pathways. This path-
way also promotes fibrosis through interaction with TGF-3
signaling, with GSK-3/3 acting as a key regulator (Fig. 2).
Moreover, it drives metabolic reprogramming, regulating
lipid and glucose metabolism as well as mitochondrial func-
tion, all of which contribute to cardiac hypertrophy and
functional impairment (Fig. 3).

3. Wnt/[3-catenin Signaling Pathway in the
Regulation of Arrhythmia

Arrhythmias are cardiac autonomic disorders caused
by abnormal electrical activity and conduction disorders of
cardiomyocytes, typically manifesting as ectopic beats and
impulse reentry. The most common types include AF, atrial
flutter, and ventricular fibrillation [7,48]. Acute or chronic
myocardial injury often leads to electrical remodeling of the
heart, myocardial hypertrophy, and fibrosis. These patho-
logical changes can interfere with the normal conduction of
cardiac electrical signals and induce arrhythmia [7]. Com-
mon symptoms include sinus arrest, sinus block, bradycar-
dia, and, in severe cases, sudden death [48,49]. The Wnt/[3-
catenin signaling pathway plays an important regulatory
role in the occurrence and development of arrhythmia, af-
fecting the electrical activity stability of the heart by regu-
lating oxidative stress, atrial fibrosis, and metabolic repro-
gramming.

3.1 Activation of the Wnt/B-catenin Signaling Pathway
Promotes Oxidative Stress

Abnormal activation of Wnt/S-catenin signaling can
promote ROS production. It has been demonstrated that
in the peripheral plasma of patients with persistent AF,
BNP expression and the content of Diacron-reactive oxy-
gen metabolite (IROM) are increased, and the heart un-
dergoes oxidative stress [50]. Meanwhile, activation of
Wnt/S-catenin signaling pathway and increased protein ex-
pression of ANP and BNP were found in human cardiomy-
ocytes treated with ISO in vitro [51]. Therefore, the acti-
vation of Wnt/S-catenin signaling pathway in cardiac my-
ocytes induces oxidative stress by up-regulating the expres-
sion of BNP protein, leading to the occurrence of AF. In
Angll-treated rat atrial tissue, SIRT3 protein sulfhydryla-
tion was inhibited, Wnt/SB-catenin signaling pathway was
activated, ROS production was increased, MDA expression
was increased, while GSH and SOD expressions were de-
creased, leading to atrial oxidative stress [52]. Additionally,
Wnt and TGF-S signaling pathways contribute to oxida-
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tive stress in alcohol-treated human pluripotent stem cell-
derived cardiomyocytes, increasing susceptibility to AF
[53].

3.2 Activation of the Wnt/(B-catenin Signaling Pathway
Promotes Cardiac Fibrosis

Cardiac fibrosis is an important pathological process
of arrhythmia [54]. Previous studies have demonstrated that
depolarization of fibroblasts in cardiac scar tissue can in-
duce arrhythmias through electrical coupling between fi-
broblasts and cardiomyocytes [55,56]. Activation of the
Wnt/3-catenin pathway is associated with increased expres-
sion of cardiac fibrosis genes [32,57]. During fibrosis, ac-
tivation of cardiac fibroblasts promotes excessive deposi-
tion of the extracellular matrix (ECM) and ECM proteins
(mainly col I and col III) [58,59]. The Wnt/S-catenin sig-
naling pathway promotes AF generation by interacting with
miRNA molecules or TGF-3, FRAT, and other signaling
pathways.

Dvl-associated antagonist of S-catenin 2 (DACT2) ex-
pression is decreased in the right atrial cardiomyocytes of
patients with AF. In vitro, Loss of DACT?2 resulted in the
accumulation of 3-catenin in HL-1 cells and the activation
of TGF-J in fibroblasts. This cascade resulted in electrical
remodeling of HL-1 cells, as well as increased deposition
of col I and col III in fibroblasts, ultimately contributing to
fibrosis. These changes induce AF [60]. This suggests that
DACT2 can regulate the electrical-structural remodeling
between fibroblasts and cardiomyocytes by regulating the
Wnt/3-catenin and TGF-/ signaling pathways and induce
AF [61]. Snaill is a key marker in epithelial-mesenchymal
transition (EMT) and participates in the formation process
of cardiac fibrosis [62]. A study has found that the canoni-
cal Wnt signaling pathway is activated in the myocardium
of AF patients, which leads to the up-regulation of Snaill
protein level in endothelial cells, induces the expansion of
cardiomyocytes and the increase of collagen tissue, and
atrial fibrosis induces the occurrence of AF [63]. The ex-
pression of miR-124-3p was increased in plasma exosomes
extracted from patients with AF. Notably, co-culture of
these exosomes with rat fibroblasts revealed that upreg-
ulated miR-124-3p inhibited Axin/ expression, activated
the downstream Wnt/3-catenin pathway, and stimulated «-
SMA expression, promoting fibroblast proliferation [64].
In the rat AF model induced by acetylcholine—CaCls, miR-
27b-3p expression in the left atrium was downregulated,
leading to Wnt/3-catenin pathway activation and signifi-
cant upregulation of TGF-£1 and fibrotic markers Col I,
Col III, and a-SMA. Furthermore, increased atrial fibro-
sis and decreased connexin43 (CX43) expression interfere
with the electrical coupling between cardiomyocytes and
promote the occurrence of AF [65]. In the same model,
reported the increased expression of monocyte chemotac-
tic protein-induced protein 1 (MCPIP1) in cardiomyocytes
and decreased expression of miR-26p-5a, which activated
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Fig. 2. Activation of the Wnt/3-catenin signaling pathway influences cardiomyocyte hypertrophy and fibroblast fibrosis through
various mechanisms, thereby promoting the development of LVH. Activation of the Wnt/3-catenin signaling pathway in both car-
diomyocytes and fibroblasts collectively promotes the progression of LVH. In cardiomyocytes, this pathway upregulates transcription
factors such as NFAT, p-GATA4, c-Myc, NFATc3, and Cyclin D1, which promote the expression of hypertrophic markers including
ANP/BNP and -MHC, inducing myocardial hypertrophy and apoptosis. GSK-35 S9A, TAC, ISO, and Ang II activate the Wnt//3-
catenin signaling pathway by inhibiting GSK-33, METTL3, and DKK2 while upregulating NCX1, PRMT7, ITGBL1, ACE, renin, and
AT1. Additionally, crosstalk between this pathway and the MAPK and NF-xB signaling pathways further amplifies the pathological
process. Meanwhile, RAAS activation exacerbates cardiomyocyte apoptosis, ultimately leading to cardiac dysfunction. In fibroblasts,
the Wnt/(-catenin signaling pathway interacts with the TGF-3-Smad2/3 and NF-xB pathways, upregulating the expression of a-SMA,
IL-11, COL1A1, and FN1, thereby promoting interstitial fibrosis and collagen deposition. Additionally, this pathway enhances fibroblast
proliferation and fibrosis through Snail/Twist-mediated endothelial-to-mesenchymal transition. Ang II, ITGBL1, and ISO activate the
Wnt/3-catenin pathway in both cardiomyocytes and fibroblasts, whereas fibroblast-secreted TGF-/3 further amplifies myocardial hyper-
trophy and fibrosis. Meanwhile, NF-«xB signaling is activated, increasing the production of pro-inflammatory cytokines such as TNF-«
and IL-2, which promote chronic inflammation and exacerbate the progression of LVH. PRMT?7, protein arginine methyltransferase 7;
ANP, atrial natriuretic peptide; BNP, brain natriuretic peptide; COL1A1, collagen type I alpha 1; METTL3, methyltransferase-like 3;
m6A, N6-methyladenosine; DKK2, Dickkopf2; NF-xB, nuclear factor kappa B; 5-MHC, beta-myosin heavy chain; ITGBLI1, integrin
beta-like 1; TGF-f, transforming growth factor beta; Smad2/3, smad family member 2/3; FN, fibronectin; ISO, isoproterenol; Cyclin
D1, cell cycle-related protein D1; c-Myc, cellular Myc; NCX1, sodium/calcium exchanger 1; CaMKII, calcium—calmodulin-dependent
protein kinase II; CaN, calcineurin; TAK1, TGF-j3-activated kinase 1; sFRP, secreted frizzled related protein; a-SMA, alpha-smooth
muscle actin; TNF-q, tumor necrosis factor alpha; IL-2, interleukin 2; T1DM, type 1 diabetes mellitus; STZ, streptozotocin; GSK-3.,
glycogen synthase kinase 3 beta.
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strengthening interactions with MFF and VDACI, thereby driving mitochondrial fission, reducing ATP synthesis, and increasing ox-
idative stress. Additionally, Wnt/3-catenin signaling exacerbates ROS accumulation by inhibiting antioxidant enzymes (SOD, catalase)
and activating NOX, triggering the caspase 3/7 cascade and upregulating pro-apoptotic proteins Bax and Bad, ultimately leading to car-
diomyocyte apoptosis and contributing to LVH progression. LVH, left ventricular hypertrophy; Wnt/3-catenin, Wnt/3-catenin signaling
pathway; SREBPI, sterol regulatory element-binding protein 1; c-Myc, cellular myelocytomatosis; PPAR«, peroxisome proliferator-
activated receptor alpha; MYBL2, Myb-related protein B; Scdl, stearoyl-CoA desaturase 1; Acc, acetyl-CoA carboxylase; FATP1, fatty
acid transport protein 1; AMPK, AMP-activated protein kinase; CPT1, carnitine palmitoyltransferase 1; GLUT4, glucose transporter 4;
PDK1, pyruvate dehydrogenase kinase 1; OXPHOS, oxidative phosphorylation; Drp1, dynamin-related protein 1; MFF, mitochondrial
fission factor; VDACI, voltage-dependent anion channel 1; SOD, superoxide dismutase; NOX, NADPH oxidase; complex I, oxidative
phosphorylation complex I; TG, triglyceride.

the FRAT/Wnt/3-catenin signaling pathway, leading to MF 2 (LIMK?2) expression is significantly increased, promot-
[66]. In mouse cardiomyocytes with acute MI, LIM kinase ing fibroblast proliferation and activation and ventricular
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remodeling through activation of the Wnt/3-catenin signal-
ing pathway, thereby increasing susceptibility to AF [67].
Additionally, in TAC-treated mouse hearts, the activation
of TGF-g signaling pathway promoted the activation of
Whnt/f-catenin signaling pathway and cell activation in fi-
broblasts, increased collagen expression, induced cardiac
fibrosis [68].

3.3 Activation of the Wnt/(-catenin Signaling Pathway
Regulate Metabolic Reprogramming

Abnormal activation of Wnt/3-catenin signaling sig-
nificantly impacts arrhythmias through mitochondrial dys-
function [69]. In the atrial tissue of rats treated with AnglI,
the sulfhydryl modification of SIRT3 protein was inhib-
ited, the Wnt/3-catenin signaling pathway was activated,
the expression of SLC7A11 and GPX4 decreased, and fer-
roptosis occurred in the cells, which increased the expres-
sion of fibrosis markers, and incuring atrial fibrosis [52].
At the same time, in the alcohol-treated atrial tissue of
mice, decreased SIRT3 inhibited AMPK-PGC-1a signal-
ing, up-regulated DRP1 expression, and down-regulated
MFN2 and MFN1 expression, leading to atrial fibrosis [70].
These results suggest that Wnt/3-catenin signaling path-
way can cross-talk with AMPK-PGC-1« signaling pathway
to regulate mitochondrial homeostasis in atrial tissue. In
ISO-treated mouse cardiac fibroblasts, hypermethylation of
the sFRP3 promoter leads to a significant reduction in its
expression, which activates Wnt/3-catenin signaling, ac-
companied by increased DRP1 expression and enhanced
mitochondrial fission and migration [71]. The activation
of the Wnt/[-catenin signaling pathway may also be in-
volved in AF occurrence by regulating the abnormal ex-
pression of proteins related to the mitophagy pathway. In
rat myocardial fibroblasts treated with ISO, the decreased
expression of sirtuin 1 (Sirtl) and increased phosphoryla-
tion of forkhead box O-3a (FOXO3a) and NF-xB activates
the Wnt/-catenin signaling pathway, leading to cell fibro-
sis [72]. In Ang II-treated mouse fibroblasts, FOXO3a ex-
pression was upregulated, PTEN-induced putative kinase 1
(PINK) and parkin expression was increased, p62 expres-
sion was decreased, mitophagy was increased, and MMP
was decreased, promoting fibroblast proliferation and in-
creasing a-SMA, col I, and III expression, thereby ele-
vating AF susceptibility [73]. The Wnt/3-catenin signal-
ing pathway can activate the P38 MAPK signaling path-
way, inducing the occurrence of myocardial fibrosis [74].
Meanwhile, in Ang-II-treated atrial myocytes of AF rats,
it was found that MAPK14 expression was significantly
increased, ROS production was elevated, Parkin protein
expression was upregulated, P62 expression was signifi-
cantly reduced, mitochondrial quantity decreased, vacuola-
tion increased, mitophagy was excessively activated, Bcl2
expression was significantly decreased, and apoptosis oc-
curred, leading to atrial fibrosis and AF [75]. There-
fore, the activation of the Wnt/3-catenin signaling path-

way may induce excessive mitophagy by activating the
MAPK signaling pathway, thereby promoting AF. In ad-
dition, disturbance of lipid metabolism in the atrial mus-
cle is involved in the occurrence of AF [76]. The activa-
tion of the Wnt/[S-catenin signaling pathway can promote
the expression of PGC-1a [77]. In high-fat diet (HFD)-
treated mouse cardiomyocytes, AMPK phosphorylation is
inhibited, whereas PGC-1a, ANP, and S-MHC expres-
sion are upregulated, leading to cardiomyocyte hypertro-
phy and increased AF susceptibility [78,79]. Although the
activation of Wnt/S-catenin signaling in myocardium and
fibroblasts can cause adverse effects, in epicardial cells,
the activation of this signaling pathway may reduce the
adipogenic process of epicardial cells. In boron-treated
mouse preadipocytes, the Wnt/S-catenin signaling pathway
was activated, adipogenic-related gene expression Cebpa,
Ppar~y, and fatty acid-binding protein 4 (Fabp4) expres-
sion was downregulated, and adipogenesis was inhibited
[80]. In the epicardial preadipocytes of patients undergo-
ing cardiac surgery, significantly increased sodium-glucose
cotransporter 2 (SGLT2) expression and upregulated ex-
pression of FABP4 promote adipogenesis and ROS produc-
tion in cardiomyocytes, inducing AF. In the HFD-induced
mice heart, ANP secreted by cardiomyocytes inhibits the
Whnt/3-catenin signaling pathway, thereby inducing epicar-
dial cell transformation into adipocytes through epithelial—
mesenchymal transition and fat secretion, inducing AF [81].

The evidence suggests that activation of the Wnt/3-
catenin signaling pathway plays a crucial role in the devel-
opment of AF by promoting processes such as oxidative
stress and fibrosis in myocardial tissue. This is achieved
through the increase in ROS and MDA levels, as well as in-
teractions with other key pathways like TGF-5 and FRAT.
The Wnt/B-catenin pathway has a dual role in metabolic
reprogramming: in myocardial cells and fibroblasts, its ac-
tivation contributes to MF and oxidative damage in my-
ocardial cells and fibroblasts, but inhibits adipogenesis in
epicardial preadipocytes, highlighting the complexity of its
role in arrhythmogenesis. This multifaceted involvement in
AF is summarized in Fig. 4.

4. Therapeutic Strategies Targeting
Whnt/[3-catenin Signaling in LVH and
Arrhythmia

Accumulating evidence highlights the involvement
of Wnt/[3-catenin signaling in the pathological progres-
sion of LVH and arrhythmias. A range of molecular
interventions—including small-molecule inhibitors, gene
therapies, and bioactive natural compounds—have demon-
strated the ability to modulate this pathway effectively, of-
fering promising therapeutic avenues for the management
of these cardiac conditions.
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Fig. 4. Mechanisms of Wnt/-catenin in regulating AF. In cardiomyocytes, ISO can activate Wnt/(-catenin signaling directly, promote
the expression of BNP and dROM, ultimately induce OS. At the same time, Ang-II activates Wnt/3-catenin signaling pathway by reducing
the expression of SIRT3, thereby decreases the expression of GPX4 and increases the expression level of MAPK protein. On the one
hand, it promotes the production of ROS and the expression of MDA, and reduces the expression levels of GSH and SOD, leading to
oxidative stress. On the other hand, up-regulation of Parkin and down-regulation of P62 expression could promote mitophagy, reduce
the level of BCL2, and eventually lead to cell apoptosis. Absence of DACT2 and Ach—CaCl; can activate the Wnt/[3-catenin signaling
pathway directly or indirectly by decreasing the expression of miR-26p-5a and miR-27b-3p, induces the increase of TGF-3. Meanwhile,
it decreases CX43 expression and induces cardiac electrical remodeling. Furthermore, it promotes the activation of the TGF-# signaling
pathway in fibroblasts. In fibroblasts, TAC, increased miR-124-3p expression, [SO-induced hypermethylation of SFRP3, and Ang-II-
induced increase in FOXO3a expression all promote the activation of Wnt/3-catenin signaling. This, in turn, directly promotes TGF-
[ signaling and induces upregulation of fibrosis-related proteins («-SMA and Col-I/IIl). Meanwhile, by promoting the expression of
PINK1, parkin, and Drp1, it promotes mitophagy and excessive mitochondrial fission, inducing fibrosis. Moreover, in preadipocytes,
SGLT2 expression inhibits the Wnt//3-catenin signaling pathway, increases the gene expression of PPAR~y, CEBP«, and FABP4, and
promotes adipogenesis, finally inducing OS in cardiomyocytes. OS, oxidative stress; ISO, isoproterenol; DACT?2, dishevelled-associated
antagonist of beta-catenin homolog 2; SIRT3, Sirtuin 3; MAPK, mitogen-activated protein kinase; BCL2, B cell lymphoma 2; GPX4,
glutathione peroxidase 4; GSH, glutathione; SOD, superoxide dismutase; ROS, reactive oxygen species; MDA, malondialdehyde; Ach—
CaClsz, acetylcholine—CaClsz; Ang II, angiotensin II; TGF-£, transforming growth factor-beta; a-SMA, alpha-smooth muscle actin; COL
/111, collagen I/IIT; CX43, connexin 43; SGLT2, sodium-glucose cotransporter 2; FABP4, fatty acid binding protein 4; TAC, transverse
aortic constriction; FOXO3a, forkhead box O-3a; sFRP3, secreted frizzled-related protein 3; PINK 1, PTEN-induced putative kinase 1.

4.1 Targeting of Wnt/(B-catenin Signaling in LVH tential in alleviating myocardial hypertrophy, fibrosis, and
cardiac remodeling. Given that ventricular remodeling—

Pharmacological and molecular targeting of the - X ) i
including hypertrophy, fibrosis, and structural alterations—

Whnt/S-catenin pathway has demonstrated significant po-
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is central to LVH progression, modulating these processes
represents a promising therapeutic strategy.

In TAC and phenylephrine-induced LVH models, the
long non-coding RNA taurine up-regulated gene 1 (TUG1)
suppresses miR-34a, upregulating Dickkopf proteins and
thereby inhibiting Wnt/3-catenin signaling, leading to re-
duced expression of hypertrophy-associated genes [82,83].
Similarly, overexpression of sFRP2 attenuates pressure
overload-induced LVH by inhibiting active 3-catenin, re-
ducing fibrosis and apoptosis [84]. Targeting upstream
regulators, the porcupine inhibitor CGX1321 downregu-
lates Wnt/3-catenin target genes (Fzd2, Cyclin DI, c-
Myc) in TAC-induced LVH models, while concurrently
inhibiting non-canonical pathways (NFATc3 and c-Jun),
thus exerting dual anti-hypertrophic and anti-fibrotic ef-
fects [85,86]. The small-molecule compound Cardiomogen
1 (CDMGT1) selectively inhibits Wnt/-catenin signaling,
promoting cardiac progenitor cell formation, cardiomy-
ocyte differentiation, and cardiac regeneration in zebrafish
models [10,87]. In embryonic stem cell models, CDMGI1
exerts concentration-dependent effects on cardiac lineage
commitment, while minimizing off-target developmental
interference [10]. Collectively, these findings highlight the
therapeutic promise of Wnt//3-catenin pathway modulators
in treating pathological cardiac remodeling through multi-
level regulation of hypertrophy, fibrosis, and regenerative
capacity.

In addition to directly inhibiting hypertrophic re-
sponses, Wnt/3-catenin pathway inhibition also amelio-
rates cardiac fibrosis associated with LVH. In an ISO-
induced myocardial fibrosis rat model, triptolide suppresses
Wnt/B-catenin activation, resulting in decreased expres-
sion of fibrosis markers such as Col I and a-SMA, thereby
alleviating myocardial fibrosis and improving LV func-
tion [40]. In zebrafish heart injury models, activation of
Notch signaling, suppresses Wnt/S-catenin signaling by
promoting the expression of Wnt antagonists Wifl and No-
tum1b, enhances cardiomyocyte proliferation, inhibits fi-
brosis, and facilitates cardiac regeneration, ultimately coun-
teracting hypertrophy and apoptosis [88]. Similarly, in Ang
[I-induced LVH mouse models and H9¢2 cardiomyocytes,
nuclear protein localization protein 4 (NPLOC4) suppresses
the [-catenin/GSK-35 axis, enhances mitochondrial dy-
namics and mitophagy through ERO1a-mediated modula-
tion of mitochondria-associated membranes (MAMs), thus
alleviating cardiac hypertrophy and fibrosis [89].

Wnt/[-catenin pathway inhibition also contributes to
improved metabolic remodeling. Overexpression of se-
creted frizzled-related protein 5 (SFRPS5) in MI models in-
hibits Wnt/[3-catenin signaling, activates AMPK by en-
hancing GSK-3 3 phosphorylation, promotes mitochondrial
fusion (upregulating MFN1, MFN2) while reducing fission
markers (p-Drpl, Mid49, MFF), ultimately improving mi-
tochondrial integrity, decreasing oxidative stress, and miti-
gating left ventricular remodeling [90].
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4.2 Targeting Wnt/B-catenin Signaling in Arrhythmias

Pharmacological modulation of the Wnt/3-catenin
signaling pathway shows therapeutic potential in mitigat-
ing oxidative stress, fibrosis, and cardiomyocyte apopto-
sis, as well as improving cardiac dysfunction linked to ar-
rhythmias. Treating healthy individuals deprived of sleep
for 48 hours with statins can inhibit the Wnt/3-catenin
signaling pathway by suppressing endoplasmic reticulum
stress in myocardial cells, reduce the expression of MDA,
inhibit oxidative stress, and lower the incidence of ar-
rhythmia [91,92]. Additionally, in a sunitinib-induced
myocardial fibrosis rat model, sacubitril/valsartan regu-
lates the antioxidant system thioredoxin-interacting pro-
tein (TXNIP)/thioredoxin (TRX) and inhibits the Wnt//3-
catenin/SOX9 signaling axis, thereby alleviating oxidative
stress and reducing the incidence of AF [16,93].

Targeting Wnt signaling pathways or their associated
proteins has been shown to reduce atrial fibrosis in arrhyth-
mic conditions. For instance, miR-27b-3p overexpression
in AF rats inhibits the Wnt//3-catenin pathway, downregu-
lates fibrosis markers Col I, Col III, and CX43, and reduces
atrial fibrosis [65]. Angiotensin receptor blockers (ARBs)
also mitigate atrial fibrosis in AF rats, prolong the effec-
tive atrial refractory period, and alleviate AF by blocking
the activation of FZD8 and the WntSa signaling pathway
[94]. However, a study reports contradictory findings, such
as Wntl upregulation in 24-month-old rat LV fibroblasts
treated with relaxin, which inhibits the TGF-/ pathway, re-
duces fibrosis markers, and decreases arrhythmia suscepti-
bility [95].

Targeting Wnt/3-catenin signaling pathways or asso-
ciated proteins through metabolic reprogramming can also
help alleviate arrhythmias. Empagliflozin, an SGLT2 in-
hibitor, inhibits adipogenesis in preadipocytes by modulat-
ing the Wnt/-catenin pathway which can be regarded as a
new therapeutic strategy for AF patients [69,96]. In HFD-
induced mouse cardiomyocytes, L-carnitine (LCA) pro-
motes AMPK phosphorylation, suppresses Wnt/3-catenin
signaling, increases the expression of fatty acid-related
transmembrane protein CD36 and PGC-1a, reduces fat ac-
cumulation, and diminishes inflammatory markers (e.g.,
IL-15, IL-6, and TNF-«). Additionally, CX43 and CX40
expression is enhanced, which reduces susceptibility to AF
[97,98].

Therapeutic strategies targeting the Wnt/3-catenin
signaling pathway, including GSK-3/ inhibitors, Wnt an-
tagonists (such as sFRP2, sFRP4, and sFRPS), pioglita-
zone, and small molecules like cardiomogen, have shown
promise in the treatment of LVH and arrhythmias. These
interventions have demonstrated potential in improving mi-
tochondrial function, promoting cardiomyocyte regenera-
tion, and reducing LV remodeling, as supported by various
preclinical studies [69,97,99]. Additionally, agents such as
flavonoids, angiotensin inhibitors, and empagliflozin mod-
ulate the Wnt/-catenin pathway, mitigating AF and reduc-
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Table 1. The therapeutic strategy targeting Wnt//3-catenin for LVH and arrhythmia.

Treatment Target Model Conclusion Reference
long non-coding TAC and  deoxyadrenaline- Inhibition of miR-34a expression and an increase in DKK protein levels significantly reduced the [82,83]
RNA TUGI induced LVH mouse expression of cardiac hypertrophy-related genes and alleviated cardiac hypertrophy
sFRP2 Tnhibit Wnt/5- hypertension  induced LVH Improvement in cardiomyocyte hypertrophy, interstitial fibrosis, and cardiomyocyte apoptosis [84]
catenin pathway mousc.e . . . . .
CGX1321 TAC-induced LVH mouse Reduced expression of myocardial hypertrophy-related genes (frizzled-2, cyclin-D1, and c-Myc), inhi- [86]
bition of the non-classical Wnt signaling pathway, reduced levels of NFAT and phosphorylated c-Jun,
and inhibition of the fibrosis process
Cardiomogen! Zebrafish model Cardiomyocyte proliferation and wound healing accelerated regeneration after heart injury. Simulta- [10,87]
neously, it promoted the formation of cardiac progenitor cells and increased the number of cardiomy-
ocytes, thus expanding the size of the embryonic heart
TP ISO-induced myocardial fibrosis  Reduced expression of fibrosis markers (e.g., COL-I and a-SMA), attenuation of myocardial hyper- [40]
rat model trophy and fibrosis, and improvement of left ventricular function
Upregulated notch Zebrafish heart damage model Promoted the expression of Wnt antagonists Wifl and Notum1b, enhanced cardiomyocyte prolifera- [88]
signaling tion, inhibited fibrosis, and improved ability of heart regeneration
NPLOC4 Ang Il-induced LVH mouse and  Upregulation of EROl« expression, regulating MAMs, enhancing mitochondrial dynamics and mi- [89]
HO9c¢2 cardiomyocytes tophagy, and regulating fibrosis and myocardial hypertrophy
statins 48-Hour Sleep Deprivation in-  Suppressing endoplasmic reticulum stress reduce the expression of MDA, inhibit oxidative stress in [91,92]
duced Arrhythmia patients myocardial cells, and lower the incidence of arrhythmia
ARB AF rats Inhibition of FZD8 expression, inhibition of atrial fibrosis in AF rats, and prolonged effective atrial [94]
refractory period
miR-27b-3p AF rats Downregulation of fibrosis-related proteins Col I, Col 111, and CX43 inhibited atrial fibrosis [65]
LCA HFD-induced AF mouse Promoted AMPK phosphorylation, elevated the expression of CD36 and PGC-1e, alleviated fat ac- [98,100]
cumulation, reduced the production of inflammatory factors (such as IL-13, IL-6, and TNF-«), and
increased CX43 and CX40 expression
Empagliflozin Activate Wnt/B-  Cardiac surgery patient Inhibition of SGLT2 expression, suppression of adipogenesis in preepicardial adipocytes, and allevi- ~ [69,96,99]

catenin

ation of oxidative stress in cardiomyocytes

Wnt/B-catenin, wingless-int1/8-catenin; TUG1, taurine up-regulated gene 1; sFRP2, secreted frizzled-related protein 2; NPLOC4, nuclear protein localization protein 4; ARBs, angiotensin receptor
blockers; LCA, L-carnitine; TAC, transverse aortic constriction; LVH, left ventricular hypertrophy; AF, atrial fibrillation; ISO, isoproterenol; HFD, high-fat diet; Dkk-1, Dickkopf-related protein-1;
a-SMA, alpha-smooth muscle actin; COL I/I11, collagen I/11I; MAMs, mitochondria-associated membranes; CX43, connexin43; PGC-1«, PPAR-gamma coactivator 1 alpha; TNF-a, tumor necrosis

factor-a; SGLT2, sodium-glucose cotransporter 2.
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ing fibrosis, further corroborating their therapeutic effi-
cacy in heart disease management [94,98]. Collectively,
these findings highlight the therapeutic potential of target-
ing Wnt/[-catenin signaling in LVH and arrhythmias. An
overview of these strategies and their mechanisms of ac-
tion is summarized in Table 1 (Ref. [10,40,65,69,82—84,86—
89,91,92,94,96,98-100]).

5. Clinical Translations and Challenges

Therapeutic ~ strategies targeting Wnt/(-catenin
pathway—such as PPIs, sFRP2, Porcupine inhibitors,
relaxin, and miRNA modulators—have demonstrated
promising efficacy in ameliorating cardiac hypertrophy
and fibrosis in preclinical models. Currently, Wnt-targeted
interventions are in the early stages of clinical investi-
gation. For instance, statins may indirectly inhibit the
Wnt/3-catenin pathway by alleviating endoplasmic reticu-
lum stress, thus reducing arrhythmia risk in sleep-deprived
individuals [91,92]. Liensinine [101] and the LncRNA
RNA GASS [102] have also been identified as potential
therapeutic targets for arrhythmia. GSK-3 inhibitors,
including tideglusib [103] and lithium [104], have shown
promise in ameliorating arrhythmic phenotypes in ar-
rhythmogenic cardiomyopathy (ACM) [105]; however,
their clinical application remains limited due to potential
carcinogenicity [106], pro-hypertrophic effects [107,108],
risks of immunosuppression [109], and off-target ac-
tivity. In CKD, downregulation of Klotho induced by
TGF-S1 activates Wnt/3-catenin signaling, providing a
novel therapeutic target [34]. The drug pyrvinium has
been shown to prevent adverse cardiac remodeling and
promote cardiomyocyte proliferation, thereby offering a
potential therapeutic benefit for LVH [110]. Moreover, a
variety of emerging Wnt pathway inhibitors—including
small molecules (e.g., LGK-974 [111], CGX1321 [112],
IWR-1 [113], and ICG-001 [114]) and traditional Chinese
medicine formulas (e.g., Linggui Zhugan Decoction
formula [115])—have demonstrated favorable safety
profiles and translational potential in preclinical stud-
ies. Several of these agents have already advanced into
early-phase clinical trials. The SIRT2 inhibitor AGK2
holds promise in improving conditions characterized by
cardiac fibrosis [116]. However, most clinical evidence
remains correlative, with a paucity of interventional studies
targeting specific patient subgroups. The heterogeneity
in Wnt-related protein expression across disease subtypes
underscores the need for personalized treatment strategies
based on molecular profiling [21].

Despite the clear mechanistic relevance of the Wnt/3-
catenin pathway in cardiovascular disease, clinical transla-
tion faces substantial challenges. The structural complex-
ity of the pathway and its involvement in multiple physio-
logical systems pose risks of off-target effects [117]. Ad-
ditionally, current animal and in vitro models fail to fully
recapitulate human cardiac pathology, particularly regard-
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ing age-related changes, comorbidities, and molecular het-
erogeneity, limiting the extrapolation of preclinical findings
[118]. Furthermore, while many current studies emphasize
average therapeutic outcomes, others are limited to short-
term observations, and patient responses to Wnt pathway
inhibitors vary considerably across individuals. Neverthe-
less, Wnt-targeted therapeutic strategies remain promising.

Although emerging therapeutic strategies targeting the
Wnt/S-catenin pathway have shown promise in basic and
preclinical studies, translational barriers remain due to the
pathway’s inherent complexity, disease heterogeneity, and
limitations of current experimental models. The clinical
advancement of Wnt-targeted drugs for malignancies high-
lights their broader translational potential in cardiovascu-
lar medicine [119]. To realize this potential, future re-
search should integrate systems biology, big data analyt-
ics, and single-cell technologies to comprehensively dissect
the regulatory network of Wnt signaling and its crosstalk
with other pathways [120]. This will enable the design
of mechanism-driven, biomarker-based patient stratifica-
tion strategies and help clarify patient-specific molecular
signatures. Furthermore, optimizing dosing regimens to
minimize off-target effects and developing companion di-
agnostics for precise patient selection will be essential. Ro-
bust long-term clinical trials and real-world studies are also
needed to verify sustained therapeutic efficacy and monitor
potential adverse effects, ultimately translating mechanistic
insights into safe and effective personalized therapies for
cardiovascular disease.

6. Conclusion

The Wnt/3-catenin signaling pathway is a pivotal
regulator in the pathogenesis and progression of LVH
and arrhythmias. By modulating cardiomyocyte hyper-
trophy, fibroblast-mediated fibrosis, oxidative stress, and
metabolic reprogramming, it contributes to cardiac struc-
tural remodeling and electrophysiological dysfunction. Its
extensive crosstalk with key signaling cascades such as
TGF-f, NF-£B, and MAPK further complicates the disease
landscape and presents additional therapeutic challenges.
Mechanism-guided clinical trial designs and a better un-
derstanding of Wnt pathway interactions with other signal-
ing networks may provide the foundation for multitargeted
therapies. Such approaches could ultimately improve clin-
ical outcomes and patient prognosis.
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