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Abstract

Chronic obstructive pulmonary disease (COPD) is a progressive and debilitating respiratory condition marked by chronic symptoms and
frequent exacerbations, contributing to significant morbidity and mortality. The advent of molecular microbiology and next-generation
sequencing (NGS) has expanded our understanding of the lung microbiome, and integration of microbiome datasets with other omics
reveals important microbial-metabolic-immuno-inflammatory interactions that influence COPD pathogenesis. Recent studies have high-
lighted dysbiosis of the airway microbiome, with shifts in bacterial, viral, and fungal communities playing a crucial role in disease
progression, exacerbations and clinical outcomes. Moreover, microbiome changes are observed in COPD associated overlap syndromes,
complicating diagnosis and treatment. This review synthesizes current microbiome research in COPD, focusing on its clinical relevance,
including its potential as a diagnostic and prognostic tool. We additionally discuss the challenges of integrating microbiome data into
clinical practice, emphasizing the need for personalized, precision medicine approaches to optimize COPD management and improve

patient outcomes.
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1. Introduction

The term ‘microbiome’ refers to the community of
all microorganisms, including bacteria, archaea, fungi and
viruses, present in a given environment, such as the vari-
ous ecological niches of the human body [1]. Compared to
other major organ systems, lung microbiome research lags
significantly due to previously misinformed assumption of
lung sterility resulting in its unintended exclusion from the
NIH Human Microbiome Project [2—5]. Nonetheless, re-
search demonstrating the key roles of the lung microbiome
in health and disease has emerged steadily over the past
decade [6—8]. This is coupled with the advancements of
sequencing technologies to interrogate the various micro-
bial communities. The use of next-generation sequencing
(NGS) technologies to assess microbiomes involves ampli-
fying genomic material to profile microbial communities
and includes ‘targeted’ amplicon sequencing and ‘untar-
geted’ shotgun metagenomics [9,10]. Targeted amplicon
sequencing amplifies specific marker genes that serve as
universal taxonomic barcodes and include the 16S riboso-
mal RNA (rRNA) gene for bacterial microbiomes [11], and
the internal transcribed spacer (i.e., 18S/ITS) regions for the
fungal microbiome (mycobiome) [12,13]. Shotgun metage-
nomic sequencing amplifies all microbial genomes present
in a given sample [14]. However, it has limited utility in
profiling active microbial gene expression for which meta-

transcriptomic approaches are required [15]. Meanwhile,
viromics is an emerging field for the characterization of vi-
romes that entails further development of specific bioinfor-
matic tools and improvement in resourcing viral sequence
database annotations [15].

NGS identifies culturable and importantly, uncultur-
able microbes, allowing for a holistic and comprehensive
evaluation of lung microbiome composition and diversity
[10,16]. Importantly, NGS requires specialized experi-
mental and bioinformatic capabilities and a lack of gold-
standard analytical pipelines has restricted widespread clin-
ical translation [13,17,18]. Emerging evidence does sup-
port the clinical potential of NGS in clinical settings. In
critical care and intensive care unit (ICU) settings, metage-
nomics have already demonstrated significantly improved
sensitivity and clinical outcomes against routine, gold stan-
dard clinical tests for the diagnosis of infection in various
sample types including blood, sputum, broncho-alveolar
lavage (BAL) and cerebrospinal fluid [19-26]. Most re-
cently, metagenomics demonstrates strong potential for in-
forming antimicrobial treatment and resistance, infection
control that can potentially be leveraged for wider public
health benefit [26-29].

A healthy lung microbiome is rich and diverse, charac-
terized by the presence of Prevotella, Streptococcus, Veil-
lonella, Fusobacterium and Haemophilus spp. [8,30-33].
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The lung microbiome is highly dynamic and largely deter-
mined by microbial immigration from the upper respiratory
tract and elimination through host immunity and mucocil-
iary clearance [7,34,35]. Emerging evidence suggest that
the lung microbiome is enriched with oral taxa that confer a
protective immunological tone against potential pathogens
[36,37]. Work investigating mycobiome in health have
identified Ascomycota and Basidiomycota to be the most
commonly detected fungal phyla, with Candida, Saccha-
romyces, Penicillium, Cladosporium, and Fusarium as the
main genera [13,30,38-42]. Lung viromes remain poorly
characterized, with small studies proposing a presence of
Anelloviridae [43,44]. In contrast to the healthy state, struc-
tural abnormalities in any diseased lung alters the local en-
vironment, favouring pathogen growth [34,45] and micro-
bial dysbiosis that is now described across almost every
respiratory disease, including asthma, chronic obstructive
pulmonary disease (COPD), interstitial lung disease and
bronchiectasis [13,16,38,46—49].

While other respiratory conditions present with unique
challenges and pathophysiological features, COPD remains
a leading respiratory cause of global morbidity and mortal-
ity accounting for a significant burden of healthcare utiliza-
tion including hospitalization [50,51]. The heterogeneity
of COPD and its progression through stable, exacerbation
states and overlap syndromes further provides a rich frame-
work for studying the role of the respiratory microbiome.
As such, this review aims to provide an overview of the
lung microbiome in COPD during disease stability and ex-
acerbations and additionally address the emerging clinical
entities of COPD with asthma and bronchiectasis overlap.

2. Chronic Obstructive Pulmonary Disease

COPD is a multifaceted progressive lung disorder
characterized by persistent respiratory symptoms and air-
flow limitation caused by abnormalities in the airway or
alveoli [52,53]. It is the result of lifelong and complex in-
teractions between host, genetics and environmental expo-
sures. While tobacco smoking is a major risk factor, it is
now recognized that nearly half of the COPD cases globally
occur in non-smokers, particularly in low to middle income
countries [54]. The recent Global Initiative for Chronic
Obstructive Lung Disease (GOLD) statement categorizes
COPD into six different etiotypes (genetically determined
COPD, COPD due to abnormal lung development, environ-
mental COPD, COPD due to infections, COPD and asthma
and unknown cause), emphasizing the significance of non-
smoking related risk factors in disease development and
progression [52].

2.1 The Role of the Lung Microbiome in Stable COPD

Studies have shown that the airway microbiome, con-
sisting of diverse microbial communities in the respira-
tory tract, plays a crucial role in maintaining lung home-
ostasis and influencing COPD outcomes [40,55]. Explor-

ing the microbiome in stable COPD may enhance our un-
derstanding of disease mechanisms, identify biomarkers
for patient stratification, and uncover therapeutic targets to
improve long-term disease management and clinical out-
comes. These concepts are summarized in Fig. | (Ref. [56—
66]).

2.1.1 Bacteria

In patients with mild-moderate COPD (GOLD stage 1
or 2), areduced airway microbial diversity is observed with
an increased abundance of Granulicatella, Gemella, Lep-
totrichia, Streptococcus, Prevotella, Staphylococcus, Neis-
seria, Veillonella and Rothia [60,61,67,68]. Notably, Strep-
tococcus, Prevotella and Veillonella were found to signifi-
cantly co-occur, and strongly associates with a concurrent
change in host transcriptomic profile, including the upreg-
ulation of several transcriptional pathways that are impor-
tant for mucosal immune response towards microbes [67].
Similar pro-inflammatory responses associated with micro-
biome dysbiosis have been reported, alongside a suppres-
sion of genes involved in epithelial repair [69]. Addition-
ally, alterations in the lung bacterial composition driven
by enrichment of Streptococcus, Prevotella, Staphylococ-
cus, and Pseudomonas have been associated with key clin-
ical parameters, including increased neutrophil percent-
age, greater symptom burden and functional impairment
measured by six-minute walk distance [61]. While many
studies have separately explored the effect of microbiota
and metabolomics on COPD outcomes, few have inte-
grated data from both [40]. Madapoosi et al. [60] noted
that several lung bacterial genera, Streptococcus, Neisseria
and Veillonella, along with metabolites such as glycosph-
ingolipids, glycerophospholipids positively associate with
poorer clinical outcomes including decreased lung func-
tion and greater symptomology. Conversely, the authors
also noted Prevotella bacteria, although were less abun-
dant in severe COPD, was positively associated with the
metabolites adenosine monophosphate (AMP), adenosine,
spermine and 5’-methylthioadenosine (MTA), which cor-
relate negatively with neutrophil levels and positively with
regulation of airway surface liquid, important for maintain-
ing ciliary function [60,70]. While it remains unclear if
the bacteria-metabolite correlations are direct or indirect,
as these data suggest the role of both in shaping the lung
environment which could potentially impact the COPD
pathophysiology. Collectively, these findings suggest that
early airway dysbiosis triggers a pro-inflammatory respi-
ratory niche that impairs repair responses and drive clini-
cal decline, underscoring the important role of the micro-
biome and their associated metabolites, even in stable, non-
exacerbating COPD.

As COPD progresses, microbial shifts in airway bac-
teriome profiles portending toward enrichment of more
commonly recognized pathogens, such as Haemophilus,
Moraxella, Pseudomonas and Staphylococcus are observed
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Fig. 1. Summary of the lung microbiome profile in the healthy state, in stable chronic obstructive pulmonary disease (COPD) and

during exacerbations of COPD (ECOPD) with associated clinical outcomes and potential applications. HRV, human rhinovirus;

RSV, respiratory syncytial virus; | , decreased. Created in BioRender (https://BioRender.com). Information on poorer clinical outcomes

synthesized from references [56—66].

[33,59,71,72]. The outgrowth of these genera is strongly as-
sociated with COPD severity, reduced microbial diversity
and increase airway inflammation [33,59,72,73]. In partic-
ular, COPD characterized by a predominance of the Pro-
teobacteria phylum including Haemophilus and Moraxella
often associates with neutrophilic inflammations, poorer
lung function, increased exacerbations and a higher risk
of mortality compared to those with Firmicutes dominance
[74-76]. Haemophilus-dominated microbiome (>40% by
operational taxonomic unit) was found in 27.8% of pa-
tients with neutrophilic inflammation and associated with
an upregulation of proinflammatory mediators (sputum
interleukin-1 beta (IL-1/3) and tumour necrosis factor alpha
(TNF-«)) and neutrophil extracellular traps (NETs) forma-
tion [56,76]. The enrichment of sputum NETs not only im-
pairs bacterial phagocytosis, but also serve as inducers of
cell and tissue damage, further perpetuating airway inflam-
mation in COPD patients [56,77,78]. This self-perpetuating
inflammation culminates towards progressive lung func-
tion decline and increased symptom burden [56,76,78]. Im-
portantly, Haemophilus exhibited stability across longitudi-
nal timepoints, underscoring its pathogenicity through per-
sistent airway colonisation in stable COPD patients [76].
Consequently, Haemophilus abundance could potentially
be utilised in risk stratification to identify high-risk patients
with Haemophilus-dominant airways. Similar inflamma-
tory responses were observed with Moraxella and associ-
ated with a greater lung function decline [59,79,80]. Ad-
ditionally, Pseudomonas, is generally reported in patients
with more severe disease and commonly associates with
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frequent hospitalisations (>2 hospitalizations per year)
and higher mortality risks [81,82]. Beyond Proteobacte-
ria, members of the Firmicutes phylum are also enriched
in stable COPD microbiome, particularly Streptococcus
and Staphylococcus [59]. Colonization by Staphylococ-
cus is also associated with neutrophilic inflammation in
COPD through the upregulation of homocysteine, which
enhances NETs formation via the AKT serine/threonine ki-
nase 1-S100 calcium-binding protein A8/A9 axis (AKTI1-
S100A8/A9), contributing to rapid lung function decline
[59]. Interestingly, a meta-analysis utilizing public omics
datasets found that these bacteria phyla (Proteobacteria and
Firmicutes), along with Actinobacteria, are key contribu-
tors to biosynthesis of metabolites like urate (uric acid),
palmitate and homocysteine which exert proinflammatory
effects and oxidative stress in COPD [83]. While these ob-
servations require further research, they suggest the impor-
tance of microbiome-metabolite interactions and unveiled
new insights on perturbations during stable COPD that
could guide disease evaluation and treatment. Emerging
evidence therefore strongly supports key links between en-
richment of pathogenic microbes in the COPD airway and
adverse clinical outcomes, including reduced lung function,
increased symptoms, exacerbations and mortality. The in-
tricate interplay between microbes and inflammation illus-
trates the importance of understanding the host-microbes
interface in COPD that could unveil novel therapeutic
strategies to arrest disease progression in stable COPD.
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2.1.2 Viruses

During stable COPD, viruses including human rhi-
novirus (HRV), influenza, coronavirus, respiratory syncy-
tial virus (RSV), adenovirus, human metapneumovirus and
parainfluenza virus are consistently detected in >10% of
stable COPD patients [84—87]. However, their reported
abundance varies across studies, likely due to their gener-
ally low abundance and differences in detection methodolo-
gies [88-90]. Viral load in stable COPD has been linked to
heightened inflammation as demonstrated by upregulation
of proinflammatory markers (IL-6, IL-8, myeloperoxidase)
and activation of neutrophils and macrophages, which con-
tribute to persistent airway inflammation and disease pro-
gression [91,92]. Notably, the presence of viruses in sta-
ble COPD is associated with poor clinical outcomes includ-
ing lung function decline, increased symptoms and exac-
erbation frequency [62,63,92]. While the role of viruses
in stable COPD remain unclear, there have been several
studies reporting frequent detection of viruses such as rhi-
novirus and RSV during clinical stability and exacerba-
tions, suggesting potential role of viral persistence in COPD
[62,90,92].

2.1.3 Fungi

Stable COPD patients exhibit a distinct mycobiome,
with increased abundance of Aspergillus, Candida, Cla-
dosporium, Malassezia, Trametes, Penicillium, Sarocla-
dium and Wickerhamomyces compared to healthy con-
trols [65,93]. Interestingly, these mycobiome profiles vary
across geographical regions, likely influenced by local cli-
mate and environmental factors that support fungal growth
and survival. For instance, cohorts from Asia (Singapore
and Malaysia) show a predominance of Saccharomyces,
Curvularia, Aspergillus, Schizophyllum, Penicillium and
Grammothele, while European cohorts (United Kingdom)
display an enrichment of Debaryomyces, Hanseniaspora,
Trametes and Wickerhamomyces [65]. These findings high-
light the geographical variability of the COPD-associated
mycobiome and the role of environmental factors in shap-
ing its composition. Our group further identifies the home
environment as a key source of fungal exposure, particu-
larly Aspergillus fumigatus (A. fumigatus) and its associ-
ated allergens. Elevated abundance of 4. fumigatus was as-
sociated with increased risk of COPD exacerbations [94].
Additionally, a higher sensitization response was observed
in COPD patients living in homes with greater abundance
of A. fumigatus (Asp f 3) allergens. This in turn pre-
cipitates adverse outcomes such as lower lung function
and higher exacerbation rates compared to patients with
no sensitization response [95-98]. Environmental param-
eters, such as temperature and particulate matter (PM2.5
and PM10) levels, were also positively correlated with
abundance of A. fumigatus [94]. These findings under-
score the complex interplay between environmental pol-
lution, airway mycobiome and adverse clinical outcomes

in COPD. Meanwhile, Preumocystis jirovecii remains the
main opportunistic species isolated in COPD patients with
co-existing human immunodeficiency virus, where it is as-
sociated with increased inflammation and severe airflow
obstruction [99,100]. In stable COPD, two distinct and clin-
ically significant ‘mycobiome clusters’ were established:
a Saccharomyces-dominant cluster that associates with in-
creased symptoms and a ‘high-risk’ cluster characterized
by Aspergillus, Curvularia and Penicillium associated with
increased exacerbations and higher risks of mortality [65].
There is now growing evidence highlighting the emerg-
ing and often overlooked role of environmental factors and
the airway mycobiome in influencing COPD outcomes in-
cluding exacerbations, disease progression and prognosis.
Further investigations into these interactions could provide
the foundation for novel patient stratification strategies, en-
abling earlier identification of ‘high-risk’ patients necessi-
tating closer clinical monitoring.

2.2 The Role of the Lung Microbiome in COPD
Exacerbations

Exacerbations are key events in the clinical course of
COPD, characterized by worsening dyspnea and/or cough
with increased sputum production over a period of <14
days [101]. These episodes are frequently associated with
heightened local and systemic inflammation [52,101]. Ex-
acerbations are significant contributors to lung function
decline, impaired quality of life, and increased mortality
[53,102,103]. A subgroup of patients known as frequent ex-
acerbators (>2 exacerbation events annually) have more se-
vere inflammatory responses, poorer clinical outcomes, and
higher rates of hospitalizations compared to non-frequent
exacerbators [ 104,105]. Exacerbations of COPD (ECOPD)
remain heterogenous, with variation in symptoms, air-
way inflammation and underlying triggers and/or etiolo-
gies [106]. Perturbations in the airway microbiome are
observed during ECOPD which are further influenced by
underlying inflammation and etiology including bacterial,
viral and/or eosinophilic exacerbations. With bacteria and
viruses representing major exacerbation drivers, we review
recent advances in understanding the role of the airway mi-
crobiome in ECOPD to uncover insights that may lead to
the development of fresh prognostic or therapeutic targets
[103,106,107] (Fig. 1, Ref. [56-66]).

2.2.1 Bacteria

Compared to stable COPD, a-diversity, a measure of
species richness, evenness or diversity within a single sam-
ple, is further reduced during ECOPD [80,108]. Exac-
erbations are marked by an enrichment of Haemophilus,
Pseudomonas, Moraxella, Klebsiella (Proteobacteria phy-
lum) and Staphylococcus and Streptococcus (Firmicutes
phylum), accompanied by a depletion of commensals such
as Prevotella and Veillonella [80,87,109-112]. These mi-
crobial shifts can additionally be influenced by season-
ality, with increased bacterial loads, particularly that of
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pathogenic Haemophilus during the high season (October
to March) compared to the low season (April to Septem-
ber) [113]. Moraxella is consistently detected across sea-
sons, contributing to microbial imbalance and dysbiosis
[114,115]. Microbial dysbiosis is associated with wors-
ened lung function, increased symptoms, and higher risk
of future exacerbations [66,80]. For instance, a distinct
dysbiosis profile, characterised by increased abundance of
Haemophilus, Stenotrephomonas, Streptococcus and a re-
duction in Prevotella, differentiated frequent exacerbators
from non-frequent exacerbators [89,116,117]. Moreover,
changes in the bacterial communities during ECOPD have
been linked to mortality outcomes, with higher abundance
of Staphylococcus and Veillonella detected in non-survivors
(patients who died) and survivors (alive) respectively, one
year after exacerbation [58]. These finding emphasize
the variable pattern shifts in microbiome composition that
occurs during ECOPD, toward pathogens, pathobionts or
commensals, with such shifts having profound influence on
disease trajectory and clinical state.

Beyond direct associations with clinical outcomes,
bacteriome composition during ECOPD differs between
bacterial and eosinophilic exacerbation subtypes [73,109].
Bacterial associated exacerbations are characterised by
decreased a-diversity and increased proportions of Pro-
teobacteria, including key pathogens such as Haemophilus,
Moraxella and Pseudomonas [109,118]. These exacerba-
tions are closely linked to neutrophilic inflammation, and
associated with poor clinical outcomes, including frequent
exacerbations and reduced survival [75,109,118]. While
most COPD patients experience neutrophilic inflamma-
tion, a subgroup present with eosinophilic inflammation,
characterised by lower neutrophil but higher sputum and
blood eosinophil levels (eosinophil count >300/uL) [119].
These patients generally exhibit higher a-diversity and a
lower Proteobacteria to Firmicutes ratio with better symp-
tom scores compared to neutrophilic patients [66,73,75,111,
118]. Eosinophilic inflammation has been associated with
several non-dominant bacterial genera but not pathogenic
Haemophilus, likely due to increased eosinophil driven op-
sonisation and higher immunoglobulin level [120]. No-
tably, eosinophilic exacerbation displayed significant tem-
poral stability, with future exacerbations more likely to
be of the eosinophilic subtype if previous exacerbation
had elevated eosinophil levels [118,119]. These findings
suggest that eosinophilic inflammation represent a distinct
yet stable ECOPD subtype, characterised by unique host-
microbiome interactions.

2.2.2 Viruses

Besides bacteria, viruses are also infectious triggers
for ECOPD, accounting for at least half of all exacerba-
tions [89,121]. Viruses such as HRV, RSV, influenza, and
coronavirus, which are present in the stable state of COPD,
show a marked increase in prevalence and abundance dur-
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ing ECOPD, including the doubling of HRV abundance,
and a 12-times surge of influenza virus [63,87,89,122,123].
Notably, the incidence of viral-positive ECOPD events
were highest in winter months, potentially due to low tem-
peratures favouring many key COPD viral pathogens in-
cluding influenza virus and RSV, thereby making winter
months an important period for closer monitoring of pa-
tients [84,124]. In virus-positive ECOPD patients, elevated
blood neutrophil, fibrinogen, IL-6, and C-reactive protein
levels were observed, indicating increased neutrophilic in-
flammation levels within the host [62,84,125]. Recent
studies further elucidate that viral infection induces higher
abundance of airway NETs compared to healthy controls
that in turn associated with viral loads, inflammatory and
clinical measures, including increased symptomology, ex-
acerbation severity, longer recovery and greater mortality
[63,78,90,121,125].

Vaccinations, a key preventive measure against vi-
ral infections, have been utilized to minimize the inci-
dence of viral infections and their associated complications
[126]. While there is currently no immunisation for the
most prevalent HRV, vaccines targeting other commonly
detected viruses in COPD are available [127,128]. In-
fluenza vaccines have long been recommended for patients
with COPD, yet the vaccination rates vary globally with
suboptimal overall coverage [129,130]. Evidence indicates
that current-season influenza vaccines moderately reduce
the risk of influenza-associated hospitalizations, COPD ex-
acerbations, and mortality [129,131-134]. Notably, while
current-season vaccination offers modest efficacy, COPD
patients who miss the current season’s vaccine may retain
residual protection from prior vaccinations [133]. These
findings reinforce the annual recommendation of influenza
vaccinations while highlighting the need for more effec-
tive influenza vaccines to enhance outcomes for COPD pa-
tients. In late 2019, the unprecedented COVID-19 pan-
demic (caused by coronavirus) brought about a serious
global health threat, but also significantly accelerated vac-
cine innovation, with COVID-19 vaccines being developed
and available within two years of the first reported case
[135]. COVID-19 vaccines are strongly advised for COPD
patients to prevent COVID-19 infection, reduce risk of hos-
pitalisation and mortality [128,136,137]. More recently,
RSV vaccines have also been approved and recommended
for COPD patients >60 years old as they face greater risk
of severe RSV disease [138]. While not specifically con-
ducted in COPD-only cohorts, the RSV vaccination clin-
ical trials did not exclude COPD patients. The resulting
reports of these trials not only displayed high vaccine ef-
ficacy (>70%) across different age groups and respiratory
infection types, but were also effective against the two ma-
jor antigenic RSV subtypes, A and B[139—-141]. With RSV
being a common virus found in both stable and exacerbated
COPD, these new vaccines provide hope for better protec-
tion against viral infections. Moreover, higher vaccination
rates may alter the incidence of viruses during ECOPD by
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reducing preventable infections, underscoring the impor-
tance of increasing vaccination coverage among COPD pa-
tients to enhance disease management. Beyond direct pre-
vention, vaccines may also indirectly mitigate mixed in-
fections involving non-targeted pathogens, conferring en-
hanced protection [142]. Further research into vaccine ef-
fectiveness in COPD-specific cohorts and its impact on
the respiratory microbiome could offer deeper insights into
host-virus dynamics and vaccine interactions.

2.2.3 Fungi

Although fungi are an uncommon trigger for tradi-
tional ECOPD, mycobiome alterations portending towards
more pathogenic genera have been observed [65,143]. The
external environment is a common source of fungi, with
climatic factors such as air quality and temperature influ-
encing fungal growth and survival [94,144]. Coupling this
with impaired airway structure and defence mechanisms in
COPD patients that facilitates conidial-epithelial cell bind-
ing, colonisation and persistence of pathogenic fungi may
then be promoted [145,146]. Using a broad panel of fungi
allergens, Tiew ef al. [98] found that frequent exacerbators
of COPD have increased fungal sensitisation to crude fun-
gal allergens, Penicillium, A. fumigatus, Curvularia and re-
combinant 4. fumigatus. Further exploration of fungal sen-
sitisation profiles identified two distinct clusters, one char-
acterised by elevated sensitisation to Aspergillus-related al-
lergens that associated with poorer lung function, worse
prognosis and increased exacerbations while the second
cluster had higher symptom burden that was linked to Cla-
dosporium sensitisation [147]. Given that crude allergens
(and not recombinant allergens) are routinely used in clini-
cal practice to measure patients’ sensitisation, findings from
this study thus encourage the use of a more comprehen-
sive allergen panel that includes both crude and recombi-
nant fungal allergens for patient screening and identifica-
tion of those at high clinical risk. The sputum mycobiome
study in COPD further identified increased fungal interac-
tions and Wickerhamomyces in frequent exacerbators [65].
During ECOPD, reduced airway mycobiome diversity with
greater proportions of Penicillium, Cladosporium, Tram-
etes and Lodderomyces was associated with an increased
2-year mortality [65]. Importantly, mycobiomes appear un-
affected by treatments used during ECOPD including sys-
temic steroids and antibiotics, in contrast to that observed in
bacterial microbiomes [65]. Further work assessing inter-
kingdom interactions during ECOPD is required to fully
delineate their emerging role in ECOPD and disease pro-
gression. Comprehensive mycobiome profiling and anal-
ysis during ECOPD is likely beneficial in prognostication
and identification of patients at greater clinical risk of long-
term adverse events.

2.3 Coinfection

Coinfection refers to concurrent presence of two or
more microbial species, either from the same kingdom or
from different kingdoms. In COPD, one of the most im-
portant coinfections involves bacteria and viruses. No-
tably, viruses can precipitate a secondary bacterial infec-
tion following the initial viral infection, leading to syn-
ergistic worsening of airway dysfunction [57,148]. Stud-
ies have reported that up to 60% of viral infections in
COPD are associated with bacterial coinfection, which is
linked to microbial shifts including an increase in Pro-
teobacteria and a decrease in Firmicutes and Bacteriodetes
[63,124,149,150]. At the genus level, these changes cor-
respond to an upregulation of pathogenic species such as
Haemophilus, Moraxella, Pseudomonas and a decline in
Streptococcus, Veillonella and Prevotella [87,150]. Exper-
imental studies using HRV inoculation in COPD patients
further confirmed this observations, demonstrating a sus-
tained increase in pathogenic bacterial load 15 days post-
inoculation which persisted up to day 42, even after viral
loads have lowered, highlighting the prolonged effects of
microbiome alterations through viral infections [150]. The
mechanism underlying the bacterial overgrowth include vi-
ral induction of high sputum neutrophil elastase levels, el-
evated proinflammatory cytokines and reduced antimicro-
bial peptides, creating pro-inflammatory environment that
impairs airway defence and facilitates pathogen colonisa-
tion [121,149,151]. Furthermore, HRV disrupts host ep-
ithelial cell functions and enhance bacterial adherence to
airway epithelium, further promoting bacterial colonisation
and persistence [152—154]. These pathogenic bacteria can
then further promote airway inflammation, resulting in dis-
ease progression.

Apart from the well-established viral-bacterial coin-
fection, interactions between airway bacterial and fungi has
recently been explored. Liu ef al. [155] reported signifi-
cant negative associations between bacteria and fungi when
comparing COPD patients with healthy controls and fre-
quent versus non-frequent exacerbators. Specifically, the
authors found that bacteria Prevotella and Veillonella ex-
hibited an inverse relationship with fungi Candida and As-
pergillus [155]. These perturbations, characterised by loss
of commensals and enriched pathogenic fungi, were no-
tably associated with elevated proinflammatory mediators,
such as IL-6 and IL-8. During ECOPD, Huerta et al. [156]
also found an increased isolation of pathogenic bacteria in
patients with Aspergillus fungal colonisation, with Pseu-
domonas being the most frequently isolated bacterium. Al-
though both studies did not explore mechanistic details of
the coinfection, these findings suggest that bacteria-fungal
interactions play a significant role in airway inflammation
potentially contributing to disease progression.

Importantly, these studies highlight the significant
of inter-kingdom interactions, emphasizing how microbes
from different kingdom (bacteria, fungi and virus) can in-
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teract to influence disease severity, progression and out-
comes. As such, beyond conventional microbiome stud-
ies that focus on the effects of individual kingdom, ap-
proaches focusing on microbial interactions should also be
employed. Such approaches may reveal key microbial re-
lationships that will facilitate our understanding of the un-
derlying disease mechanisms and offer clinical insight that
might be overlooked by using conventional study methods
[157,158].

2.4 COPD Treatment and the Effects on Lung Microbiomes

COPD treatments can further influence the lung mi-
crobiome profiles. Bronchodilator therapy, comprising
long-acting [-agonist (LABA) and/or long-acting mus-
carinic antagonist (LAMA) forms the cornerstone of treat-
ment for patient with stable COPD [52,159]. For individu-
als with high risk of exacerbations (GOLD Group E) and ex-
hibit eosinophilia (>300 cells/uL), GOLD guidelines rec-
ommend the use of inhaled corticosteroids (ICS) in addition
to dual bronchodilator therapy (LABA and LAMA) as the
initial treatment of choice [52]. During follow-up, the ad-
dition of ICS is advised for patient with eosinophil >100
cells/uL and frequent exacerbations. In contrast, ICS is
not recommended for patients with eosinophil counts <100
cells/uL. Low blood eosinophil counts in COPD are asso-
ciated with Proteobacteria-predominant microbiome, par-
ticularly enriched with Haemophilus and indicating neu-
trophilic inflammation [75,160,161]. These patients gen-
erally respond poorly to ICS, as ICS has been shown
to delayed neutrophil apoptosis, prolonging inflammation.
This can lead to excessive release of proteases leading
to tissue damage and impaired host defense against in-
fections, thereby increasing risk of pneumonia [162,163].
The use of ICS in COPD has been associated with alter-
ation in bacterial load, including a dose-dependent increase
in the incidence of pathogenic microbes Haemophilus,
Moraxella and Pseudomonas in the lower airways [164—
166]. Through these microbiome and inflammation studies,
it is observed that ICS use should be avoided in patients with
specific microbiome-inflammation pattern (Proteobacteria-
dominant and low eosinophil counts), highlighting micro-
biome profiling utilization for individualized treatment.
Conversely, patients with eosinophilic airway inflamma-
tion response favorably to ICS with significant reductions
in exacerbations, hospitalisations and improvements in lung
function and quality of life [167]. Furthermore, the micro-
biome appears to be further influenced by type of ICS ad-
ministered. Leitao Filho et al. [168] reported a reduction
in a-diversity and a more pronounced microbial shift, in-
cluding a decrease in Haemophilus abundance, in patients
treated with fluticasone/salmeterol, compared to those re-
ceiving budesonide/formoterol or formoterol alone. Taken
together, these findings highlight that the airway micro-
biome responds differently to ICS therapy, emphasizing the
importance of personalized treatment strategies.
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Macrolides, as an alternative COPD therapeutic,
serves as an add-on treatment for individuals experienc-
ing frequent exacerbations [52,169]. Macrolides’ inher-
ent anti-inflammatory and immunomodulatory properties
confer multiple beneficial airway effects including reduced
bacterial load, attenuated mucus secretion and dampened
inflammation [170,171]. Their use has been shown to de-
crease exacerbations in chronic airway diseases such as
COPD, asthma and bronchiectasis [170,172—174]. Studies
investigating macrolide therapy report shifts in microbial
abundance and a reduction in a-diversity [171,175,176].
Beyond their direct anti-inflammatory effects, macrolides
are hypothesized to indirectly promote the release of anti-
inflammatory bacterial metabolites that account for the
suppression of inflammation in the COPD airway [176].
Of caution, long-term macrolide use may promote an-
timicrobial resistance through enhanced selection of drug-
resistant bacteria including Haemophilus, although, an in-
trinsic presence of macrolide resistance genes has been de-
scribed in healthy individuals, where Streptococcus and
Actinomyces act as the key reservoirs [28,171,175]. While
further studies are needed to better understand the impact
of macrolide use on the airway microbiome in COPD, cur-
rent evidence suggests that despite their therapeutic bene-
fits, prolonged use of macrolides may promote bacterial re-
sistance and adaptation, contributing to persistent bacterial
survival in the airway.

A short course of systemic corticosteroid (5 days) re-
mains the primary treatment for ECOPD and is often com-
bined with antibiotics in cases of bacterial-associa-ted exac-
erbations or severe exacerbations requiring ventilatory sup-
port. Systemic corticosteroid use has been associated with
reduced bacteriome diversity, and enrichment of Proteobac-
teria, while the reverse was observed in antibiotic therapy,
with or without corticosteroid during ECOPD [73,177].

Beyond conventional clinical treatment, other inter-
vention approaches can target respiratory microbiomes. A
rapidly evolving field in microbiome-related therapy is
probiotics, that has now extended beyond its initial use
in gastrointestinal diseases [178]. In COPD, KavianFar
et al. [179] utilised a meta-analysis approach to reveal
Lactobacillus and Bifidobacterium as two potential pro-
biotic therapeutic candidates since both bacteria not only
correlated positively and found in decreasing abundance
with increasing disease severity, but also negatively corre-
lated with Neisseria and Haemophilus, known pathogens in
COPD. While this finding indicates a promising potential
for probiotics in COPD, more research and clinical stud-
ies investigating the effects of probiotics on respiratory mi-
crobiome will be necessary before application. Meanwhile,
phage therapy, which uses the bacterial-specific lytic action
of bacteriophages (viruses), offers another promising ther-
apeutic avenue, especially in an era of increasing antimi-
crobial resistance. Current evidence in COPD stems from a
case report detailing provision of phage therapy with con-
current antibiotics to a hospitalised COPD patient in res-
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piratory failure with positive culture of hospital-acquired
Carapenem-resistant Acinetobacter baumannii. After a
week of treatment, cultures turned negative along with im-
provements in lung function, indicating a beneficial re-
sponse to the treatment provided [180]. Despite its poten-
tial, the field of phage therapy remains at a nascent stage
clinically due to a lack of comprehensive studies and chal-
lenges, including phage-resistant bacteria, potential alter-
ations on host microbiome and lack of regulatory oversight
[181].

2.5 COPD Overlap Syndromes and the Lung Microbiome

It is now recognized that COPD commonly ‘overlaps’
with other respiratory disease states such as asthma and
bronchiectasis, resulting in asthma-COPD overlap (ACO)
and bronchiectasis-COPD overlap (BCO) which contribute
to the observed heterogeneity of the COPD endopheno-
type seen in clinical practice [182,183]. Such overlap syn-
dromes associate with poorer outcomes and add complex-
ity to diagnosis and treatment, underlining a continued need
for refined stratification with a focus on precision medicine
[182,184-186] (Fig. 2, Ref. [52,182,187-195]).

2.5.1 Asthma-COPD Overlap

Clinically, ACO is difficult to diagnose due to the
lack of a clear definition, compounded by the heterogene-
ity of both conditions and their overlapping clinical fea-
tures [194,196]. A roundtable discussion by global ex-
perts was held, resulting in a consensus definition based on
three major criteria: (1) post bronchodilator forced expira-
tory volume in one second over forced vital capacity ratio
(FEV1/FVC) <0.7 or lower limit of normal (LLN) in indi-
vidual >40 years of age, (2) at least 10 pack years smok-
ing history or equivalent indoor or outdoor pollutant expo-
sure and (3) documented history of asthma <40 years old or
bronchodilator reversibility in FEV; of more than 400 mL,
and at least one of the following minor criteria: (1) atopy
or allergy rhinitis history, (2) bronchodilator reversibility
on two or more visits and (3) peripheral blood eosinophil
count >300 cells/mL [192]. However, the expert panel em-
phasised that these criteria are arbitrary and require further
validation. On the other hand, GOLD and GINA offer a
descriptive approach to ACO for clinical use characteriz-
ing it as “airflow limitation with several features associ-
ated with asthma and several features with COPD” [197].
Despite the variability in definitions used across studies,
ACO patients are consistently associated with worse clin-
ical outcomes compared to those with COPD or asthma
alone [198]. These include poorer lung function, higher
symptoms burden, increased frequency of exacerbations,
healthcare utilisation and mortality [188,194,195,199].

Given the heterogeneity and unclear pathophysiology
of ACO, several studies have explored the use of respiratory
microbiome to better characterize this condition. Most of
these studies focused primarily on bacterial, and to a lesser

extent, fungal alterations. Research on viral involvement
in ACO remains limited. Relative to patients with COPD
alone, patients with ACO have significantly lower abun-
dance of Fusobacterium and Porphyromonas. Notably, a
decrease in the abundance of Porphyromonas was associ-
ated with elevated levels of Fractional Exhaled Nitric Oxide
(FeNO), indicating a greater degree of airway inflammation
[200]. Additionally, greater abundance of Haemophilus
and Pseudomonas found in ACO patients has been linked
to higher mucus plug scores [201]. Further alterations in
the airway microbiome were reported during ACO exac-
erbations, with a decrease in bacteriome richness, increase
in evenness and abundance of Prevotella [196]. Although
bacteriome changes in ACO are increasingly being stud-
ied, research exploring mycobiome changes remains scarce.
Nonetheless, a study found that prevalence of 4. fumigatus
sensitisation was higher in ACO patients compared to pa-
tients with asthma alone, although this difference did not
reach statistical significance. This finding suggests a po-
tential role of 4. fumigatus in ACO which could have impli-
cations for screening and management [202]. While more
studies into ACO and its biomarkers are necessary to im-
prove our current understanding of ACO, the combinations
of ICS and LABA remains the recommended treatment op-
tions for ACO patients as LABA prescription alone is re-
ported to increase the risk of hospitalisation and mortality
[198,203].

2.5.2 Bronchiectasis-COPD Overlap

Similarly, the overlapping clinical features and lack
of unifying definition of BCO has led to a wide variabil-
ity in the reported prevalence, ranging from 4% to 70%
across different studies [204-206]. To address this, the ra-
diology, obstruction, symptoms and exposure (ROSE) cri-
teria, incorporating radiological findings (R), airflow ob-
struction (O), symptom severity (S), and exposure to smok-
ing or toxic air history (E), offers a more objective diagnos-
tic framework [193]. Using this criterion, Polverino et al.
[191] reported a high rate of COPD overdiagnosis in a large
cohort of patients with primary bronchiectasis. The study
also reported that patients who met the ROSE criteria had
worse clinical outcomes, including an increased risk of ex-
acerbation and hospitalisation compared to bronchiectasis-
only patients [191]. Their findings aligned with previ-
ous studies depicting poorer lung function, increased ex-
acerbations, greater disease severity, higher mortality and
more frequent isolation of pathogenic microbes in BCO pa-
tients relative to patients with either COPD or bronchiec-
tasis alone [52,190,205]. Huang et al. [182] reported an
important, albeit ‘partial overlap’ between the microbiome-
proteome profiles of stable COPD and BCO. In the BCO
group, there was an increase in Proteobacteria and a de-
creased Firmicutes and Bacteroidetes, alongside the up-
regulation of proteins involved in the ‘neutrophil degran-
ulation’ pathway, suggestive of potential pathophysiolog-
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Asthma-COPD overlap syndrome (ACO)
All 3 major criteria

1. Persistent airflow limitation in 1.
patients =40 years old;

equivalent air pollution exposure;
3. Documented asthma before 40

Bronchiectasis-COPD overlap syndrome (BCO)

At least 1 minor criteria
Documented history of atopy
or allergic rhinitis

Diagnostic criteria 2. 210 smoking pack years/ + 2. Bronchodilator response of
>200ml in FEV1 and 12% from
baseline values on 22 visits

ROSE criteria:
Radiological findings (R);
Obstruction of airway (O);

Symptoms severity (S);
Exposure to smoke/toxic agents (E)

years old/bronchodilator 3. Peripheral blood eosinophil

response of >400ml in FEV1

count of 2300cells/uL

Reported microbial
differences compared to COPD

Haemophilus, Pseudomonas , Prevotella,
Fusobacterium , Porphyromonas, Aspergillus

Pseudomonas , Haemophilus, Aspergillus

Reduced lung function

Clinical and health outcomes
compared to COPD alone

Higher mortality

Greater clinical symptoms
Increased frequency of exacerbations

Greater disease severity
Reduced lung function
Increased risk of exacerbations
Higher mortality
More frequent isolation of pathogenic microbes

Fig. 2. Summary of the diagnostic criteria and key microbial differences with associated clinical and health outcomes in asthma-
COPD overlap (ACO) and bronchiectasis-COPD overlap (BCO). FEV1, forced expiratory volume in one second; ROSE, radiology,
obstruction, symptoms and exposure. Created in BioRender (https://BioRender.com). Information on diagnostic criteria and clinical

outcomes synthesized from references [52,182,187-195].

ical differences between the entities [182]. Similarly, a
separate study reports a substantial increase in the abun-
dance of the Proteobacteria, specifically Pseudomonas and
Haemophilus in BCO with the latter persist across both sta-
ble and exacerbation states when compared to COPD with-
out bronchiectasis [109,205,207].

Beyond alterations in bacteriome, the role of the my-
cobiome in BCO remains less explored. Using culture
and PCR techniques combined with sputum galactoman-
nan testing, Everaerts et al. [208] reported higher sputum
galactomannan levels and an increased abundance of A4. fu-
migatus in BCO patients compared to COPD patients with-
out bronchiectasis. A separate study evaluating the associa-
tion of BCO, COPD and Aspergillus sensitisation found that
BCO patients experience more frequent episodes of allergic
bronchopulmonary aspergillosis (ABPA), and BCO-ABPA
is clinically more severe compared to ABPA in COPD or
bronchiectasis without overlap [93,209]. While current re-
search in BCO highlights the clinical relevance of specific
microbes, further investigations into BCO-specific mecha-
nisms, particularly microbiome-host interactions is needed
to develop more effective diagnostic, management and ther-
apeutic strategies for this patient group.

In addition to asthma and bronchiectasis overlap,
COPD patients with other comorbidities, including cardio-
vascular disease and previous pulmonary tuberculosis (ex-
TB) also experience poor outcomes, such as more frequent
exacerbations and higher mortality [64,210-212]. Notably,
cytokine profiling on a large, multicentered cohort of Asian
Chinese reveal a highly intricate cytokine network in a
novel cluster of stable COPD patients with ex-TB com-
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pared to patients with other comorbidities [209]. Specif-
ically, cytokines involved in tissue inflammation and air-
way remodeling such as TNF and platelet-derived growth
factor (PDGF), were found to be more prominent in the ex-
TB group. These findings suggest that even after clinical
resolution, TB-recovered patients may experience a “mem-
ory effect” of the disease, leading to irreversible structural
lung damage and pulmonary obstruction, which increases
the risk of COPD progression and worse outcomes [64,2 13—
215]. Taken together, COPD patients with co-existing con-
ditions are highly complex and further studies are required
to explore the role of microbiome in these settings including
its interaction with host and systemic inflammation.

3. Future Directions

Understanding microbiomes must move beyond
single-kingdom assessment and evaluating inter-kingdom
and even inter-organ interactions will be essential in
providing novel and translatable clinical insight for COPD
endophenotyping, therapeutic intervention and patient
prognostication [158,216].  Inter-kingdom assessment
by microbial integration and co-occurrence analysis of
bacterial, fungal and viral microbiomes demonstrates
significant clinical utility for risk profiling exacerbations
in bronchiectasis. Our group have identified significant
changes in microbial interactions (“the interactome™)
across bacteria, viruses and fungi in frequent exacer-
bators with bronchiectasis, changes undetectable when
studying individual microbial kingdoms [158]. Future
work in COPD should explore “interactomes” to refine
risk-profiling COPD exacerbators.
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Emerging evidence highlight a role for inter-organ
axis, including the gut-lung axis, where microbial crosstalk
occurs between these two anatomically and physiologically
distinct organ sites. The gut microbiome and its metabo-
lites influence COPD disease progression through vari-
ous immune and neuroendocrine signaling pathways [217—
220]. Key metabolites including lipopolysaccharides, short
chain fatty acids (SCFAs), trimethylamine-N-oxide, phy-
tohemagglutinin and peptidoglycan are all implicated, al-
though their clinical utility in COPD remains unexplored.
Nevertheless, beneficial microbes in probiotics, which sup-
port a healthy gut microbiome and the production of these
metabolites, have demonstrated anti-inflammatory proper-
ties, and symptomatic improvement in COPD [221-224].
Similarly, SCFAs derived from the gut microbial fermen-
tation of dietary fiber supplementation have demonstra-
ble anti-inflammatory effects and symptom alleviation in
COPD [225]. Further, therapeutic alteration of the gut mi-
crobiome via fecal microbiota transplantation (FMT) ex-
hibits promising anti-inflammatory effects, reduces cell
apoptosis and even emphysema in mouse models [226—
228]. Taken together, therapeutic modulation of the gut mi-
crobiome through oral dietary supplements and FMT offers
a promising avenue for exploration in the future manage-
ment of COPD [229].

The lung-brain axis similarly represents an evolving
paradigm although work involving the role and influence
of microbiome remains in its infancy [230]. Indeed, res-
piratory infections can increase the permeability of blood-
brain barrier to immune cells and induce neuroinflamma-
tion leading to neuronal cell death of the brain, thereby illus-
trating immune mediated cross-talk between lung and brain
[231,232]. Respiratory infections have also been associ-
ated with increased risk of ischemic stroke [233], where
bacterial lipopolysaccharides (LPS) triggers systemic in-
flammation and blood clotting [234,235]. Notably, COPD
and air pollution elevates stroke risk whereby systemic in-
flammation and oxidative stress results in vascular dysfunc-
tion [236-238]. More recently, the lung microbiome has
been shown to regulate brain autoimmunity in rats where
neomycin-mediated modulation for the enrichment of LPS-
producing microbes suppressed neuroinflammation asso-
ciated with the development of autoimmune disease in-
cluding multiple sclerosis [239]. Exposure to air pollutant
Ozone (O3) has also been shown to be implicated in neu-
ropathology of Alzheimer’s Disease (AD) whereby phago-
cytic clearance of amyloid-S plagues by microglial cells
is impaired upon Oz exposure in AD-mice models [240].
These findings demonstrate the emerging paradigm of a
lung-brain axis and potentially converging with the gut to-
wards a highly complex lung-gut-brain axis. Its role and
implications in COPD pathophysiology serve as new av-
enues for future work.

The emerging role of microbial metabolites in organ-
organ crosstalk should therefore also prompt the integra-
tion of microbiome with metabolomics alongside clini-
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cal characteristics to further delineation of endophenotypes
[60,241]. Such integrative analysis should also extend
to incorporate multi-omics approaches encompassing pro-
teomics and lipidomics in a systems biology approach could
also identify novel pathobionts, further delineating the mi-
crobiome across the spectrum of pathogen, pathobiont and
commensals as have been demonstrated in other chronic
respiratory disease namely bronchiectasis [242,243].

The role of the environment in COPD disease patho-
physiology represents an additional and emerging frontier,
with evidence demonstrating close relationships between
environmental parameters and the airway microbiome in
relation to negative clinical consequence [94,98,244]. Ge-
ographic and seasonal variation in microbiomes are docu-
mented across various organ systems including the lungs,
reflective of the environmental influence on microbiome
composition [93,113,115,125,245-247]. Given the con-
stant exchange of air between lungs and the environment,
the effects of the exposome, including climate and air mi-
crobiome, on the COPD lung microbiome and disease pro-
gression warrants further investigation as we enter the era
of climate change [248].

4. Conclusion

The advent of NGS has revolutionized our understand-
ing of the lung microbiome in COPD, demonstrating the re-
markable microbial heterogeneity and trajectory across var-
ious disease states—from mild-moderate and stable phases
to acute exacerbations—and highlighting its potential clin-
ical value for early disease detection, patient stratification
for personalised treatment approaches, and prognostic as-
sessment of disease severity, exacerbations and mortality.
Investigating these microbial ‘switches’ could further un-
cover underlying mechanisms driving COPD progression
and pave the way for targeted therapeutic interventions
to halt disease progression. Furthermore, the microbiome
holds potential for endotyping overlap syndromes, thereby
delineating heterogeneity and improve diagnosis.

Crucially, the translational implementation of NGS-
approaches to bedside application in COPD will need to
overcome several challenges. Areas requiring focus include
standardization of sample collection and processing, time-
liness of result availability, complexity and interpretability
of bioinformatic requirements and infrastructural and se-
quencing costs [249,250]. The constantly evolving field
of bioinformatics to analyze sequencing data may further
impede the ‘true’ implementation of standardized work-
flows for NGS. Accepted workflows in clinical settings typ-
ically require robust validation before routine implemen-
tation, and the dynamic nature of informatics needs to be
carefully considered.

Key Points

e Perturbations of the airway microbiome occur across
mild to severe stages of COPD, characterized by reduced
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diversity and enrichment of pathogenic microbes such as
Haemophilus, Moraxella and Pseudomonas.

e Microbial composition changes based on therapy ad-
ministered, underscoring the importance of personalized
treatment approaches in COPD.

e Viruses are frequently detected in COPD and contribute
to persistent airway inflammation, disease progression,
and exacerbations, with co-infection further worsening
clinical outcomes.

e Vaccination (influenza, RSV and COVID-19) play a key
role in mitigating the burden of virus-associated exacer-
bations and complications, emphasizing a need to prior-
itize and enhance vaccine coverage in COPD manage-
ment.

e COPD mycobiome varies geographically, is influenced
by environmental factors, and their alterations associate
with key clinical outcomes, suggesting potential for its
use in improving disease stratification.

e COPD often overlap with asthma (ACO) and bronchiec-
tasis (BCO), leading to more severe disease, greater
complexity in diagnosis and management, with ob-
served microbiome alterations and immune dysregu-
lation, highlighting the need for further research on
microbiome-host interactions.
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