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Abstract

The Rho GTPase and Rho kinase (ROCK) signaling pathway is essential for cellular mechanics, acting as key regulators of the actin cy-
toskeleton and actomyosin contractility in various cell types and tissues. Rho GTPases, functioning as molecular switches, and ROCKs,
their primary downstream effectors, influence vital cellular processes such as cell shape, movement, growth, and gene regulation. This
review explores how this pathway maintains tissue tone, especially its significant role in regulating trabecular meshwork (TM) contrac-
tility. It also highlights the critical part of the Rho-ROCK pathway in precisely managing intraocular pressure (IOP). Dysregulation of
Rho/ROCK signaling is a known factor in increased aqueous humor (AH) outflow resistance, a major cause of glaucoma, which is a lead-
ing cause of irreversible blindness worldwide. The review discusses the molecular mechanisms behind these processes, illustrating how
the pathway affects the contractile behavior of tissues in the AH outflow pathway—including the TM and Schlemm’s canal (SC)—by
directly impacting actomyosin dynamics and extracellular matrix (ECM) remodeling. It also examines the extensive interaction between
Rho/ROCK and other vital signaling pathways such as MAPK/ERK and serum response factor (SRF), emphasizing its integrated role
within the complex cellular signaling systems in the AH drainage pathway. This comprehensive discussion concludes by highlighting
the promising therapeutic potential of Rho kinase inhibitors (RKIs) as a new class of drugs for glaucoma. These agents not only ef-
fectively lower IOP but also show emerging neuroprotective properties, with broader implications for other eye and systemic diseases.
Understanding this pathway—from its molecular structure to clinical applications—provides a strong foundation for future research and
the development of more precise interventions.

Keywords: rho GTP-binding proteins; rho-associated kinases; actin cytoskeleton; extracellular matrix; trabecular meshwork; glaucoma;
intraocular pressure

1. Introduction: The Ubiquitous Role of Rho
GTPases and Rho Kinases in Cellular
Dynamics

The Rho family of proteins constitutes a critical class
of small guanosine triphosphate (GTP)-binding proteins,
approximately 20-25 kilodaltons (kDa) in size, that are in-
tegral members of the broader Ras superfamily [1,2]. Of-
ten referred to as “GTP enzymes” due to their inherent GT-
Pase activity, these proteins function as molecular switches
[3]. Their regulatory capacity stems from their dynamic cy-
cling between an active, GTP-bound state, typically local-
ized at the plasma membrane, and an inactive, GDP-bound
state, predominantly residing in the cytoplasm. This con-
formational shift upon GTP binding enables them to inter-
act with and activate a diverse array of downstream effector
molecules [4,5].

These Rho proteins include about 20 members, as
shown in Table 1 (Ref. [6-23]). Among them, RhoA, Racl,
and Cdc42 are the most studied, each affecting the actin cy-
toskeleton [2,24-26]. RhoA primarily promotes the assem-
bly of actin stress fibers and focal adhesions, which are cru-
cial for cell adhesion and tension generation [27]. In con-

trast, Racl controls the formation of lamellipodia and mem-
brane ruffles, which are essential for cell migration [28,29].
Cdc42 mainly governs the formation of actin microspikes
and filopodia, structures important for cell sensing and ex-
ploration [30-32].

Beyond their well-documented roles in cytoskeletal
reorganization, Rho GTPases are essential to various fun-
damental cellular processes. These include establishing and
maintaining cell polarity, regulating cell adhesion, orches-
trating cell motility and migration, facilitating vesicle trans-
port, developing and maintaining synaptic structures, sup-
porting wound healing, and executing cytokinesis [33—39].
Their widespread involvement emphasizes their critical role
in maintaining cellular integrity and function across diverse
biological contexts.

Rho-associated protein kinases (ROCKs), specifically
ROCKI1 and ROCK2, are the best-known and most stud-
ied downstream effectors of the small GTP-binding pro-
tein Rho, especially RhoA [40]. The ROCKs are ser-
ine/threonine kinases with a molecular mass of about 160
kDa, and they play a crucial role in mediating RhoA in-
duced reorganization of the actin cytoskeleton [40]. The
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Table 1. List of Rho GTPase and their functional role in cellular level.

Rho GTPase family = Rho GTPases subfamilies Functions Reference
1 RhoA Actin myosin contraction, stress and fiber formation [6]
2 Rho subfamily RhoB Cell adhesion and migration [7]
3 RhoC Migration and invasion [8]
4 RhoH subfamily RhoH TCR activation [9]
5 Racl JNK activation, actin filament stabilization, PIP3 level [10]
6 . RaclB Cellular transformation [11]
Rac subfamily i
7 Rac2 B cell adhesion [12]
8 Rac3 Regulation of cell adhesion and differentiation [13]
9 RhoG Microtubule dependent transport [14]
10 . Cdc42 Actin organization [15]
Cdc42 subfamily . . . .
11 RhoQ (TC10) Actin organization, vesicular trafficking [16]
12 Rhol (TCL) Stabilization of focal adhesion [17]
13 . RhoD Growth cone formation [18]
RhoD/F subfamily . . L
14 RhoF (Rif) Actin organization [18]
15 . RhoU (Wrch) Cell shape and cell adhesion [19]
RhoU/V subfamily .
16 RhoV (Chp) Cell shape and cell adhesion [19]
17 Rnd1 Microtubule depolymerization [20]
18 Rnd subfamily Rnd2 Neurite branching [21]
19 Rnd3 (RhoE) Loss of stress fibers [22]
20 RhoBTB1 Not well characterized but like RhoBTB2 [23]
21 Rho BTB subfamily RhoBTB2 Tumor suppresor [23]
22 RhoBTB3 Vesicle trafficking, tumor suppresor [23]

functions of ROCKs are diverse, affecting many cellular
processes such as contraction, motility, proliferation, apop-
tosis, cell shape, secretion, and gene expression [41—44].
The RhoA/ROCK pathway is one of the two main pathways
controlling smooth muscle contraction, working alongside
myosin light chain kinase activated by calmodulin. They
work together by affecting the phosphorylation state of the
myosin light chain (MLC) [45,46]. It is a key regulator of
actomyosin contractility, which is essential for force gener-
ation in processes like cell movement and muscle contrac-
tion.

Rho GTPase and ROCK signaling are crucial and
found throughout various biological systems. By establish-
ing their role as fundamental regulators of cellular mechan-
ics, particularly actomyosin contractility, we will provide
details on their role in the mechanism of tissue contractility,
the regulation of intraocular pressure (IOP), and the impli-
cations for ocular diseases, notably glaucoma.

2. Key Rho GTPase Members and ROCK
Isoforms

RhoA, Racl, and Cdc42 are the most thoroughly stud-
ied members of the Rho GTPase family, each playing
unique yet interconnected roles in organizing the actin cy-
toskeleton and related cellular processes [47]. Their spe-
cific functions are summarized in Table 2.

ROCK1 and ROCK2, the two isoforms of Rho ki-
nase, share significant structural homology, with about 65%
overall amino acid identity [48]. However, they differ in

their cellular localization and activation mechanisms. For
example, ROCK1 is mainly found in the cytosol, while
ROCK?2 can be located in both the cytoplasm and nucleus,
often co-localizing with actin and vimentin filaments [43].
Despite their structural similarities and often shared down-
stream substrates, ROCK1 and ROCK2 do not fully com-
pensate for each other’s loss. This indicates they have dis-
tinct or non-redundant functions in certain developmental
or disease contexts, such as the known role of ROCK2 in
blastocyst development [49,50]. Their different expression
patterns and activation processes contribute to the complex
regulation of cellular functions [48].

3. Molecular Architecture and Regulation of
Rho GTPase and Rho Kinase Signaling

The structure and regulation of Rho GTPases and Rho
kinases enable them to control cellular processes precisely.
Understanding these structural and functional details is es-
sential for appreciating their roles as molecular switches
and effectors.

3.1 Structural Domains of Rho GTPases

Rho GTPases are monomeric proteins (~20 kDa) char-
acterized by a conserved core G domain [51-53]. This G
domain is a defining feature of the Ras-like GTPase super-
family and contains five conserved sequence motifs (G1—
G5) that are essential for binding and hydrolysis of guanine
nucleotides. The G1 motif, or the P-loop, is crucial because
it coordinates the 5-phosphate of the bound nucleotide and
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Table 2. Major Rho GTPase family members, their main cellular functions, and key effectors.

Rho GTPase member Primary cellular functions Major effectors
RhoA Formation of actin stress fibers and focal adhesions, actomyosin con- Rho-associated protein kinases (ROCKI,
tractility, cell motility, cell proliferation, apoptosis, regulation of vas- ROCK2), mDia (formin family)
cular tone, glucose uptake (via GLUT4 translocation)
Racl Formation of lamellipodia and membrane ruffles, cell migration, cell WAVE, Arp2/3 complex
polarity, synaptic development and maintenance, force-dependent
growth of adherens junctions
Cdc42 Formation of actin microspikes and filopodia, cell polarity, synaptic =N-WASP, Arp2/3 complex

development and maintenance, cytokinesis, cell migration

the Mg?* ion, both of which are necessary for nucleotide
binding. RhoA, RhoB, and RhoC share identical sequences
in this critical region [53,54]. Experimental modifications
of this motif, such as the Gly14Val mutation in RhoA/B/C,
can make the protein constitutively active, effectively in a
“GTP-locked” state [52,55,56]. Conversely, the Thr19Asn
mutation in these isoforms results in low nucleotide affinity,
leading to a dominant-negative phenotype. These mutants
are frequently used in biochemical and cell biological stud-
ies to identify specific interaction partners and explore the
biological functions of these GTPases [52,57,58].

The isoforms RhoA, RhoB, and RhoC also share iden-
tical sequences in their switch I (residues 2743 in RhoA)
and switch II regions (residues 57-68), with only minor
variations at positions 29 and 43 within switch I [52,59—
61]. These subtle differences can significantly influence
the binding affinity of RhoGEFs and downstream effec-
tors. These switch regions undergo substantial conforma-
tional changes upon GTP binding, which is the molecular
basis for the active Rho GTPase to engage with its down-
stream effectors. A highly conserved glutamine residue
(GIn63 in RhoA/B/C) located within the switch II region is
vital for coordinating the nucleophilic water molecule rela-
tive to the GTP ~y-phosphate, thus facilitating both intrinsic
and GAP-catalyzed GTP hydrolysis [62—64]. Mutations at
this residue, such as to leucine or alanine, can make a Rho
GTPase constitutively active by impairing GTP hydrolysis
[65-67]. Additionally, the carboxy terminus of Rho GT-
Pases typically features a common domain, including a cys-
teine residue, which undergoes essential post-translational
modifications like prenylation [54,68,69]. This modifica-
tion is crucial for their proper localization to the plasma
membrane, a prerequisite for their active state.

3.2 Mechanisms of Activation and Inactivation

Three main classes of proteins orchestrate the dynamic
regulation of Rho GTPase activity.

3.2.1 Guanine Nucleotide Exchange Factors (GEFs)

These proteins act as positive regulators, facilitating
the activation of Rho GTPases by catalyzing the exchange
of their bound GDP for GTP. The Dbl homology (DH) do-
main within GEFs is specifically responsible for this gua-
nine nucleotide exchange activity [70,71].
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3.2.2 GTPase-activating Proteins (GAPs)

Acting as negative regulators, GAPs speed up the nat-
ural GTPase activity of Rho GTPases, aiding in the break-
down of bound GTP into GDP. This results in the inactiva-
tion of the protein and the ending the signal transduction.
GAPs have a conserved catalytic Rho GAP domain [72].

3.2.3 Guanine Nucleotide Dissociation Inhibitors (GDIs)

GDIs play a crucial role by inhibiting the dissociation
of GDP from Rho GTPases, thereby stabilizing their inac-
tive GDP-bound state and sequestering them in the cyto-
plasm [73,74]. They also regulate Rho GTPases by binding
to their isoprenyl groups, facilitating their extraction from
membranes and thus controlling their localization and ac-
tivity [75,76].

Beyond these core regulatory proteins, post-
translational modifications (PTMs) significantly increase
the complexity of Rho GTPase signaling. While prenyla-
tion is essential for plasma membrane localization, other
PTMs such as phosphorylation, ubiquitination, and palmi-
toylation affect the stability and spatial distribution of Rho
GTPases [47,77,78]. For ROCKs, autophosphorylation of
ROCKI1 at Ser1333 and ROCK2 at Ser1366 indicates their
activation status, and phosphorylation at other specific
sites, including ROCK2 Thr967, can further enhance their
activity [79,80].

Spatiotemporal precision is crucial for regulating Rho
GTPase [81,82]. Carefully adjusting Rho GTPase activ-
ity across different cellular locations is vital for achiev-
ing specific biological effects. This dynamic spatiotem-
poral activation is often managed by GEF and GAP com-
plexes that interact with various proteins, including com-
ponents of the cytoskeleton, focal adhesion proteins, adap-
tors, and Rho GTPase effectors [83]. Such flexible con-
trol allows for the diverse and context-specific cellular re-
sponses observed, ensuring Rho GTPase activity matches
cellular needs. Furthermore, Rho-independent activation
mechanisms for ROCKs, like caspase cleavage, add an ex-
tra layer of complexity, signaling alternative pathways that
could be targeted therapeutically or may contribute to dis-
ease independently of Rho GTPase activity. Understanding
these mechanisms is essential for developing precise inter-
ventions.
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3.3 Structural Domains of ROCKs

The ROCKs, ROCKI1 and ROCK2, are ser-
ine/threonine kinases that belong to the AGC family
of kinases [43,48,84,85].  Structurally, both ROCKI1
and ROCK2 consist of an N-terminal kinase domain, a
central coiled-coil domain containing the Rho-binding
domain (RBD), and a C-terminal auto-inhibitory region
[86]. Although their kinase domains are highly similar
(92% amino acid identity), their coiled-coil domains are
more different (52% homology), which may explain their
distinct functional roles [48].

The C-terminal region of ROCKs functions as an auto-
inhibitory domain by directly interacting with the kinase in-
terface [87]. Removing this inhibitory part results in con-
stant kinase activation both in vitro and in vivo [88,89]. The
main way ROCK gets activated involves the binding of ac-
tive GTP-bound Rho (such as RhoA) to the RBD [90]. This
binding breaks the auto-inhibition, causing a shape change
that leads to an active, “open” form of the kinase domain
[86]. Besides Rho-GTP binding, ROCKs can also be ac-
tivated through mechanisms that do not depend on Rho.
ROCKI can be activated by cleavage through caspase-3
[91], while ROCK2 can be activated by granzyme B and
caspase-2 cleavage [92], both of which produce always-
active kinase fragments.

4. Rho/ROCK Signaling in General Tissue
Contractility

The Rho/ROCK signaling pathway is a key regulator
of cell and tissue contractility, orchestrating the dynamic
interaction of the actomyosin cytoskeleton across various
cell types, as shown in Fig. 1. Its role spans from essential
cellular processes to the overall function of tissues.

4.1 Detailed Mechanisms of Actomyosin Contractility

ROCKs are essential in promoting actomyosin con-
tractile force generation, mainly by increasing the phospho-
rylation of the regulatory light chain of myosin II (MLC2)
(Fig. 1). This occurs through a dual mechanism.

4.1.1 Inhibition of Myosin Light Chain Phosphatase
(MLCP)

Activated ROCKs
PPP1R12A/MYPT1 subunit of myosin light chain
phosphatase (MLCP). This phosphorylation inhibits
MLCP activity, thereby reducing the dephosphorylation
of MLC and leading to sustained, elevated MLC phos-
phorylation and prolonged contraction [93-95]. ROCKs
can also phosphorylate CPI-17 (Protein Kinase C Poten-
tiated Phosphoprotein Phosphatase 1 Inhibitor), which
further contributes to MLCP inhibition and enhances Ca?*
sensitization of smooth muscle contraction [1,2,66,96-98].

phosphorylate the

4.1.2 Direct MLC Phosphorylation

In addition to inhibiting MLCP, ROCKs can directly
phosphorylate MLC. This direct phosphorylation stimu-
lates actomyosin ATPase activity, which is a key step in ini-
tiating contraction, and contributes to Ca?*-sensitization of
smooth muscle contraction and stress fiber formation [99—
104].

Beyond direct myosin regulation, ROCKs also in-
fluence actin filament dynamics through the LIM Kinase
(LIMK) and Cofilin pathway [105,106]. ROCKSs phos-
phorylate and activate LIM kinases (LIMK1/2). In re-
sponse, activated LIMK phosphorylates and inhibits the
actin-severing protein cofilin. By preventing cofilin from
severing actin filaments, this pathway promotes actin poly-
merization and increases the stability of actin filaments,
thereby contributing to stress fiber formation. Addition-
ally, active RhoA facilitates actin filament polymeriza-
tion by binding to and activating mDial, a member of the
formin family of actin nucleating factors [107]. The com-
bined effects of these mechanisms—MLC phosphorylation,
MLCP inhibition, the LIMK/cofilin pathway, and mDia
activation—Ilead to a substantial increase in the contractile
force exerted by myosin II on actin filaments. This results
in enhanced stress fiber formation, robust actin filament
growth, and stabilization of the actin cytoskeleton. Collec-
tively, these molecular events support the cell and tissue’s
ability to generate mechanical force and maintain structural
integrity [27,108].

The diverse array of direct and indirect targets of
ROCK moving beyond just the core contractile machinery
to include proteins involved in actin dynamics, intermediate
filament organization, and even signaling proteins is shown
in Table 3 (Ref. [46,103-105,107,109—125]). This com-
prehensive overview demonstrates the pleiotropic nature of
ROCK signaling and how it orchestrates a wide range of
cellular functions.

4.2 Role in Smooth Muscle Contraction

The Rho/ROCK pathway is a key, calcium-
independent regulator of smooth muscle contraction,
playing an important role in various systems. Its role in
the cardiovascular system has been studied extensively
[126,127]. It modulates MLC phosphorylation, thus con-
tributing to agonist-induced Ca?*-sensitization in smooth
muscle contraction. This means that even at constant
intracellular calcium levels, activating the Rho/ROCK
pathway can enhance the contractile response. Excessive
or prolonged activation of RhoA and/or ROCKs can cause
hypercontraction. This pathological state leads to different
vascular problems, including age-related hypertension,
arterial stiffening, and vasospasm in coronary and cerebral
arteries [127]. ROCK activity is also essential for main-
taining myogenic tone, the inherent contractile activity of
blood vessels, and the tonic component of vascular smooth
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Fig. 1. Activation and functional role of RhoA in actin polymerization and actomyosin contraction. Created in BioRender™.
GEF, Guanine Nucleotide Exchange Factor; GAP, GTPase-activating Protein; RBD, Rho-binding domain; LIMK, LIM Kinase; MLCP,

Myosin Light Chain Phosphatase; MLC, Myosin Light Chain.

muscle cell contraction in various vascular beds, ensuring
proper regulation of blood flow [128-130].

4.3 Role in Non-Muscle Cell Contractility

In non-muscle cells, ROCKSs control a diverse range of
cellular processes that are intimately dependent on actin cy-
toskeleton organization and cell contractility [126]. These
include cell-matrix and cell-cell adhesion, cell migration,
neurite retraction and outgrowth, and cytokinesis. Acto-
myosin contractility, driven by Rho/ROCK signaling, is a
key determinant for various forms of cell migration and in-
vasion, including cancer cell metastasis [131]. High levels
of RhoA/RhoC or ROCK-driven actomyosin contractility
can promote amoeboid motility, a rapid mode of cell move-
ment. Rho/ROCK signaling also plays important roles in
tissue morphogenesis during development, as evidenced by
its influence on eye and wing development in Drosophila
[132]. In the context of wound healing, Rho and Cdc42 are
essential for the stabilization of the actomyosin ring, while
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Rac is required for actin mobilization towards the wound
site, highlighting the cooperative nature of Rho GTPases
in this process [133]. Beyond contractility, Rho/ROCK
signaling influences other fundamental cellular functions
such as cell proliferation, differentiation, and apoptosis
[134,135].

4.4 Mechanotransduction: How Mechanical Forces
Influence Rho/ROCK Activation

Cells are constantly exposed to and respond to various
mechanical forces, which can originate externally, includ-
ing fluid shear stress on endothelial cells, compression on
skeletal cells, or internally generated by the contractile actin
cytoskeleton [136—138]. These mechanical forces trigger
multiple signaling pathways, many of which converge to
activate RhoA. The mechanical activation of Racl is re-
quired for the force-dependent growth of adherens junc-
tions, demonstrating how physical stimuli can directly en-
gage Rho GTPase activity [139,140].
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Table 3. Major downstream effectors of Rho/ROCK signaling and their roles in actomyosin contractility.

Effector/Target Role in actomyosin contractility/cellular func-  Associated Rho GTPase/ROCK action References
tion
Myosin light chain (MLC) Increases actomyosin contractility and stress  Direct phosphorylation by ROCK; stimu-  [104,109]
fiber formation lates actomyosin ATPase activity
Myosin phosphatase target sub-  Sustains MLC phosphorylation, increases Phosphorylated by ROCK, inhibiting  [103,110]
unit 1 (MYPT1) of myosin light ~Ca2™ sensitization of smooth muscle contrac-  MLCP activity
chain phosphatase (MLCP) tion
LIM kinases (LIMK1/2) Leads to actin filament stabilization and poly-  Phosphorylated and activated by ROCK; [105,111]
merization; coordinates microtubule destabi- phosphorylates and inhibit cofilin
lization and actin formation
CPI-17 Enhances Ca2" sensitization of smooth mus-  Phosphorylated by ROCK; inhibits MLCP [46,112]
cle contraction activity
mDial Promotes actin filament growth and polymer-  Activated by RhoA; nucleates actin poly-  [107,113]
ization merization
ERM proteins (Ezrin, Radixin, Regulates actin filament/membrane interac- Phosphorylated by ROCK; decreases [114]
Moesin) tion; involved in microvilli formation intra- or intermolecular head-to-tail asso-
ciation
Adducin Involved in spectrin/F-actin network assem-  Phosphorylated by ROCK; increases [115]
bly; increases cell motility adducin/F-actin interaction
NHE1 (Nat-H* exchanger 1) Promotes actin stress fiber formation Stimulation of its Nat-H* exchanger ac-  [116,117]
tivity by ROCK
Intermediate filaments (GFAP, Involved in regulation of cytokinesis Phosphorylated by ROCK; inhibition of  [118-121]
NF-L, Desmin, Vimentin) filament formation
Tau, MAP2, CRMP-2 Involved in microtubule dynamics and growth ~ Phosphorylated by ROCK; reduction of  [122,123]
cone collapse Tau activity, unknown effect on MAP2,
CRMP-2
PTEN Decreases intracellular PtdIns(3,4,5)P3 level;  Stimulation of phosphatase activity by  [124,125]

tumor suppression

ROCK; promotes anti-survival

This highlights a crucial aspect of Rho/ROCK signal-
ing it acts not only as a responder to chemical stimuli but
also as a sensor and transducer of physical forces. This
pathway dynamically influences cell shape, adhesion, and
contractile properties in direct response to the mechanical
environment. This is not merely a passive response but a
dynamic, bidirectional interplay where mechanical forces
activate RhoA, and activated RhoA then generates intra-
cellular tension [141]. This feedback loop is fundamental to
understanding tissue homeostasis and disease, particularly
in mechanically sensitive tissues like the trabecular mesh-
work (TM).

5. Rho/ROCK Signaling in Intraocular
Pressure Regulation

The regulation of IOP is a finely tuned physiological
process essential for maintaining ocular health [142]. Dys-
regulation of ocular pressure is the primary modifiable risk
factor for glaucoma, a leading cause of irreversible blind-
ness worldwide [143]. The Rho/ROCK signaling pathway
plays an indispensable role in the delicate balance of AH
drainage and IOP [144].

5.1 Aqueous Humor Dynamics and Glaucoma
Pathophysiology

IOP is maintained by a precise equilibrium between
the production of AH by the ciliary epithelium and its
drainage from the eye [145—147]. The primary route for AH
outflow, known as the conventional or TM outflow path-
way (Fig. 2), accounts for most (up to 90%) of AH drainage.
This pathway is anatomically complex, comprising the TM,
the juxtacanalicular tissue (JCT), and the endothelial lining
of Schlemm’s canal (SC) [146-150].

In primary open-angle glaucoma (POAG), the most
prevalent form of the disease, elevated IOP arises from a
pathologically increased resistance to AH drainage through
this conventional outflow pathway [151,152]. This sus-
tained elevation in IOP exerts mechanical stress on the op-
tic nerve head, leading to structural changes in the lamina
cribrosa. These changes, in turn, impair retinal ganglion
cells (RGCs) and their axons, ultimately resulting in pro-
gressive vision loss. The intricate interplay between cellu-
lar contractility, extracellular matrix (ECM) dynamics, and
mechanotransduction within the outflow pathway is critical
for understanding IOP homeostasis and the pathogenesis of
glaucoma.
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5.2 Specific Involvement in Trabecular Meshwork and
Schlemm s Canal Contractility

The cells within the TM and SC exhibit characteristics
akin to smooth muscle cells, including the expression of key
contractile proteins like a-smooth muscle actin and myosin
[153—155]. Their ability to contract and relax dynamically,
together with cell-substratum and cell-cell adhesive forces,
is considered crucial for maintaining normal AH outflow
facility.

5.3 Cellular Mechanisms Influencing Cell Stiffness,
Cell-Cell, and Cell-ECM Interactions

Activation of the Rho GTPase/Rho kinase signaling
mechanism in the trabecular outflow pathway leads to an in-
crease in IOP by altering the contractile, cell adhesive, and
permeability barrier characteristics of the TM and SC tis-
sues [156—158]. This pathway promotes myosin II activity
primarily by inhibiting MLCP and directly phosphorylating
MLC, which drives the assembly of contractile actomyosin
bundles that generate strong tensile forces within the cells.
This activation significantly increases cell stiffness through
the formation of actin stress fibers [96,159,160].

Physiological agonists known to activate Rho/ROCK
signaling, such as transforming growth factor-32 (TGF(2),
endothelin-1, thrombin, and lysophospholipids, consis-
tently reduce AH outflow facility [154,156,161-165].
TGF-/32, a profibrotic cytokine found at elevated levels in
the AH of POAG patients, is particularly implicated in in-
ducing CLANSs formation via both SMAD and non-SMAD,
including the Rho-ROCK pathway [166—170]. This mech-
anism directly contributes to increased cell stiffness and
outflow resistance, mirroring the pathological changes ob-
served in glaucoma. Activation of RhoA in TM cells
by RhoAV14, TGF-32, or pressure leads to significantly
increased levels of various ECM proteins, including fi-
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bronectin, laminin, and tenascin C. It promotes their en-
hanced filamentous organization and assembly [158,164,
165,171,172]. This process involves mechanotransduction,
where TM cells sense RhoA-induced contractile activity
and cytoskeletal tension, which in turn stimulates ECM syn-
thesis and assembly. The observation that RhoA-mediated
induction of collagen, fibronectin, and a-SMA expression,
a marker of contractile activity, suggests a feedback loop
where ECM assembly can further promote contractile ac-
tivity, potentially exacerbating the dysfunction. Erk activa-
tion, a downstream target of RhoA, is identified as a crit-
ical checkpoint under persistent RhoA activation, leading
to both cytoskeletal contraction and increased ECM syn-
thesis/assembly [165]. While Erk is crucial for both fi-
bronectin and a-SMA expression, serum response factor
(SRF) specifically regulates a-SMA expression, illustrat-
ing the nuanced regulatory mechanisms involved [165,173—
175]. Thus, suggesting a transcriptional control of actin
cytoskeleton-based contractility in the TM outflow path-
way.

5.4 Impact of Rho/ROCK Pathway Activation Versus
Inhibition on Aqueous Humor Outflow Facility

The consistent observation that activation and the in-
hibition of the Rho/ROCK pathway increase and decrease
the outflow resistance, respectively, is the basis for provid-
ing Rho/ROCK as a prime therapeutic target to treat ocular
hypertension and slow the progression of glaucoma.

5.4.1 Activation

Sustained activation of Rho GTPase/Rho kinase sig-
naling in the AH outflow pathway consistently increases re-
sistance to AH outflow. This leads to the stiffened and con-
tractile morphology of TM cells, reducing the permeability
of the outflow pathway [156,176—178]. Additionally, in-
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creased Rho and activation of Rho have been documented
in the optic nerve head (ONH) [179-181].

5.4.2 Inhibition

Conversely, inhibition of Rho kinase with specific in-
hibitors like Y-27632 effectively lowers IOP by inducing
relaxation of the trabecular meshwork, thereby enhancing
AH outflow [156,182—194]. The relaxation is achieved by
reducing MLC phosphorylation and disorganizing the ac-
tomyosin cytoskeleton, leading to cellular relaxation and a
decrease in cell-substratum adhesions in TM and SC cells.
The result is an increase in the size of intercellular spaces
within the TM, which directly facilitates increased aque-
ous outflow. Furthermore, ROCK inhibitors reduce the
density of actin stress fibers in TM and SC cells, con-
tributing to eased AH outflow [144,194,195]. ROCK in-
hibitors have also been shown to reverse TGF-32-induced
cytoskeletal rearrangements (disassembling stress fibers
and CLANSs) and reduce fibronectin deposition, leading to
a looser mesh and enlarged intercellular spaces in the TM
[164,165,169,170,196,197]. This detailed mechanistic ex-
planation reveals the intricate, multi-faceted interplay be-
tween actomyosin contractility, cellular stiffness, cell ad-
hesion, and extracellular matrix (ECM) dynamics within
the TM and SC. It is not merely about muscle contraction,
but how Rho/ROCK-mediated cytoskeletal tension directly
influences the physical properties and permeability of the
outflow pathway tissues and their surrounding ECM [198].
Rho kinase inhibitors have also been shown to be neuro-
protective, thus enhancing their role to treat glaucoma and
slow the progression of vision loss in humans and animal
models [199-202].

6. Crosstalk With Other Key Signaling
Pathways

Rho GTPases operate within a highly complex molec-
ular network characterized by extensive crosstalk, where
individual members and their downstream pathways fre-
quently cooperate or antagonize each other to fine-tune cel-
lular responses [203]. Such an intricate molecular signal-
ing cross-talk can manifest at multiple levels: through the
regulation of Rho GTPase activity itself via shared or spe-
cific GEFs and GAPs, through the modulation of protein
expression and stability, and the direct or indirect regulation
of downstream signaling pathways [25,204]. Interestingly,
the activation of RhoA and Racl, two Rho family members,
exhibits temporal or spatial separation [205], or one may ac-
tively inhibit the other, demonstrating a sophisticated bal-
ance in cellular control [160,206] as shown in Fig. 3 (Ref.
[130]). This intricate integration of Rho/ROCK signaling
with other major pathways is a crucial aspect of cellular reg-
ulation.

6.1 Interactions and Regulatory Loops With the
Ras/MAPK/ERK Pathway

Both Ras and Rho proteins function as GTP-regulated
molecular switches that govern multiple, often intercon-
nected, signaling pathways in eukaryotic cells. The
mitogen-activated protein kinase (MAPK) pathway, par-
ticularly the extracellular signal-regulated protein kinases
1 and 2 (ERK1/2), is a well-established regulator of cell
growth, proliferation, differentiation, and motility. The
Rho/ROCK and Ras/MAPK/ERK pathways intersect at nu-
merous points, and their coordinated action is crucial for
various cellular processes, including oncogenic transforma-
tion and in the TM [165,171,207].

Specific mechanisms of crosstalk include:

» Ras-dependent triggering of Rho activators, some of
which operate through the PI3K pathway, represents a
direct point of connection between Ras and Rho signal-
ing [208,209].

* Mechanical feedback, driven by actomyosin action—
a primary domain of Rho/ROCK activity—can influ-
ence the Ras/sMAPK/ERK pathway, demonstrating how
physical forces can integrate into these signaling net-
works [210,211].

* Direct action of Erk on RhoA can stimulate the forma-
tion of active GTP-loaded RhoA, indicating a regulatory
loop where MAPK can influence Rho activity [212,213].

* Studies have demonstrated that Rho/ROCK and Ras-
ERK pathways can function cooperatively to influence
cellular motility and growth [211].

* In some cell types, such as glioblastoma, ROCK inhi-
bition has been shown to cause a time-dependent sup-
pression of p-ERK levels, and PDGF- or FN-induced p-
ERK activation can be suppressed by ROCK inhibitors
[214,215]. This suggests that ERK may function down-
stream of Rho/ROCK in these cells, indicating a hierar-
chical relationship in specific cellular contexts.

* The Rho/ROCK pathway also promotes the nuclear
translocation of Myocardin-related transcription factor
(MRTF-A) [216,217]. Once in the nucleus, MRTF-A
interacts with serum response factor (SRF) to induce the
transcription of target genes [218,219], including those
vital for sensing tension, vascular integrity, and growth.
This process is mediated by ROCK-induced actin poly-
merization via the LIMK-cofilin pathway, illustrating
how Rho/ROCK can influence gene expression through
its effects on the cytoskeleton and subsequent activation
of transcription factors [220].

6.2 Interactions and Regulatory Loops With the PI3K/Akt
Pathway, Including the Role of PTEN

The phosphoinositide 3-kinase (PI3K)/Akt/mTOR
pathway is a key intracellular signaling cascade that regu-
lates cell metabolism, migration, immune function, and sur-

vival [221]. A well-documented point of crosstalk between
Rho/ROCK and PI3K/Akt involves the phosphatase and

&% IMR Press


https://www.imrpress.com

Agonists\
PCR

(inactive)

Rho A/B/c  (active)

NCY

Acto-myosin contractility

(cmr)

Actin-filament stabilization

ctin-network assembly

Generates fibrillar actin-based contractility

Fig. 3. Rho-kinase activation of various cytoskeleton pathways. Rho GTPases, including RhoA, get activated through a sequential pro-

cess of guanine nucleotide exchange factors (GEFs) that catalyze the exchange of GDP for GTP, followed by the inactivation of GTPase-

activating proteins (GAPs). Rho-kinase is an effector form of Rho. Many other substrates of Rho-kinase include myosin light chain
(MLC), MLC phosphatase (MLCP), ezrin/radixin/moesin (ERM), adducin, and LIM-kinases. Endothelial NO synthase (eNOS), gua-
nine nucleotide (GDI), G-protein-coupled receptor (GPCR), collapsing response mediator protein2 (CRMP2), and ezrin/radixin/moesin

(ERM). Re-created from [130]. Created in BioRender™.

tensin homolog (PTEN) [125,222]. ROCK-mediated acti-
vation of PTEN can lead to a decrease in nitric oxide (NO)
production, which in turn reduces the survival of endothe-
lial cells [223,224]. Both Rho/ROCK and PI3K/Akt path-
ways can be activated by standard upstream signals and re-
ceptors, such as G-protein coupled receptors (GPCRs) and
receptor tyrosine kinases (RTKs), further illustrating their
interconnectedness [211,225,226]. The complex interplay
and crosstalk between pathways like Rho/ROCK, TGF-3,
Wnt/[3-Catenin, NF-xB, and PI3K-AKT-mTOR are also ex-
plored in the context of cataract formation, where disrup-
tions in these signaling networks contribute to protein ag-
gregation and lens opacification [227,228].

6.3 Other Significant Crosstalk Mechanisms Relevant to
Cellular Function and Disease

6.3.1 NF-xB Signaling

Both ROCK and NF-B can be activated by lysophos-
phatidic acid (LPA), a known inflammation mediator [229].
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NF-xB has been shown to act downstream of ROCK to
mediate LPA-induced expression of specific inflammatory
cytokines, such as monocyte chemotactic protein-1 (MCP-
1). In the context of thrombin-induced ICAM-1 expression,
the RhoA/ROCK pathway increases the phosphorylation of
1xB kinase (IKK), leading to IxkBa degradation and subse-
quent activation and nuclear translocation of NF-xB.

6.3.2 TGF-f3 Signaling

Transforming growth factor-beta 2 (TGF-82) is a
profibrotic cytokine that significantly activates the Rho-
ROCK pathway in trabecular meshwork (TM) cells [165,
170,196,197,217]. This activation leads to increased cell
stiftness and ECM remodeling, which are crucial patholog-
ical changes observed in glaucoma.

6.3.3 Myelin-Associated Inhibitors and Glial Scarring

In the central nervous system (CNS), myelin-
associated inhibitory factors such as Nogo, Myelin-
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Associated Glycoprotein (MAG), Oligodendrocyte-Myelin
Glycoprotein (OMgp), and chondroitin sulfate proteogly-
cans (CSPGs) released from reactive astrocytes in glial
scars activate the RhoA/ROCK pathway in neurons [230].
This activation inhibits axon growth and causes growth
cone collapse, contributing to the limited regeneration ca-
pacity after CNS injury.

Here we present the complex network of cellular sig-
naling, showing that Rho/ROCK signaling does not work
alone. It is demonstrated that Rho/ROCK signaling is
closely connected with other major pathways. The specific
examples of Rho/ROCK affecting MAPK/ERK and, most
notably, the PI3K/Akt pathway through PTEN, reveal ad-
vanced regulatory loops and overall cellular functions. This
detailed mechanism is crucial for understanding the wide-
ranging effects of RKI therapies and for predicting potential
off-target effects or benefits from targeting this pathway.
It also suggests that treatment strategies must consider the
whole signaling network to prevent unintended effects and
to improve treatment success by affecting multiple path-
ways.

7. Therapeutic Implications and Future
Directions

Interestingly, in the late 1990s, a report was pub-
lished using a broad spectrum serine-threonine kinase in-
hibitor, H-7, that demonstrated an increase in outflow fa-
cility in monkeys [231]. Although H-7 is a non-selective
ROCK inhibitor with low potency against ROCK, this pa-
per mentioned Rho A but did not mention ROCK. Further-
more, extensive research on Rho GTPase and Rho kinase
signaling—particularly its role in TM tissue contractility,
IOP regulation, and glaucoma—has paved the way for sig-
nificant translational advancements, especially in ophthal-
mology [144,179,184,187,232].

7.1 Rho Kinase Inhibitors (RKlIs) as a Novel Class of
Glaucoma Therapeutics

The ROCK inhibitors (RKIs) are an emerging and
promising class of anti-glaucoma drugs that specifically tar-
get the diseased trabecular outflow pathway, improving AH
outflow through the conventional route. Ripasudil (K-115)
[233-236] and Netarsudil (AR-13324) [232,237-242] are
two leading RKIs that have received clinical approval for
glaucoma treatment in Japan and the United States, respec-
tively.

7.2 Mechanism of Action in IOP Reduction

RKIs mainly lower IOP by relaxing the TM and
SC cells [156,165,184,187,243-248]. This relaxation is
achieved by decreasing actin stress fiber density, disassem-
bling focal adhesions, and lowering cell stiffness and ten-
sion in TM and SC cells. On a molecular level, this in-
volves directly inhibiting MLC phosphorylation or increas-
ing MLCP activity, leading to MLC dephosphorylation and
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reduced actomyosin contractility. Most recently, it has been
shown that ROCK inhibitors target the ECM by lowering
the traction forces sensed by the TM cells [249,250]. The
overall effect is an increase in intercellular space within
the TM and improved permeability, which facilitates AH
outflow. Netarsudil also inhibits norepinephrine transport
(NET), potentially contributing to IOP reduction by de-
creasing AH production through preventing norepinephrine
reuptake at noradrenergic synapses [237,238]. Another
mechanism includes lowering episcleral venous pressure
[239,251].

7.3 Clinical Efficacy, Safety Profiles, and Common
Adverse Effects

Clinical trials have demonstrated that RKIs are safe
and efficacious, showing non-inferiority when compared
to traditional anti-glaucoma medications such as beta-
blockers and prostaglandins (Table 4, Ref. [199,200,232—
235,237-241,251-257]). They are effective as monother-
apy and, importantly, show enhanced efficacy when com-
bined with other hypotensive medications. The Netar-
sudil/latanoprost fixed-dose combination has demonstrated
superior IOP reduction compared to individual compo-
nents [252,258-260]. Common adverse effects reported
include conjunctival hyperemia (the most frequent, affect-
ing ~53% of patients with Netarsudil), corneal verticillata
(cornea staining), conjunctival hemorrhage, instillation site
pain, conjunctivitis, and blepharitis. Most of these effects
are generally mild, self-limiting, and temporary [253,261—
264]. The very mechanism that makes RKIs effective for
glaucoma—by relaxing the TM outflow pathways to lower
IOP—also leads to the relaxation of conjunctival blood ves-
sels, causing them to dilate and resulting in conjunctival
hyperemia. Corneal verticillata caused by RKIs is typi-
cally asymptomatic and does not affect vision. It is also
reversible, with the deposits usually resolving over time af-
ter the medication is discontinued [253,261-265].

This table summarizes key therapeutic agents, their
mechanisms, and clinical considerations, making it highly
useful for experts who want to quickly understand the prac-
tical aspects of Rho/ROCK research in glaucoma manage-
ment.

7.4 Neuroprotective Potential of RKIs in Glaucoma

Beyond their IOP-lowering capabilities, RKIs offer
significant neuroprotective properties, which is a crucial ad-
vantage in the comprehensive management of glaucoma, a
neurodegenerative disease. This dual benefit of IOP lower-
ing and neuroprotection addresses both the primary risk fac-
tor and the neurodegenerative component of glaucoma, of-
fering a more holistic therapeutic strategy [266—268]. The
mechanisms of neuroprotection are summarized in Sections
7.4.1-7.4.4.
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Table 4. Rho kinase inhibitors in glaucoma: mechanism of action and clinical aspects.

Drug (approval Primary mechanism of IOP reduc-

status) tion

Additional ocular benefits

Common adverse effects Reference

Ripasudil (ap-

Relaxation of trabecular meshwork Neuroprotection (RGC sur-

Primarily conjunctival hyperemia [199,200,233—

proved Japan) (TM) and Schlemm’s canal (SC) vival, axon regeneration), (redness), often mild and tempo- 235,251,253]
cells by inhibiting MLC phospho- improved ocular blood rary, along with blepharitis (eye-
rylation and MLCP inhibition, re- flow, anti-fibrotic effects lid inflammation) and allergic
ducing actomyosin contractility, in- conjunctivitis
creasing intercellular spaces
Netarsudil (ap- Relaxation of TM and SC cells Neuroprotection (RGC sur- Conjunctival hyperemia (~53%), [232,237—
proved USA) (like Ripasudil); also inhibits nore- vival, axon regeneration), corneal verticillate, instillation 241,252,254~
pinephrine transporter (NET) to re- improved ocular blood site pain, conjunctival hemor- 257]

duce AH formation

flow, anti-fibrotic effects

rhages, blepharitis, conjunctivitis

7.4.1 Retinal Ganglion Cell (RGC) Survival and Axon
Regeneration

RKIs have been shown to enhance RGC survival and
promote RGC axon regeneration in various animal mod-
els of optic nerve injury (e.g., optic nerve crush injury,
experimental glaucoma). They achieve this by suppress-
ing ROCK signaling in the retina and optic nerve, which
is typically activated by myelin-associated axon growth in-
hibitors (like Nogo, MAG, OMgp) and components of the
glial scar (like chondroitin sulfate proteoglycans, CSPGs)
that impede axonal regeneration. RKIs can effectively re-
verse these inhibitory effects, promoting axonal sprouting
and functional recovery [269,270].

7.4.2 Improvement of Ocular Blood Flow

RKIs improve ocular blood flow, particularly to the
optic nerve head, by promoting vasodilation and reducing
vasoconstriction often mediated by endothelin-1. Impaired
ocular blood flow is a recognized factor in glaucoma patho-
genesis [186,271,272].

7.4.3 Alleviation of Cytotoxicity

RKIs protect retinal ganglion cells against neurotoxic
injury induced by agents like N-methyl-d-aspartate and mit-
igate damage from ischemic reperfusion injury in animal
models [199,201,243].

7.4.4 Anti-apoptotic Effects

While not explicitly detailed as a direct mechanism
in all studies, the general involvement of ROCK in cell
apoptosis and its crosstalk with pro-survival pathways like
PI3K/Akt via PTEN suggests an indirect influence on RGC
survival by modulating the balance between pro-survival
and pro-apoptotic signals [273,274].

7.5 Emerging Applications of Rho/ROCK Modulation in
Other Ocular Diseases and Systemic Diseases

The therapeutic potential of Rho/ROCK modulation
extends beyond glaucoma, underscoring its widespread
pathophysiological relevance.
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7.5.1 Corneal Healing and Endothelial Regeneration

RKIs have demonstrated efficacy in improving
corneal wound healing and promoting corneal endothelial
cell differentiation and regeneration, making them promis-
ing therapeutic agents for corneal diseases [135,275-278].

7.5.2 Vitreoretinal Diseases

Rho/ROCK pathway activation is implicated in the
pathophysiology of various retinal and vitreous diseases,
including diabetic retinopathy (DR), age-related macular
degeneration (AMD), and proliferative vitreoretinopathy
(PVR). RKIs are being explored as potential therapeutic tar-
gets for these conditions due to their anti-fibrotic and anti-
angiogenic effects [279-282].

7.5.3 Anti-fibrotic Agents

RKIs serve as potent anti-scarring agents by inhibit-
ing the transdifferentiation of fibroblasts into myofibrob-
lasts. This property is highly relevant in glaucoma surgery
(to prevent bleb scarring, which is a common cause of sur-
gical failure) and in conditions like PVR [283-286].

7.5.4 Systemic Diseases

Beyond  ophthalmology, dysregulation of
RhoA/ROCK signaling is linked to a wide range of
age-related and smooth muscle-related systemic diseases,
including hypertension, atherosclerosis, heart failure,
diabetes, and various neurodegenerative disorders such as
Alzheimer’s disease and Parkinson’s disease [287-290].

7.6 Challenges and Future Research Avenues

This section highlights the significant translational im-
pact of Rho/ROCK research, demonstrating how funda-
mental scientific understanding has led to tangible clinical
advancements. Despite the significant advancements, sev-
eral challenges and promising future research avenues exist
for Rho/ROCK modulation.
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7.6.1 Selectivity

A notable challenge in RKI therapy is the current lack
of highly selective Rho kinase inhibitors. Given the ubiqui-
tous expression and pleiotropic functions of ROCKs, non-
specific inhibition could lead to undesirable systemic con-
sequences. Future research aims to develop more isoform-
specific inhibitors to minimize off-target effects.

7.6.2 Drug Delivery Systems

For neuroprotective effects, particularly targeting
RGCs and the optic nerve, traditional topical or oral routes
may be insufficient due to anatomical barriers. Novel
drug delivery systems, such as sustained-release implants
or exosome-based delivery, are being explored to ensure ef-
fective drug concentrations at the target site and to improve
patient compliance and tolerability.

7.6.3 Long-term Clinical Outcomes

While initial clinical trials show promise, further in-
dependent, large-scale, prospective randomized controlled
trials are essential to comprehensively elucidate the long-
term therapeutic value and safety profiles of RKIs.

7.6.4 Optimal Dosage and Patient Selection

Ongoing research is needed to determine the optimal
dosage regimens and identify specific patient populations
that would benefit from RKI therapies the most.

7.6.5 Combination Therapies

The demonstrated success of fixed-dose combinations
(e.g., Netarsudil/latanoprost) suggests a future direction
in combining RKIs with existing glaucoma treatments to
achieve enhanced efficacy and broader therapeutic benefits.

Novel drugs targeting specific pathways relevant to
mechanosensing and mechanotransduction, which are di-
rectly tied to the Rho/ROCK pathway and play a role in
elevating IOP, can be pharmacologically targeted. These
can be the focal adhesions, integrins, G-proteins, to name a
few.

8. Conclusion

The Rho GTPase and ROCK signaling pathway is a
highly influential regulatory axis in cellular and tissue bi-
ology. It fundamentally controls actomyosin contractility
and cytoskeletal dynamics, as well as its adaptive response
to mechanical forces through mechanotransduction. The
success of RKIs in glaucoma therapy highlights the clini-
cal significance of this research. Drugs like Ripasudil and
Netarsudil have demonstrated considerable effectiveness in
lowering IOP by relaxing the conventional outflow path-
way, offering a new approach compared to traditional glau-
coma treatments. The combined benefit of IOP reduction
and neuroprotection represents a significant advancement,
addressing both the primary risk factor and the neurodegen-
erative aspect of glaucoma, thus providing a comprehen-
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sive treatment strategy. The balanced discussion of clinical
efficacy alongside common side effects reflects a genuine
clinical perspective. Exploring applications beyond glau-
coma emphasizes the wide therapeutic potential of modu-
lating this pathway, indicating its broad relevance across
various diseases. Finally, recognizing the challenges high-
lights key areas for future research and innovation with new
drug targets. Future efforts will likely focus on refining
these targeted approaches and discovering new strategies to
leverage this fundamental signaling pathway for improved
patient outcomes.
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