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Abstract

Background: Glioblastoma (GBM) is an exceptionally aggressive type of brain tumor with a poor prognosis, underscoring the urgent
need to identify new molecular targets for therapeutic development. The objective of this research is to clarify the molecular interac-
tions affected by the oncometabolite D-2-hydroxyglutarate (D-2-HG) within the framework of GBM. Methods: Differential expression
analysis of multi-omics data identified potential target genes linked to GBM pathogenesis. To enhance our understanding of the binding
interactions between D-2-HG and the identified target proteins, we utilized an integrated methodology encompassing various machine
learning algorithms, network pharmacology techniques, and molecular docking. Results: A sum of 135 genes was recognized as possi-
ble targets through which D-2-HG exerts its effects in GBM. The ensuing analysis, utilizing machine learning techniques, identified six
crucial genes [eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBPI), fatty acid binding protein 3 (F4BP3), potassium
voltage-gated channel subfamily Q member 2 (KCNQ?2), epithelial cell adhesion molecule (EPCAM), sphingosine-1-phosphate receptor
5 (SIPRSY), and metabotropic glutamate receptor 3 (GRM3)] as key regulators. Among these, FABP3, KCNQ2, EPCAM, S1PR5, and
GRM3 were significantly downregulated, whereas EIF4EBP1 was markedly upregulated (p < 0.05). Molecular docking simulations
indicated a strong binding affinity of D-2-HG towards the target proteins. Conclusions: Our study suggests that D-2-HG plays a sig-
nificant role in the pathogenesis of GBM by modulating specific genes and signaling pathways. Utilizing machine learning techniques,
we identified six essential regulatory genes, and further molecular docking simulations revealed a strong affinity of D-2-HG for these
critical targets. Collectively, these results establish a substantial basis for future investigations into the mechanistic role of D-2-HG in
GBM oncogenesis.
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1. Introduction genesis and development [5,6]. IDH plays a vital role as

an enzyme in the tricarboxylic acid (TCA) cycle, where

Glioblastoma (GBM) represents the most prevalent
and aggressive type of primary malignant brain tumor found
in adults. It is distinguished by its rapid growth, resistance
to standard treatment modalities, and poses a significant
risk to both the survival and quality of life of affected in-
dividuals [1]. Presently utilized therapeutic strategies, such
as surgical intervention, radiotherapy, chemotherapy, and
tumor-treating fields, demonstrate restricted effectiveness
owing to significant tumor heterogeneity and the presence
of the blood-brain barrier, which obstructs the delivery of
pharmacological agents, while research on the core molecu-
lar mechanisms driving GBM progression faces significant
challenges [2—4]. In the past few years, there have been
notable developments in the field of molecular pathology,
especially regarding the identification of mutations in isoci-
trate dehydrogenase (/DH) and the associated oncometabo-
lite D-2-hydroxyglutarate (D-2-HG), have brought hope for
elucidating the core mechanisms underlying GBM patho-

it is chiefly tasked with promoting the oxidative decar-
boxylation of isocitrate, resulting in the formation of alpha-
ketoglutarate (a-KG). Notably, mutations in /DH are ob-
served in more than 80% of gliomas, specific point muta-
tions occur in the /DH or IDH?2 genes, such as IDHI Argi-
nine 132 (Argl32) or IDH2 Arginine 172 (Argl72) [7,8].
The mutant IDH assumes a “neomorphic” role, facilitating
the conversion of a-KG into substantial quantities of D-2-
HG, which abnormally accumulates within cellular envi-
ronments, often achieving millimolar levels. The elevated
concentrations of D-2-HG serve as competitive inhibitors
for a range of a-KG-dependent dioxygenases, with partic-
ular emphasis on histone demethylases such as jumonji do-
main containing 2A (JMJD2A) and jumonji domain con-
taining 2C (JMJD2C), as well as members of the ten-eleven
translocation (TET) family of DNA demethylases. This in-
hibition triggers a widespread hypermethylation of both his-
tones and DNA across the genome, culminating in the emer-
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Fig. 1. The analytical workflow employed for the datasets in the study. D-2-HG, D-2-hydroxyglutarate; GBM, glioblastoma;
EIF4EBPI, eukaryotic translation initiation factor 4E binding protein 1; EPCAM, epithelial cell adhesion molecule; FABP3, fatty acid
binding protein 3; GRM3, metabotropic glutamate receptor 3; KCNQ2, potassium voltage-gated channel subfamily Q member 2; SIPRS,

sphingosine- 1-phosphate receptor 5.

gence of a unique “glioma CpG island methylator pheno-
type” (G-CIMP). This epigenetic alteration silences tumor
suppressor genes such as cyclin dependent kinase inhibitor
2A (CDKN2A), while aberrantly activating oncogenes like
platelet derived growth factor receptor alpha (PDGFRA)

through methylation-dependent regulation, ultimately caus-
ing cell differentiation arrest and uncontrolled proliferation,
thereby promoting gliomagenesis [9—11]. Furthermore, D-
2-HG can induce hypermethylation of promoter regions of
interferon signaling-related genes [e.g., interferon regula-
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tory factor 1 (IRF1), signal transducer and activator of tran-
scription 1 (STAT1)], thereby suppressing anti-tumor im-
mune responses.

The importance of the oncometabolite D-2-HG seems
to be intricately nuanced and may exhibit dual character-
istics depending on the context [12]. A notable clinical
contradiction exists whereby gliomas harboring /DH mu-
tations, which are marked by the accumulation of D-2-
HG, exhibit a considerably improved prognosis. Specifi-
cally, the median overall survival for patients with these
mutations is reported to be 3.8 years, in contrast to
just 1.1 years for those with the wildtype variant. Fur-
thermore, these /DH-mutant gliomas demonstrate height-
ened responsiveness to temozolomide (TMZ) treatment
[13]. At the molecular level, studies suggest that D-2-
HG can exert tumor-suppressive effects in certain contexts,
for instance, by downregulating the integrin subunit beta
4 (ITGB4)/phosphatidylinositol 3-kinase (PI3K)/Akt ser-
ine/threonine kinase (AKT) signaling axis, thereby inhibit-
ing proliferation and promoting apoptosis. This function
contrasts sharply with its known oncogenic activity of in-
hibiting a-KG-dependent dioxygenases and inducing epi-
genetic silencing, underscoring a dose-, time-, or tissue-
dependent duality in its mechanism of action [ 14]. Research
indicates that D-2-HG inhibits the RNA demethylase fat
mass and obesity-associated protein (FTO), leading to el-
evated levels of N6-methyladenosine (m6A) modifications
on mRNA transcripts, such as activating transcription fac-
tor 5 (ATF5) and MYC Proto-Oncogene, BHLH Transcrip-
tion Factor (MYC). This consequently reduces the stability
of these oncogenic transcripts, providing an explanation for
the restricted growth observed in /DH-mutant tumors [15].
Despite considerable advancements in this field, current
research efforts remain predominantly confined to single-
omics approaches, emphasizing linear signaling pathways
rather than systems-level network effects. To address this
gap, our study focuses on reconstructing the molecular net-
work linking D-2-HG to GBM pathogenesis through inte-
grative multi-omics analysis. We utilize machine learning-
based analyses of topological and functional enrichment to
identify key hub molecules within the network. This is sub-
sequently complemented by molecular docking simulations
to assess target binding affinity and the thermodynamics
of interactions. Through this approach, we aim to clarify
the complex regulatory network governed by D-2-HG, this
work aims to identify key drivers of GBM oncogenesis and
progression, potentially revealing novel therapeutic targets
to overcome current treatment limitations.

2. Materials and Methods
2.1 Acquisition of Key Genes in GBM

Transcriptome datasets sourced from five GBM
studies, namely GSE4290, GSE116520, GSE66354,
GSE50161, and GSE108474, were obtained from the
National Center for Biotechnology Information (NCBI,
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https://www.ncbi.nlm.nih.gov/) Gene Expression Omnibus
(GEO) repository. The datasets GSE4290 and GSE116520
were classified as the discovery cohort, whereas the other
three datasets (GSE66354, GSES50161, GSE108474)
functioned as independent validation cohorts. To address
potential batch effects, a comprehensive normalization
pipeline was employed: the initial step involved the
application of Surrogate Variable Analysis (SVA) utilizing
the svaR package (version 3.46.0 1), aimed at modeling
and correcting for latent confounding factors present
within the discovery cohort [16]. Following this, ComBat
harmonization was utilized within a parametric empirical
Bayes framework to address and adjust for any remaining
batch effects [17]. The effectiveness of the integrated data
was assessed using principal component analysis (PCA),
which demonstrated improved clustering of inter-batch
samples within a lower-dimensional space, thus affirming
the successful harmonization of the data. A detailed
representation of the analytical workflow is illustrated in
Fig. 1.

2.2 Acquisition of D-2-HG Chemical Properties and Key
Targets

The chemical characterization of D-2-HG was
achieved through the integration of information from
multiple databases. The pertinent physicochemical
characteristics and biological metrics were method-
ically gathered from PubMed, whereas the standard
two-dimensional structural molecular formula (SMILES:
C(CC(=0)0O)C(C(=0)0)0) was sourced from the Pub-
Chem database.  Target prediction for this molecule
was conducted utilizing three specialized databases:
the ChEMBL Database, which was used for profiling
ligand-receptor interactions; Swiss Target Prediction,
applied for chemogenomics-based target identification
(http://www.swisstargetprediction.ch); and Reverse Phar-
macophore Mapping, executed via three-dimensional
pharmacophore matching utilizing the Pharm Mapper
platform (https://lilab-ecust.cn/pharmmapper/index.html).
All identified targets were limited to the human proteome
to maintain biological relevance.

2.3 Differential Gene Expression Analysis

The evaluation was conducted utilizing the limma
package (version 3.62.2) within the R programming envi-
ronment, which incorporates a linear modeling framework
along with empirical Bayes moderation to analyze differen-
tial expression on a transcriptome-wide level. Genes were
categorized as statistically significantly differentially ex-
pressed genes (DEGs) when they demonstrated a false dis-
covery rate (FDR)-adjusted p-value of less than 0.05, in ad-
dition to an absolute log2 fold change greater than 0.585,
which equates to a 1.5-fold change. The outcomes of the
analysis, which included the distribution of DEGs, were il-
lustrated through the ggplot2 visualization system, facili-
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tating the creation of high-quality figures appropriate for
publication, such as volcano plots.

2.4 Weighted Gene Co-Expression Network Analysis
(WGCNA)

The analysis pipeline included: sample quality control
via hierarchical clustering to remove outliers; establishing
an ideal soft-thresholding power guided by the principles of
scale-free topology (R? >0.85); the identification of mod-
ules was conducted through hierarchical clustering applied
to a topological overlap matrix (TOM), utilizing a minimum
module size threshold of 30. Additionally, a merge cut
height of 0.25 was implemented to refine the clustering re-
sults. Subsequently, an analysis of the association between
the identified modules and various traits was performed by
correlating module eigengenes with phenotypes (|Pearson’s
r| >0.5, p < 0.05); and the determination of essential genes
through the analysis of significant intramodular connectiv-
ity (kME >0.8).

2.5 Identification of D-2-HG-Related Targets

This involved taking the intersection of genes high-
lighted as significant through DEGs and WGCNA with the
set of genes predicted to be targets of D-2-HG. The outcome
of this targeted filtering was graphically summarized with
a Venn diagram to delineate the overlapping gene set.

2.6 Functional Enrichment Analysis

To investigate the involvement of D-2-HG in the de-
velopment of GBM, Gene Ontology (GO) analyses encom-
passing Biological Process (BP), Cellular Component (CC),
and Molecular Function (MF), along with Kyoto Encyclo-
pedia of Genes and Genomes (KEGG, https://www.kegg
.jp/) pathway analyses, were conducted utilizing the clus-
terProfiler package (version 4.16.0), with a significance
threshold set at p < 0.05.

2.7 Core Gene Selection Based on Machine Learning

We utilize machine learning-based analyses of topo-
logical and functional enrichment to identify key hub
molecules within the network. This is subsequently com-
plemented by molecular docking simulations to assess tar-
get binding affinity and the thermodynamics of interactions.
Through this approach, we aim to clarify the complex reg-
ulatory network governed by D-2-HG [18], to develop a
total of 98 predictive models. Hyperparameter optimiza-
tion was conducted utilizing cross-validation techniques,
and stratified sampling was employed to divide seven dis-
tinct datasets into training and internal validation subsets.
The efficacy of the models was thoroughly evaluated using
arange of metrics, among which was the area under the re-
ceiver operating characteristic (ROC) curve (AUC), overall
accuracy, and the F1-score. Following this, a Stacking en-
semble learning approach was implemented to amalgamate
the predictions derived from the most effective individual

models. Models demonstrating high confidence, defined as
having an AUC greater than 0.7, were selected, and their as-
sociated feature genes were ranked based on their frequency
to pinpoint potential core genes. Ultimately, the gene ex-
pression patterns were visualized utilizing the pheatmap
package (version 1.0.13).

2.8 Model Analysis

Given the inherently opaque nature of machine learn-
ing algorithms, we utilized the SHAP (SHapley Additive
exPlanations) approach to assess the impact of specific fea-
tures on the predicted results. This method determines a
SHAP value for each feature, facilitating a clear under-
standing of its role in the predictions made by the model.

2.9 Molecular Docking Analysis

Computational validation of the binding interactions
between the oncometabolite D-2-HG and the prioritized
core genes was carried out through molecular docking sim-
ulations. The initial 3D coordinates of the D-2-HG lig-
and were acquired in Structure Data File (SDF) format
from PubChem [19]. The three-dimensional structures of
the corresponding target proteins were downloaded from
the UniProt database. Critical pre-docking preparations
included preprocessing the protein structures to remove
crystallographic water molecules and define the protona-
tion state by adding hydrogen atoms. The ligand struc-
ture was similarly subjected to geometry optimization us-
ing the Merck Molecular Force Field (MMFF) to ensure
an energetically favorable conformation. For each target,
the docking grid box was strategically centered on the pre-
dicted active site, with its size parameters meticulously ad-
justed to accommodate the ligand’s dimensions and allow
for comprehensive exploration of potential binding poses
[20]. All docking calculations were executed using the
Molecular Operating Environment (MOE) software (MOE
2019.0102) suite (Montreal, Quebec, Canada). The output
docking poses were subsequently imported into PyMOL for
detailed structural analysis, visualization, and generation of
publication-quality figures.

3. Results
3.1 Identification of D-2-HG Target Protein

The molecular configuration of D-2-HG was obtained
from the PubChem database, as illustrated in Fig. 2A. A
comprehensive analysis to predict potential biological tar-
gets for D-2-HG was performed utilizing three comple-
mentary databases: ChEMBL, which catalogs annotated
bioactive molecules, reverse pharmacophore mapping, ad-
ditionally, Swiss Target Prediction is utilized, emphasizing
ligand-centric target forecasting. Following the integration
of the data and the removal of redundant entries, a uni-
fied collection comprising 1501 potential targets was cre-
ated (Fig. 2B).

&% IMR Press


https://www.kegg.jp/
https://www.kegg.jp/
https://www.imrpress.com

OH

HO 0
2D structure

3D structure

a-Hydroxyglutaric acid
(D-2-HG)

PharmMapper

38
1299 (2.5%) 91
(86.5%) (6.1%)

8
29 (0.2%) 3
(1.9%) (0.2%)

38
(2.5%)

Fig. 2. Identification of target proteins for D-2-HG. (A) The chemical structure (2D & 3D) of D-2-HG. (B) The prediction of potential
targets was conducted utilizing ChEMBL, PharmMapper, and SwissTargetPrediction methodologies.

3.2 Identification of Target Genes Associated With GBM

In order to address batch effects, datasets GSE4290
and GSE116520 were combined and underwent thorough
normalization of the gene expression matrix. The im-
plementation of PCA demonstrated an improved data dis-
tribution subsequent to normalization, with the normal-
ized dataset exhibiting more distinct clustering patterns
(Fig. 3A,B). The differential expression analysis identified
2017 genes that displayed significant alterations in GBM.
These changes in expression were depicted using both a
heatmap and a volcano plot (Fig. 3C,D). In the context of
WGCNA, the ideal soft-thresholding power () was ini-
tially determined to construct a scale-free network topol-
ogy. A comprehensive evaluation of power values rang-
ing from 1 to 20 revealed that a /3 value of 3 constituted
the minimal threshold necessary to satisfy the criteria for
scale-free topology (R? >0.8). By employing this parame-
ter, a TOM was created, which was subsequently followed
by hierarchical clustering to identify co-expression mod-
ules. This analysis culminated in the discovery of eight dis-
tinct gene modules, each distinguished by a specific color
for enhanced clarity (Fig. 3E). The module-trait relation-
ship analysis uncovered significant correlations (p < 0.05)
between certain modules and GBM (Fig. 3F). By combin-
ing DEGs from the traditional analysis with genes from
WGCNA (after eliminating duplicates), the intersection of
these two groups was established, leading to a final compi-
lation of 1563 genes associated with GBM (Fig. 3G).
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3.3 Identification of D-2-HG Related Targets in GBM

The intersection analysis between D-2-HG-associated
genes and GBM-related genes identified 135 overlap-
ping genes involved in the potential molecular mecha-
nism (Fig. 4A). The interaction network of these com-
mon targets was visualized, distinguishing between up-
regulated and downregulated genes (Fig. 4B). Functional
characterization through GO and KEGG enrichment anal-
yses (Fig. 4C,D) revealed comprehensive molecular in-
sights. GO analysis demonstrated significant enrichment in
gamma-aminobutyric acid (GABA) signaling pathways and
regulation of membrane potential (BPs), ion channel com-
plexes and synaptic membranes (CCs), as well as GABA
receptor activity and gated channel activity (MFs). KEGG
pathway analysis highlighted crucial involvement in growth
factor signaling (GF-RTK-RAS-ERK), signaling cascades
[PI3K, protein 53 (P53)], and cell cycle regulation (G1/S
transition). These findings collectively indicate signifi-
cant modulation of neurotransmitter signaling, activation
of oncogenic pathways, and cell cycle dysregulation in the
context of D-2-HG and GBM interaction.

3.4 Identification of Core Genes Involved in the
Regulation of GBM by D-2-HG

To decode the core genes associated with D-2-HG-
related GBM, we performed a comprehensive machine
learning analysis on 135 candidate targets, constructing a
total of 98 predictive models. Among these, the Stepglm
[both] + GBM ensemble model outperformed others, yield-
ing the highest accuracy across both training and valida-
tion cohorts (Fig. 5A). This computational pipeline iden-
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Fig. 3. Identification of Target genes associated with GBM. (A) The principal component analysis (PCA) scatter plot illustrates a
clear distinction between the GSE4290 and GSE116520 datasets prior to the implementation of batch correction, signifying the presence
of batch effects. (B) Following batch correction, the PCA scatter plot demonstrates the successful integration of the GSE4290 and
GSE116520 datasets, reflecting a significant reduction in batch effects. (C) The heatmap presents the expression patterns of differentially
expressed genes (DEGs) across the samples, where red denotes upregulation and blue signifies downregulation. (D) The volcano plot
visualizes the DEGs in relation to log2 fold change (log2FC) and statistical significance, with red dots representing upregulated genes,
green dots indicating downregulated genes, and grey dots denoting genes that are not statistically significant. (E) Gene dendrogram from
weighted gene co-expression network analysis (WGCNA) shows hierarchical clustering based on co-expression. Module colors in the
lower panel represent different gene modules. (F) Module-trait relationships heatmap shows correlations between WGCNA-identified
modules and sample traits (Control vs. Treatment). Values in boxes indicate correlation coefficients and p-values. (G) Venn diagram
shows DEGs (red) and WGCNA modules (blue), with purple indicating common genes from both methods.
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Fig. 4. Identification of disease targets associated with D-2-HG in GBM. (A) A Venn diagram illustrates the comparison between

genes associated with D-2-HG exposure (depicted in red) and those related to GBM (represented in blue), revealing a total of 135 genes

that are common to both categories, accounting for 4.6% of the total. (B) The Protein-Protein Interaction (PPI) network delineates the

relationships among these overlapping genes, where red nodes indicate upregulated genes, green nodes signify downregulated genes,

and the edges represent predicted interactions. (C) Gene Ontology (GO) enrichment analysis categorizes the overlapping genes into

Biological Process (BP), Cellular Component (CC), and Molecular Function (MF). The X-axis denotes the gene count, while the color

gradient reflects the adjusted p-value, with darker red shades indicating greater significance. (D) The Kyoto Encyclopedia of Genes and

Genomes (KEGQ) analysis highlights the pathways that are enriched for the overlapping genes. The X-axis illustrates the gene ratio,
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significance.

tified a signature of six pivotal genes: eukaryotic transla-
tion initiation factor 4E binding protein 1 (EIF4EBPI), fatty
acid binding protein 3 (FABP3), potassium voltage-gated
channel subfamily Q member 2 (KCNQ?2), epithelial cell
adhesion molecule (EPCAM), sphingosine-1-phosphate re-
ceptor 5 (S/PR5), and metabotropic glutamate receptor 3
(GRM3). The diagnostic robustness of these hubs was cor-
roborated by ROC curve analysis (AUC >0.70, Fig. 5B),
while their distinct expression profiles in GBM tissues
were visualized via volcano plots (Fig. 5C). SHAP analy-
sis was subsequently employed to quantify functional con-
tributions, highlighting S/PR5 (SHAP value = 0.0622)
and KCNQ?2 (0.0438) as the most influential predictors
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(Fig. 5D). Interestingly, the SHAP values for most genes
were predominantly negative, suggesting that these tar-
gets may exert an inhibitory effect on the model’s predic-
tive output following D-2-HG intervention. In contrast,
EIF4EBPI emerged as the sole definitive oncogene; al-
though its SHAP values fluctuated, high expression lev-
els consistently trended toward positive values, underscor-
ing its pro-tumorigenic role (Fig. SE). Further analysis of
individual gene interactions revealed that low expression
of SIPR5 (<5) was associated with dispersed but gen-
erally low SHAP values (approximately —0.3 to 0.0), in-
dicating a stronger tumor-suppressive effect when its ex-
pression is lost. This supports the hypothesis that S/PR5
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Fig. 5. Identification of essential genes involved in D-2-HG-induced GBM. (A) Comparative Analysis of Model Performance: The

heatmap illustrates the area under the curve (AUC) values for different models across various cohorts. The left column represents the

models, while the right column displays the corresponding AUC values (with higher values indicating superior performance). The color
coding reflects the sources of the cohorts. (B) ROC Curves: ROC curves for key genes (EIF4EBP1, FABP3, KCNQ2, EPCAM, S1PR5,

GRM3). X-axis = false positive rate, Y-axis = sensitivity. AUC indicates predictive performance. (C) Volcano Plot: volcano plot shows

DEGs. X-axis = log2FC, Y-axis = —logl0(p-value). Red = upregulated, green = downregulated, with key genes labeled. (D) Feature

Importance Ranking: A bar graph ranks top genes by feature importance. Larger bars = greater contribution to the model. (E) Violin

Plot: violin plot shows gene expression distributions across conditions. Width represents data density, while colors indicate expression
levels. (F) SHAP (SHapley Additive exPlanations) Value Distribution: The scatter plots illustrate the distribution of SHAP values for
significant genes, highlighting their influence on predictive outcomes. (G) SHAP Summary Plot: The summary plot of SHAP values

reveals the contributions of various genes to the predictions. A negative SHAP value signifies a diminishing effect, whereas a positive

value indicates an enhancing effect.
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Fig. 6. Validation of molecular docking for D-2-HG-Core gene interactions. (A) Docking analysis of CDC42 with D-2-HG. (B)
Docking analysis of DNMT1 in association with D-2-HG. (C) Docking analysis of EIF4EBP1 in association with D-2-HG. (D) Docking
analysis of EPCAM in relation to D-2-HG. (E) Docking analysis of FABP3 in connection with D-2-HG. (F) Docking analysis of GRM3 in
conjunction with D-2-HG. (G) Docking analysis of KCNQ2 with D-2-HG. (H) Docking analysis of SIPRS5 in association with D-2-HG.

may be indirectly regulated by D-2-HG, with its down-
regulation potentially driving tumor progression. Notably,
even when GRM3 was highly expressed (warm-colored
points), the SHAP values for S/PR5 remained concentrated
in the negative region (0.1 to —0.4), suggesting possible
co-expression patterns (e.g., simultaneous downregulation)
but providing no evidence for direct regulatory control of
S1PR5 by GRM3 in the oncogenic process. A noticeable
shift in SHAP values for S/PR5 (from —0.3 to —0.1) was
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observed at an expression level around 4-5, potentially in-
dicating a biological threshold (such as a pathway activa-
tion critical point). This implies that S/PR5 expression
may need to fall below a specific threshold to significantly
exert its tumor-suppressive function, providing a rationale
for subsequent mechanistic studies (e.g., gene silencing)
(Fig. 5F). Overall, SIPRS5 and KCNQ?2 were identified as
the primary contributors (largest absolute SHAP values),
whose expression effectively reduced tumor risk (Fig. 5G).
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Table 1. Binding ability of ligands and receptors.

Ligand Receptor  Bind. energy (kcal/mol) Bind. sites
CDC42 —5.2580 A13,V14, G15,K16, T17, T35, G60
DNMT1 —4.9684 E562, R596, R690
EIF4EBP1 —3.9259 D55, R56
D-2-HG EPCAM —4.7959 L173,1.233,1240
FABP3 —4.7896 T36, K58
GRM3 -5.2156 T190, M463, R465
KCNQ2 —4.7438 E366, Q369, R373
S1PR5 —4.4563 E132, T136, R148, R150

CDCA42, cell division cycle 42; DNMT1, DNA methyltransferase 1.

3.5 Molecular Docking Verification of the Interaction
Between D-2-HG and Core Genes

To assess the possible binding interactions of D-2-
HG with the protein products of the identified core genes
(EIF4EBPI1, FABP3, KCNQ2, EPCAM, SIPRS, GRM3), a
detailed molecular docking analysis was conducted. To val-
idate the reliability of our docking protocol and establish
a comparative baseline, we additionally performed dock-
ing simulations between D-2-HG and two reference pro-
teins: cell division cycle 42 (CDC42) and DNA methyl-
transferase 1 (DNMT1) [21,22]. The results indicated that
D-2-HG exhibited a notable binding affinity across all six
identified target proteins, with binding energies compara-
ble to or exceeding those of the reference controls (CDC42:
[-5.2580] kcal/mol; DNMT1: [-4.9684] kcal/mol). This
implies the formation of stable and spontaneous molecular
complexes. In accordance with the established criteria in
molecular docking studies, a binding energy threshold of
less than 0 kcal/mol signifies spontaneous binding, while
values falling below —5.0 kcal/mol reflect an exceptional
binding affinity (see Table 1). The visualization of the bind-
ing conformations, as depicted in Fig. 6, further corrobo-
rated the stability of the docking arrangements for all D-2-
HG-protein complexes. These findings provide structural
evidence that underpins the direct molecular interactions
between D-2-HG and the GBM-related core targets iden-
tified via our machine learning approach.

4. Discussion

The oncogenic effects of D-2-HG in GBM primarily
stem from gain-of-function mutations in the /DH gene, par-
ticularly the IDHI RI132H mutation [23,24]. This muta-
tion confers a neomorphic activity upon /DHI, enabling
it to excessively reduce the normal TCA cycle metabo-
lite a-KG into D-2-HG, leading to its abnormal accu-
mulation within tumor cells, with concentrations reaching
millimolar levels [25]. D-2-HG competitively inhibits a
range of a-KG-dependent dioxygenases, thereby inducing
widespread epigenetic dysregulation [26]. The core onco-
genic mechanism involves the potent inhibition of TET
family DNA demethylases and histone demethylases [e.g.,
lysine demethylase (KDM) family] by D-2-HG. This si-
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lences numerous genes associated with cell differentiation
and tumor suppression are silenced, trapping glioma cells in
an undifferentiated, proliferative state [10]. Furthermore,
D-2-HG can inhibit prolyl hydroxylases (PHDs), stabiliz-
ing hypoxia-inducible factor HIF-1«, which promotes tu-
mor angiogenesis, glycolysis, and adaptation to the hypoxic
microenvironment [27,28]. Notably, the oncogenic action
of D-2-HG involves significant synergistic enhancing fac-
tors and is closely linked to the activity states of specific
epigenetic regulators [29]. For instance, in /DH-wildtype
GBM, arginine methyltransferase protein arginine methyl-
transferase 1 (PRMT1) is recruited to ShmC-enriched re-
gions to catalyze activating histone marks. However, in
the /DH-mutant context, D-2-HG accumulation may in-
hibit protein arginine methyltransferase 5 (PRMTS5) func-
tion, leading to a relative dominance of PRMT]1 activity,
which can drive alternative oncogenic pathways, illustrat-
ing the plasticity of tumor epigenetic regulation [30]. Be-
yond direct epigenetic regulation, D-2-HG promotes GBM
progression through other pathways, with its role in shap-
ing the tumor immune microenvironment being particularly
important [31,32]. D-2-HG secreted by tumor cells can be
taken up by CD8+ T cells in the microenvironment. It di-
rectly inhibits the activity of lactate dehydrogenase (LDH),
disrupting the glycolytic process in CD8+ T cells [33,34].
This metabolic disruption impairs T cell proliferation and
cytokine production [e.g., interferon gamma (IFN-v)], ulti-
mately facilitating tumor immune escape [35].

A comprehensive analysis of multi-omics data, uti-
lizing sophisticated machine learning techniques along-
side bioinformatics methodologies, has systematically re-
vealed potential molecular targets that connect D-2-HG
to the development of GBM. Through a rigorous screen-
ing process, six core genes—EIF4EBPI, FABP3, KCNQ?2,
EPCAM, SI1PR5, and GRM3—were found to be particu-
larly prominent. Differential expression analysis revealed
that EIF4EBPI was upregulated in GBM, while FABP3,
KCNQ2, EPCAM, SIPR5, and GRM3 were downregu-
lated. The application of machine learning models has sub-
stantiated the significant diagnostic potential of the identi-
fied gene signature. Interpretative analysis utilizing SHAP
values revealed that SIPR5 (SHAP value = 0.0622) and
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KCNQ2 (SHAP value = 0.0438) emerged as the most piv-
otal predictors. Furthermore, molecular docking simula-
tions provided additional evidence for the biological im-
plications of these results, demonstrating a robust binding
affinity between D-2-HG and the products of the core genes,
facilitated by specific interactions among amino acids.

The identified core genes exert their functions through
a cross-regulatory axis involving metabolism, epigenet-
ics, and signaling pathways, and may exhibit significant
synergistic or antagonistic interactions with the oncogenic
metabolite D-2-HG produced by /DH mutation. D-2-HG,
which accumulates due to /DH mutations, can compet-
itively inhibit a-KG-dependent dioxygenases, leading to
epigenetic dysregulation such as DNA hypermethylation,
which may interact with the functions of these core genes
[14]. EIF4EBP1 (Eukaryotic Translation Initiation Factor
4E-Binding Protein 1) serves as a pivotal effector within
the mTOR signaling pathway. In the context of glioma,
its function extends beyond mere translational repression,
exhibiting a tight coupling with the metabolic microenvi-
ronment. Functioning primarily as a negative regulator of
mRNA translation, EIF4EBP1 acts as a direct substrate of
mTOR and inhibits the assembly of the translation initiation
complex by sequestering elF4E [36]. Investigations reveal
a dual regulatory mechanism for EIF4EBP1 in /DH-mutant
gliomas. On one hand, D-2-HG accumulation precipi-
tates metabolic stress (“energy crisis”), activating adeno-
sine monophosphate-activated protein kinase (AMPK). Ac-
tivated AMPK suppresses mechanistic target of rapamycin
complex 1 (mTORC1), keeping EIF4EBP1 hypophospho-
rylated. This drives “translational reprogramming” to prior-
itize stress-response proteins, conferring a survival advan-
tage in harsh environments. On the other hand, EIF4EBP1
overexpression correlates with tumor aggressiveness and
is frequently observed in GBM [37]. This upregulation is
driven by oncogenic transcription factors like MYB proto-
oncogene like 2 (MYBL2) and Transcription factor ETS
Proto-Oncogene 1 (ETS1) rather than genomic alterations
[36]. The prognostic value of EIF4AEBP1 extends to other
cancers. In hepatocellular carcinoma (HCC), it predicts
poor survival [38]. In lung adenocarcinoma (LUAD), com-
pounds like Sauchinone exert anticancer effects by down-
regulating EIF4EBP1 [39]. Similarly, in renal cell car-
cinoma, inhibitors like PLX51107 block progression by
suppressing EIFAEBP1. These findings support targeting
EIF4EBP1 as a viable strategy [40]. Separately, FABP3
has been identified in GBM as an interaction partner for
the tumor-homing peptide CooP, mediating the peptide’s
targeted binding to tumor cells [41]. The MF of FABP3
primarily involves the regulation of lipid metabolism and
transport. In invasive glioma cells, FABP3 maintains lyso-
somal membrane stability by preserving its lipid composi-
tion, specifically through the transport of polyunsaturated
fatty acids (PUFAs). The loss of FABP3 function leads to
lysosomal membrane permeabilization (LMP) and subse-
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quent cell death [42]. KCNQ2 encodes a critical subunit of
voltage-gated potassium channels, which are essential for
regulating neuronal excitability, primarily by mediating the
M-current. Loss-of-function mutations in KCNQ?2, often in
conjunction with KCNQ3 forming heterotetrameric chan-
nels, are a well-established cause of epilepsy and a spectrum
of neurodevelopmental disorders [43]. The epithelial cell
adhesion molecule (EpCAM), also designated as CD326,
is a type I transmembrane glycoprotein predominantly ex-
pressed in epithelial tissues and epithelial-derived malig-
nancies. It facilitates homotypic cell-cell adhesion and par-
ticipates in critical cellular processes, including intracellu-
lar signaling, migration, proliferation, and differentiation.
Its significant overexpression in a wide spectrum of carci-
nomas underscores its importance as a diagnostic biomarker
and a promising therapeutic target in oncology [44]. In
gliomagenesis, EPCAM exerts a significant influence on
intercellular connectivity by regulating the stability and
turnover of key tight junction proteins, including claudin-
7 and claudin-1. This perturbation of junctional integrity
compromises cell-cell adhesion and epithelial barrier func-
tion, a pathological hallmark that becomes increasingly pro-
nounced in high-grade gliomas [45]. SI1PRS, a member
of the sphingosine-1-phosphate (S1P) receptor family, may
regulate the progression of brain tumors through interac-
tions with other G protein-coupled receptors (GPCRs). Re-
search has identified a specific interaction between S1PRS5
and the type 2 cannabinoid receptor (CB2). Furthermore,
activation of SIPRS was found to negatively modulate the
CB2 receptor-mediated pro-tumorigenic effects in the hu-
man GBM cell line U-87 MG [46]. The findings sug-
gest that SIPR5 may act as a negative regulatory factor
for CB2 signaling, potentially exerting a protective function
within the pathological process of glioma by counteracting
CB2-mediated tumor-promoting effects. KCNQ2 encodes
a voltage-gated potassium channel, and its functional loss
leads to membrane depolarization, subsequently activating
calcium-dependent signaling pathways [e.g., nuclear fac-
tor of activated T-cells (NFAT)], which ultimately promote
tumor cell proliferation and inhibit differentiation. GRM3
(metabotropic glutamate receptor 3) functions primarily by
modulating glutamate signaling pathways to influence tu-
mor biological behavior [47,48]. In the specific context of
IDH-mutant gliomas, the mechanistic role of GRM3 ex-
hibits a distinct metabolic dependency. Given the high
structural homology between D-2-HG and glutamate, D-
2-HG acts as a “metabolic mimetic” ligand, directly bind-
ing to the extracellular domain of GRM3. Specifically,
activation of GRM3—whether by endogenous glutamate
or high concentrations of D-2-HG—recruits Gi/o proteins,
which subsequently inhibit adenylyl cyclase and signifi-
cantly suppress intracellular cAMP levels. This sustained
low-cAMP environment relieves protein kinase A (PKA)-
mediated inhibition of downstream signaling and aberrantly
regulates the extracellular signal-regulated kinase (ERK)
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pathway, thereby sustaining tumor cell survival and prolif-
eration [48]. Additionally, GRM3 plays a regulatory role
in the self-renewal and differentiation processes of glioma
stem cells (GSCs). Its expression is positively correlated
with key GSC markers, including the transcription factor
SRY-box transcription factor 2 (SOX2), suggesting its con-
tribution to the maintenance of stemness in this critical cell
population [49].

Based on the current literature review, we have iden-
tified that these key genes are implicated in tumorigenesis
and cancer progression, with most having been investigated
in the context of GBM. Notably, no existing studies have
reported direct or indirect interactions between these key
genes and D-2-HG. However, through integrated machine
learning and molecular docking approaches, our study re-
veals a close association between these genes and D-2-
HG. Given that D-2-HG has been established as a driver
in the formation of /DH-mutant glioma [50], these find-
ings highlight substantial and valuable research avenues
that remain unexplored, underscoring the significance of
our current investigation. For instance, EIF4EBP1 acts
as a key downstream effector of the mTORCI1 complex.
Upon phosphorylation by mTORC1, EIF4EBP1 releases
the translation initiation factor elF4E, thereby initiating
cap-dependent translation and facilitating the synthesis of
pro-oncogenic proteins (e.g., cyclins, growth factors). This
process ultimately drives the proliferation, survival, and
metabolic reprogramming of glioma cells [51]. By af-
fecting the adenosine monophosphate (AMP)/ATP ratio,
D-2-HG could indirectly modulate AMPK activity. This
would engage the AMPK-mTORCI1-EIF4EBP1 signaling
axis, potentially establishing a negative feedback mecha-
nism that limits uncontrolled proliferation and restricts tu-
mor overgrowth [52,53]. This finding corroborates the clin-
ical observation that /DH-mutant gliomas typically exhibit
a slower growth rate and a more favorable prognosis.

This research encompasses several fundamental limi-
tations. While the sample size is adequate for initial anal-
ysis, it could restrict the wider applicability and general-
izability of the findings to larger populations. Addition-
ally, while factors such as age, genetic predispositions,
and lifestyle choices were somewhat accounted for, there
may still be residual influences that could affect the find-
ings. Furthermore, the outcomes predicted through com-
putational methods necessitate further experimental veri-
fication to establish their true biological significance and
precision, a crucial aim for our forthcoming investigations.
Consequently, subsequent investigations ought to focus on
augmenting both the magnitude and heterogeneity of the
participant group, in addition to utilizing various method-
ologies, such as in vitro and in vivo studies, to substanti-
ate and corroborate the significant findings. This approach
will enhance the reliability and applicability of the research
outcomes. Notwithstanding these limitations, the compre-
hensive examination of the interconnected molecular path-
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ways between D-2-HG and GBM presented in this research
carries considerable implications for public health. Future
research should focus on the interactions between these key
genes and D-2-HG to explore potential targeted therapeu-
tics for improving the survival prognosis of glioma patients.

5. Conclusion

The present research indicates that D-2-HG could play
a role in the development of GBM through the modulation
of particular genes. Molecular docking analyses demon-
strated notable binding affinity between D-2-HG and its
corresponding target proteins. These results establish a
basis for additional exploration into the pathways through
which D-2-HG may facilitate the onset and advancement
of GBM. Future research should focus on elucidating the
quantitative relationship between D-2-HG levels and GBM
formation and prognosis, as well as exploring potential ther-
apeutic interventions using targeted drugs or natural prod-
ucts for GBM treatment.
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