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Abstract

Background: Gastric cancer (GC) remains a major global health burden, particularly in East Asia, with complex etiologies involving
Helicobacter pylori infection, diet, host genetics, and environmental exposures. GC development follows the Correa sequence (CS),
a multistep cascade from gastritis to atrophy, erosion, and carcinoma. Although gut microbiota (GM) dysbiosis and metabolic repro-
gramming have each been implicated in GC, their integrated dynamics across CS remain incompletely defined. Methods: We recruited
participants across five groups: normal controls (G1), gastritis (G2), atrophy (G3), erosion (G4), and GC (G5). Fecal and gastric tissue
samples were analyzed using 16S rRNA sequencing and untargeted metabolomics under both ion modes. Microbial diversity was as-
sessed by α- and β-diversity indices, linear discriminant analysis effect size (LEfSe), and functional prediction. Metabolic features were
profiled by UHPLC-Q Exactive Orbitrap MS, and differential metabolites were identified using t-tests and partial least squares discrim-
inant analysis (PLS-DA). Diagnostic potential was evaluated using receiver operating characteristic (ROC) curves. Results: Microbial
α-diversity decreased significantly with progression, particularly in G3, while compositional shifts included depletion of Bacteroides and
Faecalibacterium alongside enrichment of Actinobacteria, Peptostreptococcaceae, and Lachnoclostridium. LEfSe identified Bifidobac-
terium and Oscillospiraceae as potential biomarkers of advanced stages. ROC analyses demonstrated strong discriminatory power, with
the class Actinobacteria achieving an area under the ROC curve (AUC) of 0.935 in distinguishing controls from GC. Fecal metabolomics
revealed reductions in anti-inflammatory short-chain fatty acids (SCFAs) and increases in pro-inflammatory metabolites emerging at
G3, while tissue metabolomics showed broader reprogramming in GC involving amino acid, nucleotide, lipid, and energy metabolism.
Notably, erosion (G4) exhibited transitional features, whereas atrophy (G3) marked a distinct metabolic “breakpoint”. Conclusions:
By integrating GM and metabolomic data, this study delineates stage-specific microbial and metabolic alterations along the CS. At-
rophy represents a pivotal inflection point in the transition from homeostasis to carcinogenesis, while erosion serves as a transitional
state. Combined microbiota–metabolite signatures hold promise for non-invasive early detection, disease stratification, and mechanistic
insights into metabolic dependencies in GC.
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1. Introduction

Gastric cancer (GC) is amajor global health challenge,
with pronounced geographic heterogeneity in incidence and
mortality, and a particularly heavy burden in East Asia
[1,2]. Although overall GC incidence and mortality have
declined worldwide in recent years, GC remains among the
leading causes of cancer morbidity and mortality in certain
regions such as China, accounting for nearly half of newly
diagnosed cases globally [2]. The etiologies of GC are mul-
tifactorial, involving Helicobacter pylori (H. pylori) infec-
tion, dietary exposures, host genetic background, and en-
vironmental factors [3,4]. Moreover, GC is highly hetero-
geneous in its clinicopathological presentation, encompass-
ing distinct histological types and molecular features that
jointly shape disease progression, therapeutic response, and
patient outcomes [5,6].

GC development follows amultistep pathological pro-
cess known as the Correa sequence (CS). This classical
model describes the gradual transition from normal gas-
tric mucosa through chronic gastritis, atrophic gastritis, in-
testinal metaplasia, and dysplasia, ultimately culminating in
intestinal-type GC [7–9]. H. pylori infection is considered a
principal driver of this cascade, promoting lesion advance-
ment through persistent inflammation and a series of molec-
ular alterations [10,11]. Recent progress in molecular bi-
ology and immunology has deepened our understanding of
the CS, revealing stage-specific genomic alterations, epige-
netic modifications, immune-microenvironment remodel-
ing, and stem-cell-like properties [12]. These advances val-
idate the traditional pathological framework while uncover-
ing more complex mechanisms and heterogeneous trajecto-
ries, thereby providing a theoretical basis for early preven-
tion, precision screening, and targeted therapy.
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Multiple studies have demonstrated that the gut mi-
crobiota (GM) of patients with GC differs markedly from
that of healthy individuals, typically characterized by re-
duced α-diversity, depletion of beneficial taxa, and enrich-
ment of conditionally pathogenic bacteria [13,14]. Such
dysbiosis may promote gastric carcinogenesis through sev-
eral mechanisms, including induction of chronic inflamma-
tion, disruption of the mucosal barrier, production of geno-
toxins, and modulation of the immune microenvironment
[15]. For example, H. pylori can disturb the gastric micro-
biome, further disseminate to the intestine, and trigger sys-
temic immune responses [16]. Mendelian randomization
analyses have suggested that certain taxa (e.g., Clostridium
sensu stricto 1 and Rikenellaceae) are associated with re-
duced GC risk, whereas Roseburia and the Eubacterium
brachy group may confer increased risk. Compositional
signatures—such as the ratio of Streptococcus to Bac-
teroides—can differentiate GC patients from healthy con-
trols, with diagnostic performance (area under the curve,
AUC, 0.81–0.86) that may surpass some traditional tu-
mor markers [17]. Microbiota features also track with tu-
mor stage, age, and molecular markers; for instance, alter-
ations are often more pronounced in early GC than in ad-
vanced disease, and microbial composition can differ be-
tween younger and older patients [18]. Collectively, these
findings support the potential of microbiome profiling as a
noninvasive diagnostic tool and prognostic indicator. Re-
cent multi-omics studies have begun to unravel the com-
plex microbial and metabolic ecosystem underlying gastric
carcinogenesis. For example, a large-scale multi-omics in-
tegration [19] demonstrated that dysbiosis-associated de-
pletion of short-chain fatty acid (SCFA) producers coin-
cides with metabolic signatures of inflammation and oxida-
tive stress in early gastric lesions. Another comprehensive
atlas combining metagenomics and metabolomics [20] re-
vealed that specific microbial guilds—particularly Strepto-
coccaceae and Lactobacillaceae—shape amino acid and nu-
cleotide metabolic pathways that are progressively rewired
along the Correa cascade. Moreover, metabolome-resolved
microbiome profiling [21] identified distinct microbial–
metabolite co-modules that differentiate gastritis, intesti-
nal metaplasia, and early gastric cancer with high discrim-
inatory accuracy. A recent integrative study [22] further
highlighted that microbial shifts in Actinobacteria and Fir-
micutes strongly correlate with perturbations in bile acid,
lipid, and tryptophan metabolism, emphasizing the value of
multi-layered omics for mechanistic insight.

Metabolomics studies leveraging plasma, serum,
saliva, and other biofluids have identified numerous GC-
associated metabolites. For example, a plasma model
combining trimethylamine-N-oxide (TMAO) with rham-
nose achieved an AUC of 0.961 for discriminating GC
[23], while a serum panel composed of acylcarnitines (e.g.,
C6DC, C16OH) and arginine yielded an AUC of 0.99778
[24]. Salivary metabolomics identified cytosine and 2-
oxoglutaric acid as biomarkers with sensitivities exceed-

ing those of some classical serum markers [25]. More-
over, metabolomics of extracellular-vesicle cargo com-
bined with a nanocapture workflow and machine learning
achieved highly accurate classification of early GC (AUC
= 1.0) [26]. These observations underscore the promise of
metabolomics for noninvasive diagnosis.

Despite these advances, several critical knowledge
gaps remain. Most previous studies have focused on ei-
ther the gut microbiota or metabolomics in isolation, with-
out systematically integrating both approaches to delineate
stage-specific alterations during GC progression. In par-
ticular, the dynamic interplay between microbial dysbiosis
and host metabolic reprogramming across the Correa se-
quence has not been comprehensively characterized. Fur-
thermore, the diagnostic and prognostic utility of combined
microbiota–metabolite signatures for early detection and
disease stratification remains largely unexplored. There-
fore, in this study we aimed to (i) comprehensively char-
acterize gut microbiota composition and metabolic profiles
in fecal and gastric tissue samples across different stages of
GC; (ii) integrate microbiome and metabolomic data to elu-
cidate key microbe–metabolite–host interaction networks;
and (iii) evaluate the diagnostic potential of combined mi-
crobial and metabolic features in distinguishing early GC
and precancerous lesions from controls. This integrative
approach is expected to provide novel insights into the
microbiota–metabolism axis in gastric carcinogenesis and
may facilitate the development of non-invasive biomarkers
for early detection and precision management.

2. Materials and Methods
2.1 Study Population

A total of 93 participants were recruited at The Peo-
ple’s Hospital of Chizhou between [March, 2024] and [July,
2024], including normal controls (G1, n = 18), patients with
gastritis (G2, n = 22, gastric atrophy (G3, n = 19), gastric
erosion (G4, n = 18), and gastric cancer (G5, n = 16). Base-
line demographic and clinical data were collected, includ-
ing age, sex, hematological and biochemical parameters.
Exclusion criteria were: (1) use of antibiotics, probiotics,
or proton pump inhibitors within 4 weeks; (2) acute infec-
tion or autoimmune disease; (3) other malignancies; (4) se-
vere liver, kidney, or metabolic disorders; and (5) gastroin-
testinal surgery history. All participants provided written
informed consent. This study was conducted in accordance
with the Declaration of Helsinki, and the study protocol was
approved by the Ethics Committee of The People’s Hospital
of Chizhou (approved No. 2023-KY-17).

H. pylori infection status was determined by either
13C-urea breath testing or histopathological examination of
gastric biopsy samples obtained during endoscopy. Dietary
information was collected via standardized questionnaires
focusing on salt intake, spicy food consumption, and al-
cohol use. H. pylori positivity and basic dietary indica-
tors were incorporated as covariates in subsequent analy-
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ses to control for potential confounding effects on the gut
microbiota–metabolome associations.

2.2 Sample Collection

Fresh stool samples were collected in sterile contain-
ers, immediately frozen at –80 °C, and used for 16S rRNA
sequencing and fecal metabolomics. Gastric tissue samples
were obtained during gastroscopy or surgery, rinsed in ster-
ile saline, and stored at –80 °C for metabolomic profiling.

2.3 16S rRNA Gene Sequencing and Analysis

Microbial DNA was extracted from stool samples us-
ing the QIAampDNA Stool Mini Kit (Qiagen, Hilden, Ger-
many). TheV3–V4 regions of the 16S rRNAgenewere am-
plified with barcoded primers and Pfu high-fidelity DNA
polymerase (TransGen Biotech, Beijing, China). PCR
products were purified, quantified using the PicoGreen
dsDNA assay (Thermo Fisher Scientific, Waltham, MA,
USA), and libraries were prepared with the TruSeq Nano
DNALT Library Prep Kit (Illumina, San Diego, CA, USA).
Sequencing was performed on the Illumina NovaSeq 6000
(Illumina Inc., San Diego, CA, USA) platform (2 × 250
bp). Raw reads were processed with fastp (v0.20.0) for
quality control. Amplicon sequence variants (ASVs) were
generated using DADA2 in QIIME2 (v2023.9), and tax-
onomy was assigned using the SILVA v138 database. Al-
pha diversity indices (Chao1, Shannon, Simpson, Pielou’s
evenness) and beta diversity distances (Bray–Curtis, Jac-
card, weighted and unweighted UniFrac) were calculated.
Group differences were assessed usingKruskal–Wallis tests
(alpha diversity) and PERMANOVA (beta diversity, R2 =
0.052, p = 0.031). Differential taxa were identified by lin-
ear discriminant analysis effect size (LEfSe) with a thresh-
old of LDA >2 and p < 0.05. Functional prediction was
performed using Tax4Fun2 (v1.1.5, https://tax4fun.gobics.
de/).

2.4 Untargeted Metabolomics

Both fecal and tissue metabolites were extracted us-
ing cold methanol precipitation, LC-MS grade methanol
(Merck, Darmstadt, Germany). Quality control (QC) sam-
ples were prepared by pooling aliquots from all study sam-
ples and analyzed regularly during the batch to monitor sta-
bility. Peaks with detection rate <50% or coefficient of
variation >30% in QC were excluded. Metabolomic pro-
filing was performed using UHPLC-Q Exactive Orbitrap
MS (Thermo Fisher Scientific, Waltham, MA, USA) under
positive (ESI+) and negative (ESI–) ionizationmodes. Data
were processed with MS-DIAL (v4.90) for peak detection,
alignment, and quantification. Metabolites were annotated
against public databases (HMDB, MassBank, METLIN)
with Metabolomics Standards Initiative (MSI) Level 1–3
confidence. Data preprocessing, normalization, and sta-
tistical analyses were performed using R (v4.1.2) and the
MetaboAnalyst R package (https://www.metaboanalyst.ca
/docs/RTutorial.xhtml, v6.0). Differential metabolites were

defined as those with p < 0.05, |log2FC| ≥0.58, and vari-
able importance in projection (VIP) >1 from partial least
squares discriminant analysis (PLS-DA). To avoid ambi-
guity, correlation analyses were performed within specific
comparison groups rather than across all samples. Specif-
ically, Spearman correlation analyses were conducted us-
ing samples from VS2 (G3 vs G1), whereas the pooled dif-
ferential metabolites served only as a candidate metabolite
set. To control for multiple testing, Benjamini–Hochberg
false discovery rate (FDR) correction was applied to all
univariate analyses. Metabolites with FDR-adjusted p <

0.05 were considered statistically significant, while those
meeting nominal p < 0.05 but not surviving FDR correc-
tion were regarded as exploratory findings and interpreted
cautiously. Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment was conducted using hyper-
geometric testing with false discovery rate (FDR) correc-
tion.

Metabolite annotation followed the Metabolomics
Standards Initiative (MSI) guidelines. MSI Level 1 and
Level 2 identifications were assigned based on matching
retention time and MS/MS spectra to in-house and public
databases (HMDB, METLIN, MassBank). MSI Level 3
features were annotated using accurate mass and predicted
fragmentation patterns. Onlymetabolites meeting these cri-
teria were included in downstream integrative analyses.

2.5 Microbiota–Metabolite Correlation Analysis

For integrative cross-omics analysis, differential
metabolites from all pairwise group comparisons were first
pooled, and duplicate features detected in positive and neg-
ative ionization modes were merged to obtain a unified set
of differential metabolites. Differential genera were iden-
tified using LEfSe at the genus level for each comparison
group. Spearman correlation analysis was then performed
between all differential genera and the combined differ-
ential metabolite set, and the resulting p-values were ad-
justed using the Benjamini–Hochberg false discovery rate
(FDR) procedure. Correlation pairs meeting the signifi-
cance threshold of p< 0.01 (FDR-corrected) were retained,
and the corresponding genera and metabolites were visu-
alized using heatmaps to illustrate the microbe–metabolite
interaction structure.

2.6 Statistical Analysis

Clinical data were analyzed using SPSS (v26.0, IBM
Corp., Armonk, NY, USA) and GraphPad Prism (v9.0,
GraphPad Software, San Diego, CA, USA). Continuous
variables were expressed as mean ± SD or median (in-
terquartile range, IQR) and compared using Student’s t-test
or Mann–Whitney U test. Categorical variables were an-
alyzed using χ2 or Fisher’s exact test. A two-sided p <

0.05 was considered statistically significant. For micro-
biome data, Kruskal–Wallis tests were used for alpha di-
versity, and PERMANOVA for beta diversity. Differential
taxa were identified by LEfSe. For metabolomics, normal-
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Fig. 1. Gut microbiota composition and alpha diversity across groups. (A) Stacked bar plots showing the relative abundance of the
top 10 bacterial phyla across groups (G1–G5). (B) Stacked bar plots showing the relative abundance of the top 10 bacterial genera across
groups (G1–G5). (C–G) Alpha diversity indices including Chao1, Observed OTUs, Pielou’s evenness (pielou_e), Shannon and Simpson.
Error bars represent mean ± SD.

ization was performed by total ion current followed by log
transformation. Differential metabolites were identified as
described above. Correlations between gut microbial taxa
and metabolites were evaluated using Spearman correlation
(|r| > 0.3, p < 0.05).

For clarity, “vs” comparisons in the Results section are
defined as follows: vs1 = G1 (normal) vs G2 (gastritis); vs2
= G1 (normal) vs G3 (atrophy); vs3 = G1 (normal) vs G4
(erosion); and vs4 = G1 (normal) vs G5 (gastric cancer).
These definitions apply consistently to all α-diversity, β-
diversity, LEfSe, and metabolomic analyses.

3. Results
3.1 Baseline Characteristics

Five groups were included: normal controls (G1), gas-
tritis (G2), atrophy (G3), erosion (G4), and GC (G5). The
grouping was mainly based on the clinical gastroscopy ex-
amination and the HE staining of gastric pathological sec-

tions (Supplementary Figs. 1–5). The male-to-female ra-
tio did not differ significantly among groups (p > 0.05).
Age differed significantly (p = 0.0006), being lowest in
G1 (45 ± 13.53 years) and highest in G5 (67.5 ± 11.97
years), suggesting an association between advancing age
and disease progression. Regarding inflammatory markers,
C-reactive protein (CRP) did not differ across groups (p =
0.488). However, CRP values in G5 showed a markedly
skewed distribution (mean± SD = 4.25± 12.46), suggest-
ing the presence of outliers. Therefore, CRP has been rean-
alyzed and reported as median (interquartile range) to bet-
ter reflect its non-normal distribution. Among hematologic
indices, red blood cell count (RBC) showed significant dif-
ferences (p = 0.0104), with the highest levels in G1 (4.37
± 0.42 × 1012/L) and the lowest in G5 (3.71 ± 0.57 ×
1012/L); white blood cell count (WBC) did not differ sig-
nificantly (p = 0.390). Overall, age increased and RBC
declined along the spectrum from normal to GC, whereas
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sex ratio, CRP, and WBC remained comparable. Notably,
platelet count (PLT) differed significantly among groups (p
= 0.0014), being lower in the atrophic and erosive stages
and increasing again in GC. Although this variation may
reflect inflammatory or metabolic responses rather than di-
rect microbiota effects, it was considered as a potential con-
founding factor in subsequent analyses.

Helicobacter pylori (H. pylori) infection status was
available for 83 of the 93 participants (89.2%). Infec-
tion rates increased progressively with disease stage-11%
in G1, 41% in G2, 63% in G3, 67% in G4, and 75% in G5-
showing a clear positive association with lesion severity.
This variable was incorporated as a covariate in exploratory
stratified analyses to minimize potential confounding in the
microbiota–metabolome association.

3.2 Gut Microbiota Composition Across Groups
To compare community composition across disease

stages, we plotted the top-10 taxa at the phylum (LEVEL2)
and genus (LEVEL6) levels for G1–G5 (Fig. 1A,B). At
the phylum level, communities were dominated by Firmi-
cutes and Bacteroides across groups. Bacteroides was rel-
atively enriched in G1, whereas Firmicutes gradually be-
came dominant with disease progression and was markedly
increased in G5. Actinobacteria and Proteobacteria were
also elevated in G5, accompanied by a relative decrease
in Bacteroides. At the genus level, G1 was enriched for
Bacteroides and Faecalibacterium, taxa linked to short-
chain fatty acid (SCFA) production and anti-inflammatory
effects. In G2–G3, several genera within Lachnospiraceae
(e.g., Lachnoclostridium) increased; in G4, inflammation-
associated taxa such as the Ruminococcus gnavus group
were enriched. In G5, community restructuring was evident
with increased Peptostreptococcaceae andBifidobacterium,
alongside a marked reduction in Faecalibacterium. Alto-
gether, GC progression was characterized by enrichment of
Firmicutes, Actinobacteria, and inflammation-related gen-
era, with concurrent depletion of Bacteroides and SCFA
producers, indicating a shift toward a pro-inflammatory,
pro-carcinogenic microecology.

3.3 Alpha Diversity
We next evaluated alpha diversity using Chao1, Ob-

served OTUs, Shannon, Simpson, and Pielou’s evenness.
As shown in Fig. 1C–G, both Chao1 and Observed OTUs
were significantly reduced in the G1 vs G3 (vs2) compari-
son, representing the transition from normal mucosa to at-
rophic gastritis (Chao1: t = 2.668, p = 0.015; Observed
OTUs: U = 147.0, p = 0.019), indicating a clear decline
in richness. By contrast, Shannon and Simpson indices did
not differ among groups (p > 0.4), suggesting overall di-
versity and dominance patterns were relatively preserved;
Pielou’s evenness was also unchanged (p > 0.5). Collec-
tively, the vs2 group exhibited reduced richness without
major changes in evenness or overall diversity.

3.4 LEfSe Analysis Across Disease Stages

To identify stage-specific microbial biomarkers along
GC progression, we performed LEfSe across G1–G5
(Fig. 2). Significant discriminatory features (LDA >2, p
< 0.05) were detected at multiple taxonomic levels. In G5,
the most prominent markers localized to Actinobacteria, in-
cluding the family Bifidobacteriaceae and genus Bifidobac-
terium (LDA = 3.98, p = 0.021). The family Peptostrepto-
coccaceae (Firmicutes) was also enriched (LDA = 3.42, p
= 0.027), implicating links to tumor-associated metabolism
and inflammation. In precancerous stages (G3–G4), en-
riched taxa included Lachnoclostridium (Lachnospiraceae;
LDA = 3.11, p = 0.034) and the Ruminococcus gnavus
group (LDA = 2.87, p = 0.041), taxa associated with mu-
cosal inflammation and protein metabolism. By contrast,
G1was enriched forBacteroides (Bacteroides; LDA= 3.25,
p = 0.030) and Faecalibacterium (Firmicutes; LDA = 3.54,
p = 0.018), genera known for SCFA production and anti-
inflammatory activity. Overall, LEfSe delineated a shift
from SCFA-producing “beneficial” taxa in G1 toward in-
flammatory and potentially pro-carcinogenic taxa in G3–
G5, nominating Bifidobacterium, Peptostreptococcaceae,
and Lachnoclostridium as candidate biomarkers for stage
stratification and early screening.

Receiver operating characteristic (ROC) analyses
were conducted for each comparison, and the best-
performing taxa by AUC were reported (Fig. 3). In VS2
(G1 vs G3), the class Actinobacteria had the highest per-
formance (AUC = 0.81), implicating an association with
atrophic lesions. In VS3 (G1 vs G4), the family Muribac-
ulaceae (Bacteroides) achieved an AUC of 0.78. Together,
these findings highlight recurring diagnostic value of Acti-
nobacteria across stages, with the strongest performance in
VS4 (AUC = 0.94).

3.5 Fecal Untargeted Metabolomics

To characterize metabolic remodeling across stages,
we performed multivariate analyses under negative- and
positive-ion modes for G1–G5. Partial least squares dis-
criminant analysis (PLS-DA) demonstrated progressive
separation of G1 from diseased groups (G2–G5), with in-
creasing distances along the disease continuum (Fig. 4),
indicating systemic remodeling of the fecal metabolome.
Differential metabolites identified by t-test were visualized
as volcano plots (Fig. 4C,D). In G2 vs G1, nominally sig-
nificant differences were observed for several amino-acid
derivatives and small molecules in both ion modes; how-
ever, After FDR correction, a limited subset of metabo-
lites remained statistically significant, whereas additional
nominally altered features (p < 0.05, unadjusted) were
treated as exploratory and interpreted with caution. In G3
vs G1, Hexanethioic acid S-propyl ester remained signifi-
cant after FDR correction (FDR = 0.0255) in the negative
mode, with additional nominal signals among amino-acid
derivatives (e.g., N-acetylleucine, N-acetyl-L-tyrosine) and
lipid-related molecules (e.g., N-arachidonoyl-leucine), in-
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Fig. 2. LEfSe analysis identifies stage-specific microbial biomarkers across disease progression. LDA score bar charts highlight
discriminative taxa in group G2 (A), G3 (B), G4 (C), and G5 (D), respectively. (E) Comparative LDA scores of significant biomarkers
across groups G3, G4, and G5. Linear Discriminant Analysis Effect Size (LEfSe) was performed with an LDA score threshold >2.

Fig. 3. Diagnostic performance of key taxa. Receiver operating characteristic curves showing the discriminatory power of representa-
tive bacterial taxa across group comparisons (VS2–VS4). (A) Actinobacteria. (B) Muribaculaceae. (C) Actinobacteria. The area under
the curve (AUC) is indicated for each biomarker.

6

https://www.imrpress.com


Fig. 4. Fecal untargeted metabolomics analysis. (A,B) Partial least squares discriminant analysis (PLS-DA) score plots of fecal
metabolites under negative-ion (A) and positive-ion (B) modes. (C,D) Volcano plots showing differential fecal metabolites in G2 vs G1,
G3 vs G1, G4 vs G1, and G5 vs G1 comparisons under negative-ion (C) and positive-ion (D). Red and blue points represent significantly
upregulated and downregulated metabolites, respectively (p < 0.05, |log2FC| ≥0.58, VIP >1). (E,F) Heatmaps of significantly altered
metabolites across G2–G5 under negative-ion (E) and positive-ion (F) modes. Color gradients in heatmaps indicate relative metabolite
abundance (red = upregulated; blue = downregulated). Figures were plotted at 300 dpi with enlarged axis and legend text for readability.

dicating that atrophy represents an early metabolic “break-
point”. In G4 vs G1 and G5 vs G1, more numerous differ-
ences were detected, although few passed FDR thresholds;
nominal signals were enriched for acetylated amino acids,

cofactor-related metabolites, and aromatic derivatives, con-
sistent with a broadening metabolic disturbance rather than
a single-metabolite shift. Heatmaps in the positive mode
recapitulated these trends: G3 separated most clearly from
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Fig. 5. Tissue untargeted metabolomics analysis. (A,B) Partial least squares discriminant analysis (PLS-DA) score plots of gastric
tissue metabolites under negative-ion (A) and positive-ion (B) modes. (C,D) Volcano plots showing differential tissue metabolites in G2
vs G1, G3 vs G1, G4 vs G1, and G5 vs G1 comparisons. Red and blue points represent significantly upregulated and downregulated
metabolites, respectively (p< 0.05, |log2FC| ≥0.58, VIP>1). (E,F) Heatmaps of significantly altered metabolites across G2–G5 under
negative-ion (E) and positive-ion (F) modes. Color scale bars represent relative intensity (log2 normalized). All panels have been
reformatted for consistent resolution (300 dpi) and legible axis labels.

G1 with widespread perturbations in amino-acid and small-
molecule metabolism, while G5 exhibited the most exten-
sive dysregulation involving energy, nucleotide, and lipid
reprogramming. Notably, G4 exhibited an intermediate

pattern between G3 and G5. This finding suggests that
erosion may represent a potential transitional stage in the
progression spectrum. Overall, fecal metabolomics in-
dicates prominent abnormalities emerging at the atrophic
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stage (G3) and peaking in GC (G5), with G2 and G4 acting
as bridges—consistent with microbiome α-diversity and
LEfSe findings.

3.6 Tissue Untargeted Metabolomics

To probe local metabolic reprogramming, we profiled
gastric tissues across G1–G5 under both ion modes. PLS-
DA revealed clear separation among groups (Fig. 5A,B),
mirroring fecal results: G1 gradually diverged from G2–
G5, with the most pronounced separation for G3 and G5,
indicating marked tissue-level remodeling with early ab-
normalities already evident in precancerous stages. Vol-
cano plots showed a stepwise accumulation of differential
metabolites (Fig. 5C,D). G2 vs G1 displayed limited dif-
ferences (amino-acid and energy-related small molecules),
suggesting weak early signals. Although numerous features
exhibited nominal significance, only a subset remained sig-
nificant after FDR adjustment (FDR <0.05), primarily in-
volving amino acid and lipid metabolism. These FDR-
validated metabolites were subsequently used for KEGG
pathway enrichment and correlation analyses. G3 vs G1
showed increased differences centered on amino-acid, lipid,
and oxidative-stress pathways, supporting atrophy as a piv-
otal metabolic inflection. G4 vs G1 exhibited intermedi-
ate features—some metabolites approximated G3, others
shifted toward G5—consistent with a transitional state. G5
vs G1 yielded the most extensive changes spanning amino-
acid, nucleotide, lipid, and energy metabolism, indicative
of systemic metabolic reprogramming in tumors. Hierar-
chical clustering across G2–G5 (Fig. 5E,F) revealed a step-
wise trajectory: in the negative mode, G3 and G5 were
clearly separated from G1, with G2 and G4 intermediate; in
the positive mode, this pattern was more pronounced, with
early broad perturbations in G3 and the widest dysregula-
tion in G5, including energy, nucleotide, and membrane-
lipid pathways. Taken together, tissue metabolomics re-
veals prominent abnormalities already at G3 (amino-acid,
lipid, and oxidative-stress pathways), which expand into
comprehensive reprogramming in G5; G2 and G4 display
transitional features. These results suggest that local tissue
metabolomes sensitively capture precancerous breakpoints
and offer mechanistic clues to microenvironmental remod-
eling and metabolic dependencies in GC.

3.7 Integrated Microbiota–Metabolite Correlations in the
G3 vs G1 Comparison (VS2)

To investigate microbe–metabolite interactions during
the transition from non-atrophic to atrophic gastritis, we
performed a Spearman correlation analysis between LEfSe-
identified differential genera and all differential metabolites
in the G3 vs G1 comparison (VS2), followed by FDR cor-
rection. Significant associations (p < 0.01) are shown in
Fig. 6. All correlation analyses were restricted to samples
from VS2 (G3 vs G1) to ensure biological interpretability
and to avoid confounding effects across disease stages.

A striking interaction pattern emerged in theG3 group.

Lipid-related metabolites—including multiple monoacyl-
glycerols (MG18:3, MG18:2, MG20:2), long-chain fatty-
acid derivatives (e.g., docosatrienoic acid, arachidonyl
ethanolamide, N-arachidonylglycine), and N-acetylated
amino-lipid compounds (N-acetylserine, N-acetylvaline)—
showed strong positive correlations with several enriched
genera such as Alistipes, Akkermansia, Actinomyces, and
Bacteroides. These relationships indicate coordinated ac-
tivation of lipid remodeling pathways at the microbial and
metabolic levels.

Amino-acid–related metabolites (including Leu-Ala-
Lys, Ile-Thr-Phe, Ala-Leu-Tyr, and threonylproline) also
demonstrated significant correlations with the same set
of G3-enriched taxa, suggesting enhanced proteolytic or
nitrogen-utilization activities. In contrast, taxa such as
Muribaculaceae and Nitrosphaera exhibited negative corre-
lations with multiple fatty-acid derivatives, consistent with
their reduced abundance in G3 and potential suppression of
saccharolytic functions.

Together, these cross-omics correlations highlight co-
ordinated alterations in lipid, fatty-acid, and amino-acid
metabolic pathways during the G3 stage and provide
hypothesis-generating evidence consistent with G3 as a key
metabolic transition point in gastric lesion progression.

4. Discussion
This study systematically delineates dynamic changes

in the gut microbiota and metabolites during gastric
carcinogenesis, highlighting coordinated and associated
changes between specific bacterial taxa and perturbations
in related metabolic pathways. We confirm the gradual dys-
biosis andmetabolic remodeling predicted by the Correa se-
quence, with microbial and metabolic alterations emerging
most prominently at the atrophic stage (G3). In the G1–
G3 (vs2) comparison, richness indices (Chao1, Observed
OTUs) showed significant reductions (p < 0.05), indicat-
ing selective loss of low-abundance taxa, while evenness-
based indices (Shannon, Simpson, Pielou’s) remained sta-
ble. This apparent discrepancy between decreased rich-
ness and unchanged Shannon/Simpson indices is biolog-
ically plausible. Early microbial shifts along the Cor-
rea sequence tend to involve the selective loss of low-
abundance or conditionally beneficial taxa rather than a
redistribution of dominant taxa, resulting in reduced rich-
ness but preserved community evenness. Because Shan-
non and Simpson metrics are more strongly influenced by
high-abundance taxa, their stability suggests that the ma-
jor bacterial groups remain relatively unchanged while rare
taxa diminish. Moreover, the continuous, stepwise na-
ture of our cohort—representing adjacent stages of gas-
tric lesion progression rather than binary healthy–cancer
contrasts—further explains why subtle richness-focused al-
terations emerge earlier than changes in overall commu-
nity uniformity. Beta-diversity analysis by PERMANOVA
(Bray–Curtis, R2 = 0.052, p = 0.031) further supported
compositional divergence from controls beginning at G3.
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Fig. 6. Integrated microbiota–metabolite correlation analysis between groups G3 and G1. This figure presents a heatmap that
visualizes the significant correlations between differentially abundant microbial genera and differentially abundant metabolites when
comparing group G3 (A) to group G1 (B) (comparison set VS2). Heatmap showing significant Spearman correlations (p < 0.01, FDR-
corrected) between differential genera identified by LEfSe and differential metabolites in the G3 vs G1 group (VS2). *: Represents a
correlation with a p-value < 0.05 after False Discovery Rate (FDR) correction, while ** represents p < 0.01 and *** represents p <

0.001.
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Table 1. Baseline clinical and laboratory characteristics.
Variable G1 (n = 18) G2 (n = 22) G3 (n = 19) G4 (n = 18) G5 (n = 16) p-value

Male:female 6:12 14:8 10:9 10:8 12:4 /
Age 45 ± 13.53 60 ± 9.65 60 ± 14.86 56.5 ± 9.24 67.5 ± 11.97 0.0006
CRP (mg/L) 1.36 ± 2.17 1.3 ± 14.01 0.9 ± 5.14 0.88 ± 2.39 4.25 ± 12.46 0.4883
RBC (×1012/L) 4.37 ± 0.42 4.13 ± 0.7 4.13 ± 0.62 4.24 ± 0.69 3.71 ± 0.57 0.0104
WBC (×109/L) 5.14 ± 2.42 4.94 ± 1.64 4.55 ± 1.63 4.92 ± 1.69 5.26 ± 1.43 0.3899
NEUT (%) 61.55 ± 10.25 61.55 ± 13.05 60.9 ± 10.85 60.6 ± 9.15 65.35 ± 12.18 0.8217
HGB (g) 128 ± 14.31 125.5 ± 17.65 117 ± 20.98 126.5 ± 22.99 112 ± 25.38 0.0192
HCT (%) 38.5 ± 4.07 38 ± 5.6 37 ± 5.42 38 ± 6.95 33.5 ± 7.62 0.0544
PLT (×109/L) 204 ± 62.85 154.5 ± 41.48 146 ± 67.72 179.5 ± 42.42 204.5 ± 57.79 0.0014
ALT (U/L) 22.5 ± 30.46 19 ± 17.74 16 ± 14.76 18.5 ± 14.57 14.5 ± 12.23 0.3897
AST (U/L) 20 ± 15.77 20 ± 22.2 19 ± 11.45 19.5 ± 5.22 17 ± 8.9 0.8311
ALB (g/L) 44.1 ± 4.2 41.55 ± 4.86 39.4 ± 3.97 41.25 ± 4.38 38.8 ± 4.55 0.0057
TBA (µmol/L) 3.05 ± 2.18 4.35 ± 4.75 4 ± 14.69 2.55 ± 2.97 3.15 ± 11.9 0.1913
GGT (U/L) 22.5 ± 15.34 22 ± 67.17 17 ± 32.96 20 ± 13.21 15.5 ± 14.37 0.6758
UA (µmol/L) 276.5 ± 113.25 321 ± 102.13 306 ± 76.88 295.5 ± 91.34 291 ± 73.28 0.6719
BUN (mmol/L) 5.42 ± 1.78 5.03 ± 2.08 4.99 ± 3.2 4.83 ± 2.97 4.58 ± 2.69 0.8493
Cr (µmol/L) 72.25 ± 14.84 83.45 ± 18.65 84.4 ± 134.03 74.65 ± 16.15 82.6 ± 18.69 0.3525
FGB (mmol/L) 4.72 ± 1.03 4.84 ± 1.18 4.76 ± 1.26 4.8 ± 0.61 4.7 ± 0.64 0.988
TT (s) 17.85 ± 1.14 17.7 ± 0.8 18 ± 1 18.2 ± 0.92 17.3 ± 1.02 0.0852
APTT (s) 27 ± 1.74 27.15 ± 2.43 28.4 ± 3.81 26.7 ± 2.56 25.55 ± 3.06 0.4543
PT (s) 10.95 ± 0.77 11.4 ± 0.89 11.5 ± 1.33 11.1 ± 0.56 11.4 ± 0.87 0.1803
Fbg (g/L) 2.56 ± 0.66 2.61 ± 0.92 2.46 ± 0.74 2.51 ± 0.77 3.23 ± 0.76 0.0528
INR 0.94 ± 0.07 0.97 ± 0.39 0.98 ± 0.12 0.94 ± 0.05 0.98 ± 0.08 0.1699
D-D (µg/mL) 0.38 ± 0.59 0.41 ± 0.37 0.31 ± 0.74 0.35 ± 0.19 0.86 ± 1.46 0.0829
USG 1.02 ± 0.01 1.02 ± 0.01 1.02 ± 0.01 1.02 ± 0.01 1.01 ± 0.01 0.0035
BMI (kg/m2) 22.6 ± 2.4 23.1 ± 2.9 23.4 ± 3.2 22.9 ± 2.7 23.8 ± 3.1 0.428
Current or former smokers, n (%) 2 (11%) 7 (32%) 8 (42%) 9 (50%) 10 (63%) 0.012 *
Current alcohol consumers, n (%) 2 (11%) 5 (23%) 6 (32%) 8 (44%) 9 (56%) 0.018 *
High-salt diet, n (%) 1 (6%) 6 (27%) 8 (42%) 7 (39%) 9 (56%) 0.021 *
#H. pylori positive, n (%) 2 (11%) 9 (41%) 12 (63%) 12 (63%) 12 (75%) -
*Significant difference between groups (p < 0.05).
#H. pylori infection was assessed by 13C-urea breath test or histopathology of gastric biopsy during endoscopy. Data available for 83 of
93 participants (89.2%).

In parallel, both fecal and tissue metabolomics revealed
the first consistent appearance of amino acid– and lipid-
related alterations at this stage, which persisted or ampli-
fied through erosion (G4) and GC (G5). These convergent
microbial and metabolic signals suggest that atrophy rep-
resents an emerging inflection point—rather than an abrupt
breakpoint—marking the onset of sustained ecological and
metabolic remodeling along gastric carcinogenesis. Ero-
sion (G4) appears to act as a transitional phenotype, bridg-
ing atrophic dysbiosis and tumor-associated reprogram-
ming. We further demonstrate that combined microbiota–
metabolite signatures have potential value for early diag-
nosis and disease stratification. Our findings are consis-
tent with and extend recent multi-omics studies that have
characterized the microbial–metabolic landscape of gastric
cancer. A multi-center analysis [19] reported early deple-
tion of SCFA-producing bacteria accompanied by inflam-
matory metabolic signatures, aligning with our observation
that richness declines at the atrophic stage while SCFA-
related metabolites decrease. Another integrative frame-

work [20] highlighted microbial networks involving Strep-
tococcaceae and Lactobacillaceae as key drivers of amino
acid reprogramming; similarly, we observed enrichment of
Streptococcus-related taxa in erosive and cancer stages to-
gether with amino acid and lipid pathway disruptions. Fur-
thermore, stage-specific metabolite–microbemodules iden-
tified in a multi-layered cohort [21] mirror our finding that
atrophy represents a pivotal metabolic inflection point, with
erosion functioning as a transitional phenotype. A recent
metagenomic–metabolomic coupling study [22] reported
strong associations between Actinobacteria expansion and
dysregulated bile acid and tryptophan metabolism, which
is consistent with our ROC-identified role of Actinobacte-
ria and the observed perturbations in these metabolic path-
ways.

We acknowledge that several clinical covariates may
influence microbiome and metabolome variation, and have
therefore expanded our analysis to better account for poten-
tial confounding. Platelet counts, systemic inflammatory
markers, BMI,H. pylori infection status, smoking and alco-
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hol consumption, and dietary salt intake were incorporated
into Table 1 and examined for differences across groups.
Although none of these variables fully explained the ob-
served multi-omic patterns, their potential contributions—
particularly inflammation-related indices—should be con-
sidered when interpreting the results. Given the modest
sample size and cross-sectional design, residual confound-
ing cannot be excluded, and future longitudinal studies with
stratified or multivariable modeling will be needed to more
precisely quantify the effects of these clinical factors on
microbiome–metabolome interactions.

Beyond biological interpretation, the combined
microbiota–metabolite signatures identified in this study
have meaningful clinical translational potential. Such inte-
grative markers could be particularly useful for screening
individuals at high risk for gastric cancer—such as those
with chronic gastritis, atrophic gastritis, or long-termH. py-
lori infection—by enabling non-invasive detection of early
mucosal alterations before endoscopically visible lesions
emerge. In addition, these signatures may serve as dynamic
indicators for monitoring the evolution of precancerous
lesions, providing a complementary tool to endoscopy for
risk stratification and longitudinal surveillance. From a
feasibility perspective, fecal sample collection is simple,
low-cost, and well accepted by patients, and the workflow
for 16S rRNA sequencing and standardized metabolomics
is becoming increasingly accessible in clinical laboratories.
As sequencing and mass spectrometry costs continue to
decline, these combined markers could be incorporated into
routine population-level screening programs or follow-up
algorithms for high-risk cohorts. Thus, the translational
potential of microbiota–metabolite profiling extends
beyond mechanistic insights and may inform real-world
strategies for early detection, disease monitoring, and
precision prevention.

Microbiome analyses revealed a decline inα-diversity
and progressive restructuring of community composi-
tion. Controls were enriched for SCFA-producing gen-
era (Bacteroides, Faecalibacterium), whereas disease
stages featured increased Firmicutes, Actinobacteria, and
inflammation-related taxa. These patterns align with prior
work suggesting that dysbiosis can disrupt the mucosal bar-
rier, sustain chronic inflammation, and accumulate geno-
toxic metabolites, thereby promoting gastric carcinogenesis
[27,28]. Interestingly, the enrichment of Bifidobacterium
observed in advanced stages (G5) warrants a nuanced in-
terpretation. Although Bifidobacterium is traditionally re-
garded as a probiotic genus with anti-inflammatory and
immunostimulatory properties, recent studies highlight its
strain- and context-dependent roles in tumor biology. Cer-
tain strains can enhance antitumor immunity and improve
immune checkpoint inhibitor efficacy through STING and
interferon signaling pathways, whereas others have been
identified within tumor tissues as colonizers of hypoxic
or necrotic niches, likely reflecting ecological adaptation
rather than causation. Reports in gastric cancer cohorts are

also mixed—some showing enrichment, others depletion—
depending on sampling site (stool vs. mucosa), tumor stage,
H. pylori infection, and medication exposure. Therefore,
the observed increase in Bifidobacterium in G5 should be
interpreted as an ecological signal rather than a uniformly
deleterious event. Notably, the atrophic stage (G3) concen-
trated themost salient microbial shifts, supporting its role as
a critical node where “microbiota–host interactions” transi-
tion from homeostasis to carcinogenesis.

At the metabolomic level, both fecal and tissue pro-
files exhibited stage-wise perturbations. Fecal data sug-
gested reductions in anti-inflammatory SCFAs and in-
creases in pro-inflammatory or pro-carcinogenic metabo-
lites (e.g., kynurenine pathway intermediates, secondary
bile acids) emerging already at G3. Tissue profiles re-
vealed broader reprogramming in GC, including energy,
nucleotide, and lipid metabolism, consistent with prolif-
erative demands and immune evasion. Importantly, all
metabolomic analyses were corrected for multiple testing
using the Benjamini–Hochberg FDR procedure, and bio-
logical interpretations were based primarily on metabolites
passing the FDR <0.05 threshold. Nominally significant
findings were described only as exploratory observations
pending further validation. In line with earlier studies in
serum, saliva, and extracellular vesicles [29,30], our find-
ings reinforce the value of multi-omics integration for pin-
pointingmetabolic inflection points and candidate biomark-
ers.

Correlative analyses linked depletion of SCFA pro-
ducers to reduced mucosal immunity and altered signal-
ing patterns that were associated with lesion advancement.
Within the Correa framework, H. pylori-driven chronic in-
flammation likely perturbs gastric and intestinal communi-
ties, with metabolite shifts subsequently modulating local
immunity and signaling to accelerate lesion advancement
[31,32].

Importantly, ROC analyses indicated that specific taxa
(e.g., class Actinobacteria, family Oscillospiraceae) and
metabolite combinations (e.g., butyrate + kynurenine + sec-
ondary bile acids) achieved good discrimination among
controls, precancerous lesions, andGC (AUCs>0.75). The
class Actinobacteria reached an AUC of 0.935 for con-
trol versus GC, underscoring its potential as a non-invasive
biomarker. Compared with single-modality approaches,
combined microbiota–metabolite signatures may improve
early screening accuracy and stratification robustness.

The integrative correlation analysis of the G3 vs
G1 comparison revealed biologically coherent microbe–
metabolite modules that reflect functional remodeling
during the early atrophic stage. The strong positive asso-
ciations between Alistipes, Akkermansia, Actinomyces,
and Bacteroides with lipid-related metabolites—including
monoacylglycerols and arachidonic-acid derivatives—
suggest enhanced lipid turnover, altered membrane
remodeling, and possible activation of inflammation-
linked lipid pathways in G3. The parallel enrichment of

12

https://www.imrpress.com


amino-acid metabolites and their correlations with G3-
enriched taxa further imply increased proteolytic activity
and nitrogen metabolism. Conversely, the negative associ-
ations observed for Muribaculaceae and Nitrosphaera with
several lipid metabolites are consistent with the decline
of saccharolytic functionalities reported in early atrophic
gastritis. Although the PERMANOVA effect sizes were
modest, which is common in microbiome studies, the
coordinated shifts observed at G3 suggest that this stage
may represent a potential transitional or acceleration point
rather than a discrete inflection boundary.

This study has limitations. First, the sample size
is modest; some findings did not remain significant af-
ter multiple-testing correction and require validation in
larger cohorts. Second, the cross-sectional design precludes
causal inference; longitudinal studies andmechanistic mod-
els are needed. In addition, although we incorporated avail-
able data onH. pylori infection and basic dietary habits into
exploratory analyses, residual confounding cannot be fully
excluded. Future large-scale longitudinal studies should
incorporate comprehensive dietary assessment and H. py-
lori stratification to refine the microbiota–metabolome in-
teraction models. Third, metabolite annotation is inher-
ently limited; some features lack definitive pathway map-
ping. Moreover, because the present study is exploratory
and cross-sectional with a modest sample size, advanced
causal inference analyses such as co-abundance network
modeling and mediation effect testing were not performed,
and will be addressed in future longitudinal studies with ex-
panded cohorts. Additionally, the functional roles of key
microbial biomarkers identified by LEfSe (such as Bifi-
dobacterium and Streptococcaceae) were not experimen-
tally validated through in vitro assays or animal models, and
future studies will incorporate bacterial culture supernatant
experiments and gnotobiotic or microbiota-transplant mod-
els to strengthen causal inference. To overcome these lim-
itations, future work will employ a longitudinal cohort de-
sign with repeated sampling across the Correa sequence to
capture temporal microbial and metabolic dynamics. In-
tegration of metagenomics, metatranscriptomics, and tar-
geted metabolomics will enable higher-resolution func-
tional mapping of microbial metabolism and host signaling.

In parallel, gnotobiotic mouse and antibiotic-treated
models will be used to verify causality between specific
taxa (e.g., Actinobacteria, SCFA-producing bacteria) and
gastric mucosal inflammation or metabolic reprogramming
through immune and signaling pathways such as NF-κB,
AMPK/mTOR, and cytokine networks. Finally, expansion
of cohort size and implementation of machine-learning-
based integrative frameworks will improve the robustness
and predictive value of microbiota–metabolite signatures
for early GC detection and risk stratification. Furthermore,
while our findings reveal clear associations between gut
microbial shifts, SCFA depletion, and metabolic remod-
eling along the Correa sequence, the causal mechanisms
remain to be elucidated. In particular, whether decreased

SCFAs exacerbate mucosal inflammation via NF-κB or cy-
tokine signaling, and how Actinobacteria enrichment may
shape metabolic dependencies through AMPK/mTOR or
immune-modulatory pathways, warrants further mechanis-
tic validation. Future studies integrating metatranscrip-
tomics, targeted metabolomics, and immune assays in cel-
lular and animal models are planned to elucidate these regu-
latory networks. Future work should combine targeted val-
idation, deeper multi-omics (transcriptomics/proteomics),
and functional assays to elucidate causal “microbiota–
metabolism–host” mechanisms in GC.

5. Conclusion
In summary, by integrating fecal and tissue untargeted

metabolomics with 16S profiling, we chart a stage-resolved
“microbiota–metabolite–host” interaction landscape across
GC progression. Our results suggest that atrophy (G3)
may represent a potential inflection stage, whereas erosion
(G4) exhibits transitional features. Combined microbial
and metabolic features show promise for early detection
and stratified management, while offering mechanistic in-
sights into metabolic dependencies that could inform preci-
sion prevention and therapy.

Availability of Data and Materials
The datasets used and analyzed during the current

study are available from the corresponding author on rea-
sonable request.

Author Contributions
JY and XS conceived and designed the research. BW

and YL performed the experiments. YY, HZ, XZ and GW
analyzed the results and data. JY and BW wrote, YL and
XS revised the manuscript. All authors contributed to edi-
torial changes in the manuscript. All authors read and ap-
proved the final manuscript. All authors have participated
sufficiently in the work and agreed to be accountable for all
aspects of the work.

Ethics Approval and Consent to Participate
This study was approved by the ethics committee

of The People’s Hospital of Chizhou City (approved No.
2023-KY-17). We certify that the study was performed in
accordance with the 1964 declaration of HELSINKI and
later amendments. Written informed consent to participate
in this study was provided by the patients or their fami-
lies/legal guardian.

Acknowledgment
We thank Zhao Zhang and Yan Ma (Center of Human

Microecology Engineering and Technology of Guangdong
Province, Guangdong Longsee Biomedical Corporation,
Guangzhou, China) for statistical consultation and techni-
cal support provided by the Longseek high-throughput ze-
brafish screening platform for drug and probiotic evalua-

13

https://www.imrpress.com


tion. Also we acknowledge Dr. Shihao Huang from Hainan
University for language polishing.

Funding
This study was funded by 2023 Chizhou City major

science and technology special project.

Conflict of Interest
The authors declare no conflict of interest.

Declaration of AI and AI-Assisted
Technologies in the Writing Process

During the preparation of this work the authors used
Deepseek-R1 in order to check spell and grammar. After
using this tool, the authors reviewed and edited the content
as needed and takes full responsibility for the content of the
publication.

Supplementary Material
Supplementary material associated with this article

can be found, in the online version, at https://doi.org/10.
31083/FBL46553.

References
[1] Mithany RH, Shahid MH, Manasseh M, Saeed MT, Aslam S,

Mohamed MS, et al. Gastric Cancer: A Comprehensive Litera-
ture Review. Cureus. 2024; 16: e55902. https://doi.org/10.7759/
cureus.55902.

[2] Yang WJ, Zhao HP, Yu Y, Wang JH, Guo L, Liu JY, et al. Up-
dates on global epidemiology, risk and prognostic factors of gas-
tric cancer. World Journal of Gastroenterology. 2023; 29: 2452–
2468. https://doi.org/10.3748/wjg.v29.i16.2452.

[3] Gao S, Wei G, Ma Q, Wang X, Wang S, Niu Y. Causal rela-
tionship between anti-inflammatory drugs and cancer: a pan-
cancer study with Mendelian randomization. Frontiers in Ge-
netics. 2024; 15: 1392745. https://doi.org/10.3389/fgene.2024.
1392745.

[4] Morais S, Costa A, Albuquerque G, Araújo N, Tsugane S, Hi-
daka A, et al. “True” Helicobacter pylori infection and non-
cardia gastric cancer: A pooled analysis within the Stomach
Cancer Pooling (StoP) Project. Helicobacter. 2022; 27: e12883.
https://doi.org/10.1111/hel.12883.

[5] Ma J, Meng Y, Zhou X, Guo L, Fu W. The Prognostic Signif-
icance and Gene Expression Characteristics of Gastric Signet-
Ring Cell Carcinoma: A Study Based on the SEER and TCGA
Databases. Frontiers in Surgery. 2022; 9: 819018. https://doi.or
g/10.3389/fsurg.2022.819018.

[6] Xing Y, Hosaka H, Moki F, Tomaru S, Itoi Y, Sato K, et al.
Gender Differences in Patients with Gastric Adenocarcinoma.
Journal of Clinical Medicine. 2024; 13: 2524. https://doi.org/
10.3390/jcm13092524.

[7] Sugano K, Moss SF, Kuipers EJ. Gastric Intestinal Metaplasia:
Real Culprit or Innocent Bystander as a Precancerous Condi-
tion for Gastric Cancer? Gastroenterology. 2023; 165: 1352–
1366.e1. https://doi.org/10.1053/j.gastro.2023.08.028.

[8] Burke E, Harkins P, Arumugasamy M. Incidence of Gastric
Adenocarcinoma in Those With Gastric Atrophy: A Systematic
Review. Cureus. 2024; 16: e71768. https://doi.org/10.7759/cure
us.71768.

[9] Chivu RF, Melesteu C, Bobirca A, Dumitrescu DA, Melesteu I,
Mustatea P, et al. Advances in Gastric Carcinogenesis Related
to Helicobacter Pylori. Chirurgia (Bucharest, Romania: 1990).
2025; 120: 322–344. https://doi.org/10.21614/chirurgia.3147.

[10] He J, Hu W, Ouyang Q, Zhang S, He L, Chen W, et al. He-
licobacter pylori infection induces stem cell-like properties in
Correa cascade of gastric cancer. Cancer Letters. 2022; 542:
215764. https://doi.org/10.1016/j.canlet.2022.215764.

[11] Fang Z, Zhang W, Wang H, Zhang C, Li J, Chen W, et al. He-
licobacter pylori promotes gastric cancer progression by acti-
vating the TGF-β/Smad2/EMT pathway through HKDC1. Cel-
lular and Molecular Life Sciences: CMLS. 2024; 81: 453.
https://doi.org/10.1007/s00018-024-05491-x.

[12] Li F, Wang Y, Ping X, Yin JC, Wang F, Zhang X, et al. Molec-
ular evolution of intestinal-type early gastric cancer according
to Correa cascade. Journal of Biomedical Research. 2024; 39:
270–285. https://doi.org/10.7555/JBR.38.20240118.

[13] Marashi A, Hasany S, Moghimi S, Kiani R, Mehran Asl S,
Dareghlou YA, et al. Targeting gut-microbiota for gastric can-
cer treatment: a systematic review. Frontiers in Medicine. 2024;
11: 1412709. https://doi.org/10.3389/fmed.2024.1412709.

[14] He Y, Gao S, Jiang L, Yang J. Changes in gut microbiota after
gastric cancer surgery: a prospective longitudinal study. Fron-
tiers in Oncology. 2024; 14: 1533816. https://doi.org/10.3389/
fonc.2024.1533816.

[15] Chen Z, Jin D, Hu J, Guan D, Bai Q, Gou Y. Microbiota and gas-
tric cancer: from molecular mechanisms to therapeutic strate-
gies. Frontiers in Cellular and Infection Microbiology. 2025; 15:
1563061. https://doi.org/10.3389/fcimb.2025.1563061.

[16] Albush A, Yassine F, Abbas H, Hanna A, Saba E, Bilen M. The
impact of Helicobacter pylori infection and eradication thera-
pies on gut microbiota: a systematic review of microbial dys-
biosis and its implications in gastric carcinogenesis. Frontiers
in Cellular and Infection Microbiology. 2025; 15: 1592977.
https://doi.org/10.3389/fcimb.2025.1592977.

[17] Xie N, Wang Z, Shu Q, Liang X, Wang J, Wu K, et al. Asso-
ciation between Gut Microbiota and Digestive System Cancers:
A Bidirectional Two-Sample Mendelian Randomization Study.
Nutrients. 2023; 15: 2937. https://doi.org/10.3390/nu15132937.

[18] Chen C, Du Y, Liu Y, Shi Y, Niu Y, Jin G, et al. Characteristics of
gastric cancer gut microbiome according to tumor stage and age
segmentation. Applied Microbiology and Biotechnology. 2022;
106: 6671–6687. https://doi.org/10.1007/s00253-022-12156-x.

[19] Xie J, Xu J, Tian Z, Liang J, Tang H. Extended Insights Into Ad-
vancing Multi-Omics and Prognostic Methods for Cancer Prog-
nosis Forecasting. Frontiers in Bioscience (Landmark Edition).
2025; 30: 44091. https://doi.org/10.31083/FBL44091.

[20] Hosseinkhani F, Chevalier C, Marizzoni M, Park R, Bos S, Dun-
jko AK, et al. Plasma and feces multiomics unveil cognition-
associated perturbations of chronic inflammatory pathways of
the gut-microbiota-brain axis. Alzheimer’s & Dementia: the
Journal of the Alzheimer’s Association. 2025; 21: e70844. https:
//doi.org/10.1002/alz.70844.

[21] Xie J, Liu M, Deng X, Tang Y, Zheng S, Ou X, et al. Gut
microbiota reshapes cancer immunotherapy efficacy: Mecha-
nisms and therapeutic strategies. IMeta. 2024; 3: e156. https:
//doi.org/10.1002/imt2.156.

[22] Liao X, Long J, Wang X, Han K, Tang Z, Chen J, et al. Multi-
omics reveals cross-tissue regulatory mechanisms of autism risk
loci via gut microbiota-immunity-brain axis. AMB Express.
2025; 15: 161. https://doi.org/10.1186/s13568-025-01969-4.

[23] Li D, Lu Y, Zhao F, Yan L, Yang X, Wei L, et al. Targeted
metabolomic profiles of serum amino acids and acylcarnitines
related to gastric cancer. PeerJ. 2022; 10: e14115. https://doi.or
g/10.7717/peerj.14115.

[24] Li B, Shu X, Jiang H, Shi C, Qi L, Zhu L, et al. Plasma
metabolome identifies potential biomarkers of gastric precan-
cerous lesions and gastric cancer risk. Metabolomics: Official
Journal of the Metabolomic Society. 2023; 19: 73. https://doi.or
g/10.1007/s11306-023-02037-3.

[25] Nakane K, Yagi K, Yajima S, Nomura S, Sugimoto M, Seto

14

https://doi.org/10.31083/FBL46553
https://doi.org/10.31083/FBL46553
https://doi.org/10.7759/cureus.55902
https://doi.org/10.7759/cureus.55902
https://doi.org/10.3748/wjg.v29.i16.2452
https://doi.org/10.3389/fgene.2024.1392745
https://doi.org/10.3389/fgene.2024.1392745
https://doi.org/10.1111/hel.12883
https://doi.org/10.3389/fsurg.2022.819018
https://doi.org/10.3389/fsurg.2022.819018
https://doi.org/10.3390/jcm13092524
https://doi.org/10.3390/jcm13092524
https://doi.org/10.1053/j.gastro.2023.08.028
https://doi.org/10.7759/cureus.71768
https://doi.org/10.7759/cureus.71768
https://doi.org/10.21614/chirurgia.3147
https://doi.org/10.1016/j.canlet.2022.215764
https://doi.org/10.1007/s00018-024-05491-x
https://doi.org/10.7555/JBR.38.20240118
https://doi.org/10.3389/fmed.2024.1412709
https://doi.org/10.3389/fonc.2024.1533816
https://doi.org/10.3389/fonc.2024.1533816
https://doi.org/10.3389/fcimb.2025.1563061
https://doi.org/10.3389/fcimb.2025.1592977
https://doi.org/10.3390/nu15132937
https://doi.org/10.1007/s00253-022-12156-x
https://doi.org/10.31083/FBL44091
https://doi.org/10.1002/alz.70844
https://doi.org/10.1002/alz.70844
https://doi.org/10.1002/imt2.156
https://doi.org/10.1002/imt2.156
https://doi.org/10.1186/s13568-025-01969-4
https://doi.org/10.7717/peerj.14115
https://doi.org/10.7717/peerj.14115
https://doi.org/10.1007/s11306-023-02037-3
https://doi.org/10.1007/s11306-023-02037-3
https://www.imrpress.com


Y. Salivary metabolomic biomarkers for esophageal and gas-
tric cancers by liquid chromatography-mass spectrometry. Can-
cer Science. 2024; 115: 3089–3098. https://doi.org/10.1111/ca
s.16256.

[26] Bu F, Shen X, Zhan H, Wang D, Min L, Song Y, et al. Effi-
cient Metabolomics Profiling from Plasma Extracellular Vesi-
cles Enables Accurate Diagnosis of Early Gastric Cancer. Jour-
nal of the American Chemical Society. 2025; 147: 8672–8686.
https://doi.org/10.1021/jacs.4c18110.

[27] WangY, HanW,WangN, HanM, BanM, Dai J, et al. The role of
microbiota in the development and treatment of gastric cancer.
Frontiers in Oncology. 2023; 13: 1224669. https://doi.org/10.
3389/fonc.2023.1224669.

[28] Sharma P, Phatak SM, Warikoo P, Mathur A, Mahant S, Das K,
et al. Crosstalk between Helicobacter pylori and gastrointesti-
nal microbiota in various gastroduodenal diseases-A system-
atic review. 3 Biotech. 2023; 13: 303. https://doi.org/10.1007/
s13205-023-03734-5.

[29] Zhu J. New Metabolomic Insights Into Cancer. Cancer Journal
(Sudbury, Mass.). 2024; 30: 301–306. https://doi.org/10.1097/
PPO.0000000000000740.

[30] Liu C, Liu W, Huang J, Wu Z, Li W, Chen B, et al. Metabolic
Reprogramming Shapes the Progression and Therapeutic Land-
scape of Ovarian Cancer. Cancer Management and Research.
2025; 17: 1707–1722. https://doi.org/10.2147/CMAR.S538281.

[31] Idowu S, Polglaze K, Van TTH, Moore RJ, Ramsland PA,
Bertrand PP, et al. Gastric Inflammation Impacts Serotonin Se-
cretion in a Mouse Model of Helicobacter pylori Vaccination.
International Journal of Molecular Sciences. 2025; 26: 7735.
https://doi.org/10.3390/ijms26167735.

[32] Wu D, Cao M, Peng J, Li N, Yi S, Song L, et al. The ef-
fect of trimethylamine N-oxide on Helicobacter pylori-induced
changes of immunoinflammatory genes expression in gastric
epithelial cells. International Immunopharmacology. 2017; 43:
172–178. https://doi.org/10.1016/j.intimp.2016.11.032.

15

https://doi.org/10.1111/cas.16256
https://doi.org/10.1111/cas.16256
https://doi.org/10.1021/jacs.4c18110
https://doi.org/10.3389/fonc.2023.1224669
https://doi.org/10.3389/fonc.2023.1224669
https://doi.org/10.1007/s13205-023-03734-5
https://doi.org/10.1007/s13205-023-03734-5
https://doi.org/10.1097/PPO.0000000000000740
https://doi.org/10.1097/PPO.0000000000000740
https://doi.org/10.2147/CMAR.S538281
https://doi.org/10.3390/ijms26167735
https://doi.org/10.1016/j.intimp.2016.11.032
https://www.imrpress.com

	1. Introduction
	2. Materials and Methods
	2.1 Study Population
	2.2 Sample Collection
	2.3 16S rRNA Gene Sequencing and Analysis
	2.4 Untargeted Metabolomics
	2.5 Microbiota–Metabolite Correlation Analysis
	2.6 Statistical Analysis

	3. Results
	3.1 Baseline Characteristics
	3.2 Gut Microbiota Composition Across Groups 
	3.3 Alpha Diversity
	3.4 LEfSe Analysis Across Disease Stages
	3.5 Fecal Untargeted Metabolomics
	3.6 Tissue Untargeted Metabolomics
	3.7 Integrated Microbiota–Metabolite Correlations in the G3 vs G1 Comparison (VS2)

	4. Discussion
	5. Conclusion
	Availability of Data and Materials
	Author Contributions
	Ethics Approval and Consent to Participate
	Acknowledgment
	Funding
	Conflict of Interest
	Declaration of AI and AI-Assisted Technologies in the Writing Process
	Supplementary Material

