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Abstract

Background: Monoclonal gammopathy of undetermined significance (MGUS) is a precursor to multiple myeloma (MM), but the mech-
anisms of progression remain unclear. Methods and Objectives: Transcriptomic datasets procured from the Gene Expression Om-
nibus (GEO) underwent thorough analysis to ascertain disease-related modules using weighted gene co-expression network analysis.
A prognostic model (MGUSscore) was constructed via least absolute shrinkage and selection operator (LASSO) regression within the
GSE136337 cohort and validated across independent datasets (The Cancer Genome Atlas - multiple myeloma [TCGA-MM], GSE4581,
GSE57317). Crucially, the investigation integrated original single-cell ATAC-seq profiling, immune landscape characterization, and
pharmacogenomic sensitivity prediction. Protein-level disparities were validated in clinical specimens using immunohistochemistry
and multiplex immunofluorescence. Results: DAP3 and UBE2S were identified as central drivers of progression. The MGUSscore
effectively stratified patients into risk categories, with high-risk individuals exhibiting significantly inferior survival outcomes (p <
0.001). Notably, the high-risk group was characterized by distinct immune infiltration patterns and predicted responsiveness to spe-
cific chemotherapies. Experimental validation confirmed markedly elevated DAP3 and UBE2S protein expression in MM compared to
MGUS tissues. Conclusion: Collectively, DAP3 and UBE2S may constitute promising therapeutic targets for MM intervention, meriting
additional investigative efforts.

Keywords: monoclonal gammopathy of undetermined significance; multiple myeloma; gene expression profiling; tumor microenviron-
ment; immunohistochemistry

1. Introduction MM emerges as the second most prevalent hemato-
logic malignancy, characterized by dysregulated prolifera-
tion of abnormal clonal plasma cells within the bone mar-
row. The pathological expansion generates profound clin-
ical manifestations, encompassing osteolytic lesions, renal
dysfunction, anemia, and hypercalcemia [6]. The progres-
sion from MGUS to MM represents a sophisticated trans-
formation involving substantial genetic and microenviron-
mental modifications. Fundamental genetic alterations, en-
compassing chromosomal numerical variations and specific
translocation events, serve critical functions in driving ma-
lignant plasma cell clonal expansion. Concurrently, the
bone marrow microenvironment undergoes significant re-
structuring to facilitate malignant progression, character-
ized by enhanced vascular development and increased stro-
mal cell adaptability [7]. Understanding these clinical and
biological markers remains crucial for predicting MGUS
to MM progression, enabling strategic patient stratifica-
tion and targeted monitoring with early therapeutic inter-
ventions. Despite extensive research, the precise molecular
mechanisms governing MGUS to MM transformation re-

Monoclonal gammopathy of undetermined signifi-
cance (MGUS) is defined by an abnormal monoclonal im-
munoglobulin or its light chain fragments detected in serum
and/or urine, accompanied by a clonal plasma cell or lym-
phoplasmacytic cell population comprising less than 10%
of the total bone marrow cellular content. This condition
primarily manifests in individuals exceeding 50 years of
age, with a pronounced predilection for males [1,2]. Al-
though initially presenting without clinical manifestations,
MGUS patients encounter a persistent risk for transfor-
mation into more aggressive plasma cell neoplasms, no-
tably multiple myeloma (MM). Annual deterioration occurs
in approximately 1% of MGUS patients, whereas roughly
10% of smoldering multiple myeloma (SMM) cases ad-
vance to MM within a five-year post-diagnostic period. No-
tably, 18% of MGUS patients demonstrate elevated pro-
gression risk over a 20-year timeframe [3]. The clinically
silent presentation of MGUS frequently results in diagnos-
tic delays, thereby complicating preventive and therapeutic
interventions [4,5].
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main incompletely understood, emphasizing the continued
necessity for comprehensive investigative approaches.

Recent advancements in computational biology and
genomic array methodologies have increasingly become
pivotal instruments within biomedical research [8]. Com-
prehensive evaluations of differentially expressed genes
(DEGs) and their corresponding protein expressions in
individuals with MM potentially elucidate the molecular
mechanisms underlying the transition from MGUS to MM.
These analytical approaches demonstrate significant poten-
tial for identifying novel diagnostic indicators and therapeu-
tic targets. Utilizing sophisticated bioinformatics analytical
strategies, this research aimed to delineate common molec-
ular pathways, fundamental interconnected genes, and crit-
ical genetic elements associated with MGUS and MM pro-
gression. The primary research intent focused on exploring
shared pathological mechanisms and potential therapeutic
interventions, ultimately seeking to improve diagnostic pre-
cision and clinical management strategies for patients expe-
riencing these hematological conditions.

2. Materials and Methods

2.1 Data Sources

2.1.1 Bulk Transcriptome Data

Transcriptome sequencing datasets pertaining to
MGUS and MM were procured from the Gene Expres-
sion Omnibus (GEO) database [9]. From the compre-
hensive GSE6477 dataset (GPL96 platform) [10], which
originally contains 162 samples across various disease
stages, a specific subset aligned with the study aims was
selected. This subset captures bone marrow transcrip-
tome information from 15 samples explicitly labeled as
healthy donors, 22 MGUS patients, and 73 newly diag-
nosed MM patients, while smoldering and relapsed cases
were excluded to focus on primary disease progression.
Similarly, from the 78 total samples available in the
GSE5900 [11] dataset (GPL570 platform) data gathered
from 22 healthy subjects and 44 MGUS patients were uti-
lized, with SMM cases being excluded. These datasets
were applied for differential gene expression analysis and
weighted gene co-expression network analysis (WGCNA).
The GSE13633dataset (GPL2714 platform) [12], which en-
compasses transcriptomic and survival data from MM pa-
tients, was utilized to develop the prognostic risk model.
Crucial prognostic genes were determined via univariate
Cox and least absolute shrinkage and selection operator
(LASSO) regression analyses through integration of infor-
mation from GSE136337 and The Cancer Genome Atlas
- multiple myeloma (TCGA-MM, 787 bone marrow sam-
ples). The robustness and predictive capacity of the model
were subsequently evaluated across three independent co-
horts: TCGA-MM, GSE4581 (414 MM, GPLS570 plat-
form), and GSE57317 (55 MM, GPL570 platform) [13].

Each GEO dataset was examined independently
within its corresponding platform, without combining raw
data across GPL96, GPL570, or GPL2714 platforms. For
each dataset, raw expression data were subjected to back-
ground correction and quantile normalization, followed by
logs transformation. All data underwent quality control and
standardization procedures to ensure internal consistency
and comparability across analyses.

2.1.2 Identification of DEGs Among the MGUS Group,
the MM Group, and the Healthy Group

Initially, the ‘limma’ package [14] was employed to
determine DEGs within the MGUS and MM cohorts ver-
sus control specimens. The selection parameters for DEGs
were established as AveExpr >3, |[logFC| >1, and p < 0.05.

2.2 WGCNA for Coexpression Network Construction

Gene module identification concerning MGUS and
MM progression was executed through independent
WGCNA analyses on the GSE6477 and GSE5900 datasets.
The methodology of WGCNA demonstrates exceptional
proficiency in processing large-scale datasets, enabling pre-
cise identification of gene clusters substantially linked to
pathological progression via sophisticated clustering and
modularization methodologies [15]. Quality control and
normalization procedures were first applied to ensure data
consistency. Crucially, to guarantee statistical robustness,
the appropriate soft-thresholding power (/3) was determined
based on the scale-free topology criterion (scale-free topol-
ogy fitindex R? >0.8). Utilizing this parameter, a weighted
adjacency matrix was developed for each dataset and trans-
formed into a topological overlap matrix. Module identi-
fication was achieved through hierarchical clustering cou-
pled with dynamic tree cutting, whereby genes exhibiting
similar expression profiles and potentially shared biologi-
cal functions were grouped together. Finally, module—trait
associations were assessed to identify modules potentially
relevant to disease progression, establishing a foundation
for subsequent candidate gene selection.

2.3 Venn Diagram Plotting

By integrating transcriptomic data and employing
gene co-expression network analytical techniques, a com-
prehensive strategy was utilized to delineate pivotal genes
linked to MM and MGUS progression. The investiga-
tive approach encompassed executing set-based operations
across four distinct gene collections: DEGs and WGCNA
module genes for both MM and MGUS. Intersection analy-
ses were subsequently conducted, initially between MM-
related DEGs and MM-related WGCNA module genes
(designated as set A), and subsequently between MGUS-
related DEGs and MGUS-related WGCNA module genes
(designated as set B). The ultimate candidate gene collec-
tion (referred to as set C) emerged from the convergence
of sets A and B. This methodological strategy was graphi-
cally represented through a Venn diagram, wherein individ-
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ual closed curves depicted various gene collections, with
intersecting regions emphasizing the critical genes of sig-
nificant interest.

2.4 Clinical Significance of DEGs and Development of
Prognostic Model

The clinical relevance of pivotal DEGs was investi-
gated through an initial evaluation of their diagnostic poten-
tial utilizing receiver operating characteristic (ROC) anal-
ysis within the GSE6477 dataset. Correlations between
gene expression patterns, patient survival outcomes, dis-
ease staging, and chromosomal aberrations were subse-
quently examined. Within the GSE136337 dataset, uni-
variate Cox regression analysis identified genes demon-
strating significant links to MM prognosis, while LASSO
regression was employed to refine these candidates into
the most informative prognostic markers. A risk score
model (MGUS-related risk score, MGUSscore) was con-
structed based on this refined gene set, incorporating two
hub genes, DAP3 and UBE2S. Patients were classified into
high- and low-risk cohorts based on the median risk score,
with overall survival (OS) differences evaluated through
Kaplan—Meier (K-M) analysis. The prognostic value of
the MGUSscore was evaluated in conjunction with clini-
cal variables (including age, gender, International Staging
System [ISS] stage, Lactate Dehydrogenase (LDH), and
cytogenetics) through multivariable Cox regression analy-
sis. Predictive performance was evaluated through time-
dependent ROC curve analysis, the Concordance index (C-
index), and calibration curves. A prognostic nomogram
for predicting 1-, 3-, and 5-year OS was constructed utiliz-
ing the rms R package (version 6.7-0; Frank E. Harrell Jr.,
Vanderbilt University School of Medicine, Nashville, TN,
USA). The TCGA-MM cohort was jointly analyzed with
GSE136337 to facilitate core prognostic gene identification
and to further evaluate the robustness and predictive perfor-
mance of the MGUSscore. The detailed clinical character-
istics of the GSE136337 and TCGA-MM cohorts are sum-
marized in Table 1. External validation was subsequently
performed across two independent cohorts, GSE4581 and
GSE57317.

2.5 Functional Envichment Analysis

DEGs between the two cohorts were determined uti-
lizing the ‘limma’ package, with selection criteria of Ave-
Expr >5, [logFC| >0.5, and p < 0.05 being applied. Sub-
sequent analyses involved Gene Ontology (GO) and Ky-
oto Encyclopedia of Genes and Genomes (KEGG) enrich-
ment investigations to elucidate potential biological mech-
anisms and pathways. The GO enrichment approach anno-
tated hub genes’ biological characteristics across three sub-
ontological domains: molecular functions, cellular compo-
nents, and biological processes. Complementarily, KEGG
pathway analysis was implemented to identify potential sig-
naling mechanisms linked to the target genes. The applica-
tion of the ‘clusterProfiler’ [16] package within R facili-
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Table 1. Clinical significance of GSE136337 and TCGA-MM.

Database GSE136337 TCGA-MM
cases of MM 426 787
Age

<60 years 213 (50.0%) 315 (40.0%)

>60 years 213 (50.0%) 466 (59.2%)

NA 0 (0.0%) 6 (0.8%)
Gender

female 165 (38.7%) 321 (40.8%)

male 261 (61.3%) 460 (58.4%)

NA 0 (0.0%) 6 (0.8%)
Median OS (years) 7.58 [0-14.5] 2.18[0.003-5.44]
Median PFS (years) 4[0-12.92] -

Chromosomal variations.

del Ip 90 (23.2%) -

del 13q 77 (18.1%) -

del 1p32 85 (19.6%) -

ISS stage

I 168 (39.4%) 265 (33.7%)
I 135 (31.7%) 274 (34.8%)
I 121 (28.4%) 220 (27.9%)
NA 2 (0.5%) 28 (3.6%)

TCGA-MM, The Cancer Genome Atlas - multiple myeloma;
MM, multiple myeloma; OS, overall survival; PFS,
progression-free survival, ISS, International Staging Sys-
tem. The hyphen (-) indicates data not available.

tated comprehensive GO/KEGG enrichment investigations
of intersecting genes, potentially elucidating fundamental
disease progression pathways. MM subjects were system-
atically split into distinct expression clusters per the median
MGUSscore threshold. Subsequently, gene set enrichment
analysis (GSEA) executed across these stratified subgroups
offered nuanced insights into gene expression variation im-
plications.

2.6 Immune-Related Analysis

Progressive advancements in disease research have
rendered the substantial impact of immune responses on
disease progression increasingly apparent. Immune scores,
stromal scores, and ESTIMATE scores were computed for
high and low-risk cohorts utilizing the ESTIMATE algo-
rithm. The proportions of immune cell infiltration were de-
termined through the ‘CIBERSORT’ [17] analytical tool.
Subsequently, linear regression analysis was implemented
to elucidate the associations between immune cell infiltra-
tion patterns and risk scores.

2.7 Drug Sensitivity Analysis

Utilizing data procured from the Genomics of Drug
Sensitivity in Cancer (GDSC) database, recognized as the
most comprehensive pharmacogenomics resource avail-
able, chemotherapy sensitivity predictions were generated
for individual tumor specimens through implementation of
the ‘oncoPredict’ [18] R package. The half-maximal in-


https://www.imrpress.com

Step 1: Discovery & Screening

GEO Data Integration
(GSE6477 & GSE5900)

Independent Screening
(WGCNA & Limma Analysis)

Candidate Genes Identified

Step 2: Model Construction

e i e e e e e e i g

& Validation

Training Cohort
(GSE136337 + LASSO Regression)

MGUSscore Construction
(ROC, KM Curves, Nomogram)

External Validation
(TCGA-MM, GSE4581, GSE57317)

Step 3: Mechanism & Verification

Experimental Verification |-----
(IHC & mlIF Staining)

Microenvironment 4---1 Epigenetic Mechanism |-
(Immune & Drug Sensitivity)
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Fig. 1. Flowchart illustrating the comprehensive study design, bioinformatic analysis, and experimental validation workflow.

GEO, Gene Expression Omnibus; WGCNA, weighted gene co-expression network analysis; LASSO, least absolute shrinkage and se-

lection operator; ROC, receiver operating characteristic; KM, Kaplan—Meier; IHC, immunohistochemistry; mIF, multiplex immunoflu-

orescence; SCATAC-seq, single-cell assay for transposase-accessible chromatin with sequencing.

hibitory concentration (IC5¢) values for respective phar-
maceutical agents were determined via regression analy-
sis, with predictive accuracy being assessed through 10-fold
cross-validation methodology employing the GDSC train-
ing dataset.

2.8 Single-Cell Sequencing Analysis

Single-cell transcriptome datasets were procured from
the GEO database, specifically the GSE176131 [19]
dataset. The repository comprised data collected from
2 healthy control subjects and 9 MM patients, facilitat-
ing comprehensive single-cell correlation investigations.
Single-cell RNA-seq data processing was implemented

through the ‘Seurat’ [20] R package, with cellular expres-
sion matrix normalization conducted via the ‘LogNormal-
ize” methodology. Dimensionality reduction was achieved
by principal component analysis, where the top 50 princi-
pal components were selected for cellular clustering based
on marker gene identification using the elbow plot crite-
rion. Subsequently, the expression profiles of DAP3 and
UBE2S across varied cell populations were systematically
evaluated.

2.9 SingleCell ATAC-Seq Analysis

Single-cell ATAC-seq profiling was conducted on pri-
mary specimens derived from three independent individ-
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uals: one newly diagnosed (primary) multiple myeloma
patient, one relapsed/refractory multiple myeloma patient,
and one healthy donor as a control. The final high-quality
dataset comprised 9016 cells, consisting of 827 normal
plasma cells from the healthy control, 5175 primary ma-
lignant cells from the newly diagnosed patient, and 3014
recurrent malignant cells from the relapsed patient. Reads
were aligned to the hg38 genome, and peaks were identi-
fied via MACS2. Quality control retained cells with a tran-
scription start site (TSS) enrichment score >6 and >1500
fragments. Dimensionality reduction and UMAP visual-
ization were performed using iterative latent semantic in-
dexing. Clusters were defined using Seurat, while gene
activity scores and chromatin co-accessibility were ana-
lyzed to assess transcriptional potential and regulatory in-
teractions. Differential accessibility was determined using
ArchR (Wilcoxon test, FDR <0.05).

2.10 IHC and mIF Analysis of UBE2S and DAP3

This investigation encompassed three newly diag-
nosed, treatment-naive MM patients alongside three un-
treated MGUS patients serving as controls. Tissue spec-
imens underwent processing for both immunohistochem-
istry (IHC) and multiplex immunofluorescence (mlIF) stain-
ing to evaluate UBE2S and DAP3 expression patterns.
For THC analysis, tissue specimens were deparaffinized
and rehydrated, subsequently subjected to EDTA-mediated
antigen retrieval, followed by serum-based blocking pro-
cedures. Primary antibodies targeting UBE2S (1:100,
ab197945, Abcam, Cambridge, UK) and DAP3 (1:100,
ab302889, Abcam, Cambridge, UK) were applied, with
3,3’-Diaminobenzidine (DAB) staining employed for visu-
alization. Hematoxylin counterstaining was implemented,
and images were acquired using light microscopy (BX53,
Olympus, Tokyo, Japan).

For mIF analysis, specimens underwent EDTA anti-
gen retrieval treatment and 3% hydrogen peroxide expo-
sure in darkness for 25 minutes, succeeded by serum block-
ing. Primary antibodies underwent overnight incubation at
4 °C, after which fluorescent secondary antibodies were in-
cubated for 1 hour. Nuclear staining was accomplished us-
ing 4’,6-diamidino-2-phenylindole (DAPI), and the slides
were subsequently mounted employing antifade mounting
medium. mlF signals for UBE2S (red), DAP3 (green),
and nuclei (blue) were visualized under fluorescence mi-
croscopy. Tissue specimens were subjected to THC and
mlF staining procedures utilizing commercially available
reagents and antibodies, with comprehensive details pro-
vided in Supplementary Tables 1,2.

2.11 Statistical Analysis

Statistical analyses were conducted utilizing R lan-
guage (version 4.3.3, Foundation for Statistical Comput-
ing, Vienna, Austria), Comparisons between two groups
were performed using the Wilcoxon rank-sum test, while
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comparisons among three or more groups were conducted
using the Kruskal-Wallis test. A p < 0.05 was desig-
nated as the threshold for statistical significance. The
comprehensive flowchart delineating the entire bioinfor-
matics analytical procedure is illustrated in Fig. 1. Semi-
quantitative evaluation of immunofluorescence outcomes
was executed through ImageJ software (National Institutes
of Health, Bethesda, MD, USA). Data visualization was
accomplished via GraphPad Prism (version 10; GraphPad
Software, Boston, MA, USA), whereby bar graphs incor-
porating scatter plots were generated to depict the findings.

3. Result

3.1 Identification of Hub Genes From GSE6477
and GSE5900

Analysis of the GSE6477 dataset identified 961 DEGs
between patients with MM and healthy controls (Fig. 2A).
Conversely, the GSE5900 dataset revealed 355 DEGs be-
tween MGUS and normal controls (Fig. 2B). Heatmaps in
Fig. 2C,D depict the 20 DEGs. Using WGCNA on the
GSE6477 dataset, 12 gene modules significantly associ-
ated with MM were identified, each uniquely color-coded
(Fig. 3A,B). The green, yellow, blue, and black modules
demonstrated strong correlations with MM, with correla-
tion coefficients and statistical significances as follows:
green (r=—0.61, p=4 x 10719), yellow (r=-0.86, p=2 x
10727), blue (r=0.67, p=1 x 10~12), and black (» =-0.46,
p =17 x 107%) (Fig. 3C,D). Analysis of the MGUS dataset
GSES5900 also identified 12 modules, with the green mod-
ule showing a significant positive correlation with MGUS
(r=0.56, p =1 x 107%) (Fig. 3E,F). Focusing on the blue
module linked to MM and the green module associated with
MGUS, these modules were intersected with the previously
identified DEGs, resulting in the identification of 12 hub
genes (Fig. 3G).

3.2 ROC Curves for the 12 Intersection Genes

Diagnostic performance of the 12 intersection genes
was assessed through ROC curve analysis utilizing the
GSE6477 dataset. The area under the curve (AUC) serves
as a metric for evaluating diagnostic accuracy. Proximity
to 1.0 in AUC values signifies superior diagnostic preci-
sion, whereas values approximating 0.5 reflect diminished
discriminatory power. An AUC of 0.5 represents a lack of
meaningful diagnostic differentiation. The graphical repre-
sentation in Fig. 4 reveals that each of the 12 genes exhibits
AUC values exceeding 0.8, thereby indicating substantial
diagnostic potential for MM.

3.3 Development and Validation of the Prognostic Model

The GSE136337 and TCGA datasets, encompassing
OS and status information of MM patients, were initially
retrieved for analytical purposes. Within GSE136337, two
patients exhibiting a survival duration of 0 were eliminated
from the analytical framework. GSE136337 was desig-
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Fig. 2. DEGs in MM and MGUS cohorts. (A,B) Volcano plots depicting the differential expression analysis in the consolidated cohorts

of GSE6477 (A) and GSES5900 (B). Red dots indicate significantly upregulated genes, blue dots indicate downregulated genes, and gray

dots represent genes with no significant difference. (C,D) Heatmaps displaying the expression profiles of the top 20 DEGs in MM

(C) and MGUS (D). Columns represent samples (Control vs. Treatment) and rows represent genes. The color scale ranges from blue

(low expression) to red (high expression). DEGs, differentially expressed genes; MGUS, monoclonal gammopathy of undetermined

significance.

nated as the training cohort for risk model development,
whereas TCGA-MM, in conjunction with GSE136337, was
employed to identify pivotal prognostic genes and subse-
quently utilized for model validation. Within the training
cohort, univariate Cox regression analysis was initially ex-
ecuted to ascertain genes demonstrating significant asso-
ciation with OS (p < 0.05). To mitigate potential over-
fitting, these survival-associated genes were subsequently
processed through LASSO Cox regression incorporating
10-fold cross-validation, establishing the optimal penalty
parameter (\) and ultimately isolating two pivotal prognos-
tic genes, DAP3 and UBE2S (Fig. 5A-D). Based on their
expression profiles, an MGUSscore was computed as fol-
lows: MGUSscore = (0.211 x DAP3 expression) + (0.364
x UBE2S expression). Patients were stratified into distinct
risk cohorts per the median MGUSscore. K-M survival
analysis demonstrated statistically significant disparities in
OS, with individuals in the high-risk cohort demonstrating
markedly diminished OS versus those within the low-risk
cohort (p < 0.001; Fig. 5E).

3.4 Assessment of the Prognostic Risk Model

Significant differences were observed regarding ISS
stage, LDH, 32-microglobulin, albumin, del1p, del13q, and
dellp32 (Fig. 6A,B). The predictive performance of the
risk model was evaluated using time-dependent ROC curve
analysis based on the MGUSscore (Fig. 6C). Furthermore,
multivariate Cox regression analysis demonstrated that the
MGUSscore serves as an independent prognostic factor for
patients with MM (hazard ratio: 2.251, 95% confidence
interval: 1.570-3.228, p < 0.001) (Fig. 6D). A compre-
hensive nomogram integrating the risk score, patient de-
mographics, ISS stage, LDH, and dellp was constructed
to predict OS at 1-, 3-, and 5-year intervals (Fig. 6E). The
concordance index (C-index) of the model was 0.673. In-
ternal validation using 1000 bootstrap resamples confirmed
the model’s reliability and discriminative ability. Calibra-
tion curves at 1, 3, and 5 years indicated good agreement
between predicted and observed survival, validating the
model’s stability and accuracy (Fig. 6F).
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3.5 Verification of the MGUSscore Across Independent
Cohorts

The prognostic effectiveness of the MGUSscore re-
ceived subsequent validation through three independent co-
horts. K—M survival analyses uniformly demonstrated that
patients classified in the high-risk cohort exhibited notably
diminished OS versus their low-risk counterparts across all
datasets (Fig. 7A—C). Time-dependent ROC curve analy-
ses further substantiated the model’s generalizability. In
the TCGA-MM cohort, AUC values for 1-, 3-, and 5-year
OS were ascertained as 0.660, 0.690, and 0.690, respec-
tively (Fig. 7D). For the GSE4581 cohort, AUC values for
1-, 3-, and 5-year OS were procured as 0.661, 0.678, and
0.697, respectively (Fig. 7E). Likewise, in the GSE57317
cohort, AUC values for 1-, 2-, and 3-year OS all exceeded
0.7 (Fig. 7F).

3.6 Clinical Significance of Two Hub Genes

Differential expression validation of DAP3 and
UBE2S genes through the GSE6477 dataset demonstrated
statistically significant elevation in MM patient popula-
tions relative to MGUS subjects and normal individuals
(Fig. 8A). Subsequent clinical investigations utilizing the
GSE136337 dataset indicated that elevated genetic expres-
sion of these specific genes linked to diminished OS and

progression-free survival (PFS) parameters (Fig. 8B,C).
Moreover, DAP3 and UBE2S exhibited a link to the ISS
of MM (Fig. 9A). Additionally, elevated UBE2S expres-
sion was linked to chromosomal abnormalities, including
1 dellp, dell3q, and dellp32, whereas DAP3 was linked
exclusively to del13q (Fig. 9B-D). These observations sug-
gest that DAP3 and UBE2S may contribute to the malignant
progression of MM.

3.7 Pathway Enrichment Analysis of Dysregulation of
MGUSscore

Comparative expression analysis executed between
the two risk cohorts identified a sum of 108 DEGs (|logaFC|
>0.5, p < 0.05), consisting of 70 upregulated and 38
downregulated genes (Fig. 10A,B). KEGG pathway anal-
ysis demonstrated enrichment in pathways associated with
cell cycle regulation, p53 signaling cascades, and drug re-
sistance mechanisms, encompassing platinum drug resis-
tance and antifolate resistance, thereby emphasizing the po-
tential contributions of these genes to cancer therapeutic
response and resistance mechanisms (Fig. 10C). GO en-
richment analysis demonstrated that these DEGs partici-
pate in critical biological processes like cell division, mi-
crotubule cytoskeleton organization, and chromosome seg-
regation, thereby highlighting their involvement in cellular
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proliferation and mitotic processes, particularly within cell
cycle regulation (Fig. 10D). Interestingly, GSEA analysis,
revealed substantial enrichment in gene sets related to ri-
bosome function (e.g., ribosomal subunit) and mitochon-
drial components (e.g., mitochondrial protein-containing
complex). These findings suggest a highly active cellu-
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lar state in the high-risk cohort, highlighting a nexus be-
tween protein synthesis machinery and cellular bioenerget-
ics (Fig. 10E).
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3.8 Tumor Immune Microenvironment and Two Hub Genes
and MGUSscore

Spearman correlation analysis demonstrated a notable
link between the two core genes and infiltrating immune
cells present in the tumor microenvironment (TME), with
particular emphasis on plasma cells (Fig. 11A,B). Subse-
quent analysis demonstrated that elevated MGUSscore was
markedly associated with enhanced infiltration of plasma
cells, and resting memory CD4™ T cells, while exhibiting
decreased infiltration of CD8™ T cells and M1 macrophages
(Fig. 11C). The high-MGUS score cohort demonstrated re-
duced stromal, immune, and ESTIMATE scores, accom-
panied by an elevated tumor purity score, suggesting en-
hanced tumor purity and deteriorated prognosis (Fig. 11D).

3.9 Drug Sensitivity Analysis

Drug sensitivity predictions for individual patients
were generated utilizing sensitivity data derived from the
GDSC database. Within the high-risk cohort, reduced
IC5( values were observed for Venetoclax, Bortezomib, and
Cyclophosphamide (Fig. 11E). The graphical representa-
tions demonstrate differential sensitivity patterns to Borte-
zomib across distinct risk stratifications, wherein dimin-
ished ICsq values typically indicate enhanced drug suscep-
tibility. Such comparative analysis enables the evaluation
of therapeutic response variations between high- and low-
risk patient populations, thereby establishing a foundation
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for personalized treatment protocols. Furthermore, the cor-
relation between the two core genes and frequently em-
ployed anti-neoplastic agents was investigated. The find-
ings revealed that expression levels of both genes exhibited
negative correlations with the IC5( values of Bortezomib
(Fig. 11F), indicating that higher expression of these genes
is associated with increased sensitivity to the drug.

3.10 Overview of Hub Gene Expression in Single Cells

Single-cell data procured from GSE176131 under-
went analysis utilizing the Seurat package. Cell clustering
was executed through the UMAP algorithm, with subse-
quent annotation into B cells, CD4* T cells, CD8* T cells,
myeloid cells, immature red cells, and plasma cells to facil-
itate gene expression observation [19] (Fig. 12A). Predom-
inant expression of DAP3 and UBE2S was observed within
plasma cells and CD8T T cells (Fig. 12B). Subsequently,
plasma cells and CD8™ T cells were extracted for addi-
tional analysis, with core genes being visualized through
UMAP plots (Fig. 12C). Expression levels of DAP3 and
UBE2S within plasma cells and CD8" T cells demon-
strated elevation corresponding to MM grading progres-
sion (Fig. 12D-G). Trajectory analysis was conducted us-
ing Monocle3 [21-23] within the identical low-dimensional
space to represent potential developmental pathways of
these cellular populations, thereby illustrating DAP3 and
UBE2S expression patterns throughout cellular develop-
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Color coding and stratification are consistent with (B).

ment (Fig. 12H). Validation through the Human Protein At-
las [24] demonstrated substantial expression of DAP3 and
UBE2S within plasma cells, thereby corroborating previ-
ously obtained findings (Fig. 12LJ).
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3.11 Global Chromatin Remodeling and Epigenetic
Activation

Single-cell ATAC-seq profiles comprising 827 nor-
mal, 5175 primary, and 3014 recurrent plasma cells were
analyzed to delineate epigenetic landscapes. Dimensional-
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Fig. 10. Differential expression and functional enrichment analysis between high- and low-MGUSscore cohorts. (A) Volcano plot
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Heatmap of DEGs. The color gradient ranges from blue (low expression) to red (high expression). (C,D) Bar charts displaying KEGG
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high-risk group.

ity reduction utilizing UMAP revealed significant hetero-
geneity, with malignant populations clustering distinctly
from normal controls, indicating profound chromatin re-
modeling (Fig. 13A,B). Assessment of chromatin-inferred
gene activity demonstrated sustained DAP3 accessibility
across malignant clusters (Fig. 13C), whereas UBE2S ex-
hibited marked upregulation in myeloma cells relative to
controls (Fig. 13D). Quantitatively, a distinct “Normal <
Recurrent < Primary” accessibility trajectory was delin-
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eated, evidencing stage-dependent epigenetic modulation
of UBE2S throughout disease progression. Genomic track
analysis was subsequently performed to elucidate regula-
tory architectures. The DAP3 locus exhibited a consis-
tent chromatin architecture, characterized by synchronized
open chromatin signals at the DAP3 and adjacent YY1AP1
promoters (Fig. 13E). This conserved co-accessibility im-
plies that these genes are governed by shared cis-regulatory
elements or reside within a common active topologically
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Fig. 12. Single-cell analysis of DAP3 and UBE2S in MM. (A) Annotated UMAP plot of cell clusters. (B) Dot plot of gene expression
(Dot size: % expressed; Color: average expression). (C) UMAP visualization depicting core gene expression within isolated plasma
cells and CD8™ T cells. (D-G) Bar plots of UBE2S and DAP3 levels in CD8™ T cells (D,E) and Plasma cells (F,G) across Normal and
MM groups (***p < 0.001). (H) Trajectory analysis of expression dynamics. (I,J) Validation UMAP plots from the Human Protein Atlas

for DAP3 (I) and UBE2S (J).

associating domain (TAD). Conversely, the UBE2S locus
displayed a coordinated regulatory unit involving a per-
sistently open upstream element and the UBE2S promoter
(Fig. 13F). While the upstream element remained stable,
specific signal enrichment at the UBE2S promoter was ob-
served in malignant samples, indicating an epigenetic shift
favoring enhanced transcriptional potential.
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3.12 Elevated UBE2S and DAP3 Expression in MM Versus
MGUS

Both THC and mlF analyses corroborated the obser-
vations that UBE2S and DAP3 expression levels were
markedly elevated in MM tissues versus MGUS con-
trols, demonstrating statistical significance. IHC analyses
demonstrated intensified DAB staining patterns for UBE2S
and DAP3 within MM specimens, whereas mIF exhibited
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Fig. 13. Single-cell chromatin accessibility landscape of DAP3 and UBE2S. (A) UMAP plot colored by sample group: Normal
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more pronounced red (UBE2S) and green (DAP3) fluores-
cent signals in MM tissues (Fig. 14A,B and Fig. 15A,B).
Subcellular localization analysis revealed that DAP3 was
predominantly located in the cytoplasm, whereas UBE2S
showed diffuse expression in both the nucleus and cy-
toplasm. Semi-quantitative assessment of mIF addition-
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ally validated that UBE2S and DAP3 expression levels
were substantially upregulated in MM versus MGUS (p <
0.01, respectively) (Fig. 15C). These findings indicate that
UBE2S and DAP3 may contribute essential functions in
MM progression and merit additional investigation.
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MGUS

DAP3

Fig. 14. THC validation of UBE2S and DAP3 in MGUS and MM tissues. (A,B) Representative immunohistochemical staining pat-
terns for UBE2S (A) and DAP3 (B) within MGUS and MM tissue specimens. In each panel, the upper image shows a low-magnification

view, and the lower image displays a higher-magnification view of the boxed region. Brown staining indicates positive protein expression.

Scale bars: 50 pm (main images) and 20 um (magnified inserts).

4. Discussion

MM represents an intractable malignant plasma cell
neoplasm characterized by irreparable organ impairment.
The disease typically progresses through three distinct
stages: MGUS, SMM, and Symptomatic or active MM
[25]. In individuals aged over 50 years, MGUS prevalence
surpasses 3%, exhibiting an annual progression rate to MM
of 1%. SMM progresses to MM at roughly 10% per year
within the initial five years following diagnosis [26,27].
Timely therapeutic intervention and prophylactic strategies
are essential for decelerating MM progression. Neverthe-
less, dependable biomarkers for forecasting the transition
from MGUS to MM continue to be elusive. Understand-
ing the molecular foundation that underlies this progres-
sion remains essential for identifying high-risk MGUS pa-
tients and establishing novel therapeutic targets. Consis-
tent with this need, Khalili ef al. [28] recently employed
a systems biology analysis to map disease evolution, high-
lighting the role of transcriptional dysregulation, particu-
larly within the AP-1 family. Aligning with this perspec-
tive, our study utilizes similar bioinformatic modeling to
further dissect this complex landscape, identifying DAP3
and UBE2S as distinct key drivers. These complementary
findings suggest that alongside transcriptional changes, (in-
dicated by UBE2S identification) and mitochondrial home-
ostasis likely represent critical for malignant transforma-
tion, validating the utility of network-based approaches in
uncovering therapeutic targets.

Utilizing computational bioinformatics methodolo-
gies, an examination of MGUS (GSE5900) and MM
(GSE6477) datasets facilitated the identification of DEGs
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shared across MGUS, MM, and control specimens. By
implementing WGCNA, ddisease-related modules were
identified and then cross-referenced with the detected
DEGs, leading to the final selection of 12 potential can-
didate genes. After univariate Cox regression analysis
and LASSO methodology, two pivotal genes, DAP3 and
UBE2S, were identified and utilized to construct a prog-
nostic scoring system (MGUSscore). Multivariate analy-
sis validated this scoring system as an independent prog-
nostic indicator, whereby patients classified as high-risk
demonstrated markedly diminished OS and PFS. The pre-
dictive precision was further corroborated through ROC
curve analysis and nomogram construction. However, with
AUC values fluctuating between 0.66 and 0.70, the model
exhibits moderate performance. This suggests that the
MGUSscore should not be used in isolation. Instead, it of-
fers the most value when integrated with standard clinical
risk factors to guide patient management.

Clinical correlation analyses demonstrated substan-
tially elevated expression levels of these two pivotal genes
in MM versus MGUS and healthy controls. The identified
genes exhibit correlations not only with OS and PFS but
also reveal associations with ISS staging, where advanced
phases demonstrate heightened gene expression patterns.
Notably, UBE2S displayed enhanced expression in pop-
ulations with 1p, 13q, and 1p32 deletions versus normal
subgroups maintaining intact chromosomal regions, while
DAP3 showed particular linkages with 13q deletions. In-
vestigative findings indicate that 1p deletion frequency in
MM approaches roughly 30%, in marked contrast to merely
6% in MGUS. This genetic alteration commonly occurs
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Fig. 15. mlIF validation of DAP3 and UBE2S expression in MGUS and MM tissues. (A,B) Representative immunofluorescence
images of MGUS (A) and MM (B) tissues. The left panels show individual channels for UBE2S (red), DAP3 (green), and DAPI

(blue); the center panels show the merged view; the right panels show high-magnification insets of the merged view. DAP3 exhibits

predominantly cytoplasmic localization, while UBE2S displays diffuse expression in both the nucleus and cytoplasm. (C) Quantitative

assessment of relative fluorescence intensity for UBE2S (left) and DAP3 (right). *p < 0.05. Scale bars: 20 um (center merged panels;

applies to left single-channel panels) and 5 um (right magnified insets).

alongside 1921 region amplification, detected in 40% of
MM and 25% of MGUS cases, and links to elevated risk
of MGUS progression to MM and unfavorable patient out-
comes [29]. Furthermore, del13 demonstrates connections
to MGUS transformation into MM [30]. These observa-
tions suggest potential mechanistic roles of these two criti-
cal genes in malignant cellular transition processes.

DAP3, alternatively designated as S29mt, MRPS29,
and bMRP-10, represents an apoptosis-associated protein
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[31]. Contemporary investigations demonstrate that DAP3
exhibits significant correlation with tumor advancement
[32] and therapeutic resistance [33]. Functioning as a mi-
tochondrial ribosomal constituent predominantly localized
within the mitochondrial matrix, DAP3 serves essential
regulatory functions in mitochondrial homeostasis. Sup-
pression of DAP3 expression enhances cellular susceptibil-
ity to mitochondria-mediated intrinsic apoptotic pathways
[34]. Furthermore, DAP3 functions as a splicing-regulatory

19


https://www.imrpress.com

RNA-binding protein in malignancies, with aberrant splic-
ing events modulated by DAP3 manifesting across di-
verse cancer types [35]. UBE2S, designated as Ubiquitin-
conjugating enzyme E2S, assumes pivotal significance in
the pathogenesis and advancement of diverse malignant
neoplasms through enhancement of cellular invasion, mi-
gration, and proliferation via modulation of DNA repair
mechanisms, DNA damage responses, and cell cycle reg-
ulation [36-38]. This investigation corroborates these ob-
servations.

Beyond biological functions, our single-cell ATAC-
seq analysis uncovers distinct epigenetic mechanisms.
DAP3 maintains a consistently accessible chromatin state,
suggesting it serves as a stable survival factor. Con-
versely, UBE2S exhibits a dynamic ‘gain-of-function’ pat-
tern, peaking in newly diagnosed MM. Notably, UBE2S
accessibility in relapsed samples was lower than in primary
MM. This aligns with the therapeutic clonal selection model
[39]. Treatments often eradicate dominant, highly prolifer-
ative clones—those likely possessing the highest UBE2S
activity. Consequently, recurrent tumors may consist of
resistant subclones with moderated expression, allowing
them to evade therapy via ‘expression escape’. Crucially, it
must be noted that scATAC-seq infers gene activity based
on chromatin openness, representing regulatory potential
rather than direct protein abundance. Therefore, actual pro-
tein expression in relapsed disease may diverge from these
genomic predictions due to complex post-transcriptional
regulations.

The pathogenesis of MM is profoundly influenced by
the dynamic interplay between the evolving immune mi-
croenvironment and the bone marrow niche, which collec-
tively dictate disease initiation and drug responses. Recent
studies underscore that this ecosystem is not a static back-
ground but actively co-evolves with clonal plasma cells
starting from early disease stages. Preliminary immune
microenvironmental modifications, encompassing both im-
mune stimulation and depletion, are detectable during the
MGUS phase, offering a systems biology framework for
comprehending TME restructuring [40]. In this investi-
gation, the elevated MGUSscore cohort demonstrated en-
hanced infiltration of plasma cells, quiescent and resting
memory CD41 T cells while exhibiting decreased infil-
tration of CD8" T cells and M1 macrophages. Plasma
cells, functioning as neoplastic cells in MM, displayed aug-
mented infiltration correlated with increased tumor burden
and diminished prognosis in high-risk patients [41]. The
observed paucity of cytotoxic CD8™ T cells in the high-risk
group indicates an immunosuppressive, immune-excluded
tumor microenvironment, a hallmark of advanced disease
and poor outcomes. Follicular helper T cells and their
subset Tfh17 have been demonstrated to be modified in
MM, with an increased Tth17/Tth ratio correlating with
disease advancement [42]. Regarding M1 macrophages,
which conventionally possess anti-tumor properties, their
decreased infiltration in the high-risk group suggests a po-
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tential redirection toward M2 polarization or a depletion
of anti-tumor myeloid populations driven by tumor-derived
factors [43]. Dormant mast cells and eosinophils may regu-
late the TME through cytokine secretion or local inflamma-
tion modulation, although the precise mechanisms require
further elucidation [44].

In terms of immunoregulatory mechanisms, DAP3 has
been identified as a downstream effector of the Ikaros pro-
tein [45]. As Ikaros function is often essential for MM cell
survival, its sustained activity likely drives the progressive
elevation of DAP3 expression observed in our study. This
aberrantly high level of DAP3 in malignant plasma cells
may confer a survival advantage against immune-mediated
cytotoxicity. Such persistent tumor survival, despite im-
mune attack, could indirectly sustain chronic antigen stim-
ulation, thereby eventually leading to the functional im-
pairment and exhaustion of antitumor effectors described
above. UBE2S may facilitate TME remodeling through
modulation of immune-tumor cell interactions, functioning
as a “double-edged sword” in neoplastic progression [46].
This investigation demonstrates a positive correlation be-
tween UBE2S and DAP3 expression with plasma cell popu-
lations. Additionally, single-cell analysis substantiated that
both genes demonstrate enhanced expression levels, partic-
ularly within B cell and plasma cell compartments, in MM
patients, with expression intensities escalating concomi-
tantly with disease progression. Intriguingly, our single-
cell analysis revealed a more complex dynamic regarding
CD8™ T cells. While the total number of CD8% T cells
was reduced in high-risk patients, UBE2S and DAP3 ex-
pression was significantly upregulated within the surviving
CDS8™ T cell population. This implies that these genes may
play an intrinsic role in T cell biology. We hypothesize that
aberrant upregulation of UBE2S and DAP3 within CD8* T
cells could contribute to their dysfunction, progressive ex-
haustion, or susceptibility to activation-induced cell death,
ultimately leading to the reduced overall numbers observed
at the tissue level. Collectively, these findings suggest that
UBE2S and DAP3 actively modulate cellular communica-
tion within this ecosystem, thereby bridging the gap be-
tween clonal plasma cell evolution and the establishment
of therapeutic resistance.

Integrating these observations, we propose that
UBE2S and DAP3 significantly modulate cellular com-
munication within this ecosystem, potentially bridging the
gap between clonal plasma cell evolution and the estab-
lishment of therapeutic resistance. Despite the elevation of
certain antitumor immune cell populations within the high-
risk cohort, the overall TME demonstrated predominantly
immunosuppressive features, characterized by diminished
stromal, immune, and ESTIMATE scores coupled with el-
evated tumor purity, which potentially compromises effi-
cacious antitumor responses and may account for the con-
current presence of elevated MGUSscore alongside adverse
prognosis. This finding aligns with documented evidence
in MM regarding T-cell exhaustion, Treg and MDSC ac-
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tivation, and enhanced expression of inhibitory checkpoint
molecules, encompassing PD-1/PD-L1 [47]. Therefore, the
immunological profile observed within the high MGUSs-
core cohort may partially reflect the intricate regulatory in-
fluence exerted by DAP3 and UBE2S upon the tumor im-
mune microenvironment, along with their prospective roles
in MM disease progression.

Drug sensitivity analysis suggests that patients with
elevated MGUSscore may demonstrate enhanced respon-
siveness to therapeutic agents, including Bortezomib, Vene-
toclax, and Cyclophosphamide. These predictions de-
rive from computational algorithms utilizing the GDSC
database, which establishes correlations between gene ex-
pression profiles and ICsy values, though experimental
validation remains pending. A plausible mechanism in-
volves the heightened dependency of high-risk malignant
cells on particular molecular pathways, such as protea-
some function, potentially conferring increased suscepti-
bility to proteasome inhibitors through in silico model-
ing. Nevertheless, actual clinical efficacy may be modu-
lated by supplementary variables, encompassing immuno-
suppressive TMEs, T-cell exhaustion phenomena, and in-
tratumoral heterogeneity. These observations illuminate
the promise of employing gene expression-based predictive
models for personalized therapeutic approaches, while em-
phasizing the necessity for rigorous experimental and clin-
ical validation.

Several limitations warrant acknowledgment in this
investigation. Initially, the computationally predicted drug
sensitivities, encompassing enhanced responsiveness to
Bortezomib within the high-risk cohort, represent purely al-
gorithmic predictions necessitating experimental or clinical
validation through MM-specific patient populations. Sub-
sequently, while this investigation emphasizes the potential
contributions of UBE2S and DAP3 in modulating the TME
and affecting disease progression, the fundamental molec-
ular mechanisms remain inadequately elucidated. Future
investigations should examine how these pivotal genes reg-
ulate plasma cell behavior and immune interactions. Ide-
ally, these studies should utilize flow cytometry or spatial
transcriptomics to functionally characterize immune sub-
sets and integrate established immune signatures to validate
the exhaustion phenotypes described herein. Extension of
these analyses to early MGUS stages may unveil actionable
vulnerabilities for early therapeutic intervention and estab-
lish a more robust biological foundation for the MGUSscore
as both a prognostic and therapeutic instrument.

5. Conclusions

This bioinformatics study elucidates the pivotal con-
tributions of two central genes (DAP3 and UBE2S) in
MGUS to MM pathogenesis and disease progression.
These identified genes potentially facilitate malignant
transformation through diverse immune cellular pathways,
exhibiting substantial correlations with MM development
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and prognosis. Furthermore, they demonstrate enhanced re-
sponsiveness to bortezomib therapy. The constructed prog-
nostic scoring system (MGUSscore), derived from MGUS-
associated core genes, effectively stratifies MM patients
into high- and low-risk cohorts based on survival outcomes,
highlighting its robust predictive capability. This investiga-
tion offers essential insights into MM pathogenesis, iden-
tifies potential therapeutic targets, and promotes precision
medicine development.
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