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Abstract

The mammalian tongue is an intricate skeletal muscle organ. From its initial formation to maturation, tongue muscle development in-
volves precisely coordinated processes during embryonic and fetal phases of myogenesis. Extensive research on the regulatory pathways
involved in tongue epithelial taste organ development has shown that the Hedgehog (HH) signaling pathway is vital to the formation
and epithelial patterning of the tongue and taste organs. Emerging evidence also points to its involvement in the initial formation and
spatial patterning of the tongue muscle. HH signaling is a well-established regulator of skeletal muscle development, particularly in limb
myogenesis. However, structural and functional differences between limb and tongue muscles, as well as variations in their HH signaling
regions, prevent the direct application of findings from limb muscles to the tongue. Consequently, a comprehensive comparative anal-
ysis is essential to establish the conserved and divergent mechanisms by which HH signaling operates in these distinct muscle systems.
A detailed mechanistic understanding of HH signaling during lingual muscle formation and maturation is vital for fully elucidating its
role in tongue function. Further, lingual myogenesis studies pave the way for potential regenerative therapeutic strategies for congenital
anomalies and acquired conditions affecting the tongue. Thus, understanding the regulatory mechanisms of tongue muscle development
has both biological and clinical importance. This review explores the role of HH signaling throughout the key stages of embryonic tongue
muscle development (including myoblast determination, proliferation, differentiation, patterning, and maturation) and compares its role
in limb myogenesis.
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1. Introduction trapolated to the tongue. We propose that further studies
are needed to understand the role of HH signaling in lin-

The mammalian tongue is a highly specialized skele- gual muscle maturation.

tal muscle [1]. However, unlike other skeletal muscles,
intrinsic tongue muscles are covered by dorsal epithelium
and lamina propria comprising mesenchymal cells. Skele-
tal muscle development in the embryo begins with somatic
epithelial cells transitioning into mesenchymal cells, which
then differentiate into muscle cells [2,3]. This process,
known as myogenesis, involves distinct stages regulated by

2. Myogenesis

The tightly regulated process of myogenesis involves
several distinct stages: myoblast determination, migra-
tion, proliferation, differentiation, patterning, and matura-
tion (Fig. 1). It occurs in two distinct phases: embryonic

specific myogenic regulatory factors (MRFs). The MRFs
are further modulated by signaling pathways, including
Hedgehog (HH), Wnt, Notch, bone morphogenetic protein
(BMP) and transforming growth factor beta (TGF-5) [4—
8]. Despite having established roles in tongue epithelium
and/or mesenchyme development, homeostasis and regen-
eration, HH signaling role in lingual muscles remains un-
derstudied [9,10]. In this review, we evaluate HH signal-
ing regulation of lingual muscle development in compari-
son to other skeletal muscles, using limb muscle as the best-
characterized reference, since HH regulation of myogenesis
has been extensively studied in the limb. We observed that
growth and development of tongue muscles diverge signif-
icantly from those of limb skeletal muscles. Thus, findings
from limb skeletal muscle research cannot be directly ex-

and fetal myogenesis [11]. Embryonic myogenesis initiates
the process of muscle development with somites (blocks of
mesoderm) differentiating into the dermomyotome (tran-
sient epithelium), which delaminates and gives rise to the
myotome, the source of skeletal muscle precursors [2,3].
During the determination stage, mesodermal muscle pre-
cursors migrate to their target locations, commit to the myo-
genic lineage, and develop into myoblasts. This commit-
ment and migration are regulated by transcription factors,
primarily Paired Box 3 (Pax3) and its orthologue, Pax7.
As muscle progenitor cells migrate to their destina-
tion, they undergo continuous proliferation [12]. Pax3 and
Pax7 activate MRFs Myogenic Factor 5 (Myf5) and Myo-
genic differentiation 1 (MyoD), driving myoblast prolifer-
ation [13]. The differentiation stage in the target locations
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Fig. 1. Hedgehog signaling regulates myogenic factors involved in distinct stages of myogenesis. Schematic diagram illustrating the

key myogenic cell types at the various myogenesis stages. Myogenic progenitors migrate to the target site (Migration) and commit to

the myogenic lineage (Determination), becoming myoblasts. These myoblasts proliferate (Proliferation) and differentiate (Differentia-

tion) into myocytes, which align and fuse (Patterning) to form multinucleated, immature myotubes (Maturation). These myotubes make

synapses with nerves at neuromuscular junctions (NMJ) and become functional myofibers (Maturation). The factors regulating myoge-

nesis are color-matched to their respective stages. These factors are modulated by HH signaling pathway/components, either through

inhibition (red line) or activation (green arrows). HH, Hedgehog; SHH, Sonic HH.

commences with myoblasts exiting the cell cycle and differ-
entiating into myocytes under the antiproliferative effect of
myogenin. As myoblasts differentiate, they begin to align,
express muscle-specific proteins, and prepare to fuse with
other myocytes to form multinucleated myotubes. This ag-
gregation into myotubes marks the transition from progeni-
tor cell to functional muscle cell [14]. Thus, myogenic dif-
ferentiation is coordinated with an intricate fusion pattern
to create their spatial organization [15]. In the final matura-
tion stage, myotubes develop into mature muscle fibers, ac-
quire striations, establish innervation, and develop contrac-
tile function. The contractile protein myosin heavy chain
(MyHC), predominantly MyHC-embryonic, regulates mus-
cle fiber size, number, and type, and myogenic differenti-
ation genes [16]. Several other MRFs are also required to
precisely control myogenesis stages [17].

Embryonic myogenesis, characterized by the forma-
tion of primary myofibers, occurs between embryonic day
(E) 10 and E12.5 in mouse limb muscle. Fetal myogene-
sis, which gives rise to secondary myofibers, happens be-
tween E14.5 and E17.5 [18]. While embryonic myogen-
esis is crucial for the initial formation of the organ, fetal
myogenesis establishes the muscular foundation necessary
for critical postnatal functions [19]. Marked by a shift to
fetal myoblasts, which are distinct from their embryonic
counterparts, fetal myogenesis promotes muscle prolifera-
tion, differentiation, patterning, and functional maturation
[11]. This process also establishes the satellite cell popu-
lation necessary for postnatal muscle growth and regenera-
tion [20]. Thus, the regulation of both embryonic and fetal
myogenesis is necessary for proper muscle formation and
growth in developing limbs.

3. Tongue Muscle Formation

Tongue muscle development begins at E10.5 (Fig. 2)
with the formation of a central median lingual swelling
on the first mandibular arch, followed by a lateral lingual
swelling on each side comprising an epithelium and cranial
neural crest cell (CNCC)-derived mesenchyme [21]. Mus-
cle progenitors migrate from the somites into the tongue
primordium within the lingual swellings starting at E11.5.
These lingual swellings subsequently fuse to form the ante-
rior two-thirds of the tongue; the posterior third arises from
the third and fourth branchial arches [21]. Following fusion
of the lingual swellings, myogenic progenitors develop into
myofibers that occupy most of the tongue. HH signaling is
known to regulate myoblast determination, tongue forma-
tion [22], and initial myofiber patterning [23], but its role
in muscle proliferation, differentiation, and maturation in
tongue remains poorly understood.

4. Tongue Muscles are Different From Other
Skeletal Muscles

4.1 Origin

Skeletal muscles share fundamental characteristics but
also exhibit distinct structural and functional differences.
All skeletal muscles are composed of striated muscle fibers
and require neural input for contraction [24]. However,
while both limb and tongue belong to a migratory lineage
of somite [21,25], their origin, function, organization, and
innervation vary significantly. All limb muscles originate
from the segmented paraxial mesoderm (somites) [26]. In
contrast, tongue muscles have a mixed origin, deriving pri-
marily from the occipital somites [27] with contributions
from the cranial mesoderm [28] (Table 1).
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Fig. 2. Stages of mouse embryonic tongue formation. During embryonic day (E)10.5, lingual swellings consisting of both epithe-
lium and mesenchyme become visible. By E11.5, these swellings fuse, initiating the formation of the tongue and allowing the arrival
of myoblasts. By E12.5, the anterior tongue body is formed, and myofibers started to acquire patterning. Tongue growth continues
and, by E18.5, muscle fibers mature and finalize their patterning. The top panel illustrates the dorsal view (pink), while the bottom
panel shows the coronal view. The legend identifies each compartment: epithelium (blue), CNCC-derived mesenchyme (purple), and
myoblasts/myofibers (red). Intrinsic and extrinsic muscle types are indicated (arrows). CNCC, cranial neural crest cell.

Table 1. Key distinctions between tongue and limb skeletal muscle structure and function.

Muscle type Origin Function Fiber composition Tissue organization Innervation

Limb Somites 9-29 Movement, joint sta- Mix of slow and fast Distinct fascicles, defined Spinal cord motor neu-
bility twitch fibers tendons rons
Tongue Occipital somites 1— Mastication, speech Predominantly fast Complex fascicles, extrin- Hypoglossal nerve and

5, cranial mesoderm articulation,

lowing twitch

swal- twitch fibers, some slow sic and intrinsic muscles, Vagus nerve (palatoglos-

lack of defined tendons sus muscle only)

4.2 Function and Composition

Limb muscles support voluntary movements, postu-
ral stability, and locomotion, while tongue muscles assist
with mastication, speech articulation, and swallowing (Ta-
ble 1). Their differing functional requirements for contrac-
tion speed, energy metabolism, and fatigue resistance de-
termine their muscle fiber composition [29,30]. Broadly,
skeletal muscles contain one slow-twitch and three major
fast-twitch fiber types, with variations in their distribution
based on functional demands [30]. For example, the soleus
is composed predominantly of a slow-twitch fiber (~70%),
while other leg muscles contain significantly less (<50%)
slow-twitch fibers [31]. By comparison, the anterior tongue
tip consists mainly of fast-twitch fibers (~75%), while the
posterior half of the tongue is mostly slow-twitch fibers
(40-54%) [32]. Furthermore, the fiber types are compa-
rable in size in the tongue, whereas slow muscle fibers are
smaller in the limbs [33].

4.3 Organization and Innervation

Muscle organization also differs dramatically between
limb and tongue. Limb muscle masses give rise to four ma-
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jor muscle types (flexors, extensors, adductors, abductors)
and over 50 muscle fiber types that remain anatomically and
functionally separate [34]. Limb muscles have distinct fas-
cicles and defined tendons that attach to bone (Table 1), al-
lowing for efficient force transmission. The tongue, how-
ever, incorporates a unique combination of intrinsic and ex-
trinsic muscle fiber types [35] (Fig. 2). Its four intrinsic
muscles (superior longitudinal, inferior longitudinal, ver-
tical, and transverse muscle fibers) are entirely contained
within the tongue and lack bony attachments. They inter-
weave in complex, multidirectional layers to enable fine
motor control for shaping, elongating, and thickening the
tongue [33]. The extrinsic muscles (genioglossus, hyoglos-
sus, styloglossus, and palatoglossus) originate from exter-
nal bony structures and insert into the tongue to facilitate
larger positional movements such as protrusion, retraction,
and elevation [36]. Together, these two types of muscle
fibers enable both the fine motor control and gross move-
ment necessary for the tongue’s diverse functions [36].
Motor neurons originating from the spinal cord inner-
vate limb muscles [37]. In contrast, tongue muscles are
predominantly innervated by cranial motor neurons of the
hypoglossal nerve [38] with additional vagus nerve inner-


https://www.imrpress.com

vation to the extrinsic palatoglossus muscle [36]. Thus, the
neural control of limb is distinct from tongue.

4.4 MRFs Regulation

The MRFs also regulate myogenesis differently in the
tongue and limb. Myf5 and MyoD are activated simulta-
neously in the limb, whereas the tongue exhibits a sequen-
tial activation, with Myf5 preceding MyoD [39]. Further,
myoblasts contributing to tongue formation predominantly
express Myf5 rather than MyoD [40]. Myf5 loss can be
compensated in both limb [41] and tongue [39]. However,
while MyoD loss can be compensated in the limb [42], in
the tongue it causes reduced muscle formation resulting in
microglossia [39]. Additionally, myogenin-null embryos
exhibit more severe defects in tongue muscle development
compared to the limb [43]. These differences may reflect
distinct myogenic timelines, as embryonic and fetal myo-
genesis are temporally separated in the limb but overlap in
the tongue [44].

4.5 Signaling Regulation

The distinct myogenic phases, embryonic and fetal,
are differentially regulated in limb and tongue. For exam-
ple, Wnt signaling in limb regulates fetal myogenesis but
not embryonic myogenesis [45]. Further, Wnt signaling is
required for limb muscle cell precursor number and my-
ofiber quantity. In contrast, Wnt5a ligand is expressed in
developing tongue muscle cells between E12.5-E14.5 and
not apparent in mature myofibers after E15.5 [46]. Muscle-
specific Wnt signaling regulates lingual myoblast fusion
and differentiation at E14.5 [47], while epithelial specific
Wnt signaling controls the number of muscle progenitor
cells and their proliferation in tongue [48]. Further, it has
been proposed that the tongue muscle progenitor prolifer-
ation regulated by Wnt signaling is through its upstream
control of Notch signaling [48]. In limb, Notch signaling
has established roles in maintaining muscle stem cells by
inhibiting differentiation [6,49]. Recently, Notchl signal-
ing has been shown to have roles in limb muscle fiber type
composition and myofiber maturation [50].

In limb, BMP signaling plays a dual role: promoting
embryonic myogenesis while inhibiting muscle differentia-
tion during fetal myogenesis [51]. While BMP is also crit-
ical for craniofacial development [52], its specific role in
regulating tongue muscle formation has not yet been in-
vestigated. TGF-# signaling inhibits limb myoblast fusion
and myoblast differentiation during embryogenic and fetal
myogenesis, respectively [53,54]. In contrast, TGF-5 sig-
naling regulates lingual myoblast proliferation and differ-
entiation at or before E13.5 [55], with no data available be-
yond this stage. Collectively, Wnt, Notch, BMP and TGF-
[ pathways play important roles in muscle development,
although their temporal activity and mechanisms of action
diverge between limb and tongue. Growing evidence indi-
cates that HH signaling interacts with many of these path-

ways in cancer context [56,57]. For example, Sonic HH
(SHH) signaling is downstream of Notch signaling [ 58], but
acts upstream of Wnt signaling [59]. BMP signaling in-
hibits effects of SHH [60] and thus can have opposing roles
as to HH signaling [61]. On the other hand, TGF-3 can
promote GLI2 transcription factor and thus activate non-
canonical HH signaling [62]. However, direct evidence of
crosstalk between HH signaling and these pathways in myo-
genesis is currently limited. Importantly, HH signaling has
vital roles in craniofacial development, including tongue
formation and papillae patterning [59]. Whether it acts as
a central regulator of tongue myogenesis is our key focus
here.

5. Hedgehog Signaling
5.1 HH Pathway Components

The HH signaling pathway is a well-established reg-
ulator of embryonic tissue development [63]. It requires a
membrane receptor Patched1 (PTCH1) that inhibits another
membrane receptor, Smoothened (SMO), in the absence of
HH ligand. There are three studied HH ligands: SHH, In-
dian HH (IHH), and Desert HH (DHH) [64]. Among these,
SHH expression is extensively reported in the tongue, while
both SHH and THH have been implicated in limb mus-
cle. Importantly, SHH is dual lipidated which limits its
free diffusion [65] and thus require additional co-receptors,
Growth Arrest Specific 1 (GAS1), Cell-adhesion molecule-
related/downregulated by oncogenes (CDON) and brother
of CDON (BOC), for ligand reception [66]. Specifically,
the dual-lipidated SHH is recruited at the cell surface by the
cell adhesion molecules CDON and BOC, which are mem-
bers of the immunoglobulin superfamily. GASI, a glyco-
sylphosphatidylinositol (GPI)-anchored membrane protein,
subsequently recognizes the ligand and removes its lipid
modifications, facilitating SHH binding to PTCH1. When
the ligand binds to PTCH1, the SMO inhibition is relieved
to modulate downstream signaling. The final effectors of
the HH pathway are the GLI transcription factors (GLII,
GLI2, and GLI3), which activate or inhibit target gene ex-
pression [67].

5.2 HH Signaling Regulation of MRFs

SHH decreases Pax3 and Pax7 expression and pro-
motes the expression of other MRFs (Fig. 1) [68,69]. Al-
though SHH does not directly bind to the MRF, Myf5, its
expression is dependent on HH signaling via GLI transcrip-
tion factors, for both initial and continuous expression [ 70—
72]. GLI1 and GLI2 can also interact with various regu-
latory elements of the MRF, MyoD [70,73,74]. Further,
MyoD regulation can be independent of SHH [75], pos-
sibly due to cross-talk of GLI2 with other pathways [73].
The GLI regulation is also observed for myogenin [73,76].
HH signaling also reportedly mediates expression of MyHC
in mussel larval stages [77], in vitro muscle cells [78],
and mouse embryonic cardiac tissue [79]. This highlights
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Fig. 3. Distinct expression patterns of the SHH ligand and downstream HH signaling in the limb and tongue primordia. (A) In

the limb bud, SHH is expressed in the zone of polarizing activity located in the posterior mesenchyme (yellow), with HH-responsive

lateral plate-derived mesenchyme shown in blue. Regions with suppressed HH pathway activity, due to GLI3 repressor function, are

indicated in grey. (B) In contrast, SHH expression in the tongue primordium is localized the epithelium (pink), while HH-responsive

CNCC-derived mesenchyme is shown in blue.

the versatility and importance of HH signaling in different
myogenesis stages.

5.3 HH Signaling Activity in Limb and Tongue

The expression patterns of HH signaling and its com-
ponents differ significantly between the tongue and limbs
(Fig. 3). In the limb, SHH ligand is expressed in the pos-
terior limb bud mesenchyme, specifically within the zone
of polarizing activity, (Fig. 3A, yellow) creating a gradi-
ent of GLI3 repressor [80,81]. This asymmetric distribu-
tion of GLI isoforms ensures HH pathway activation in the
posterior limb while maintaining pathway repression in the
anterior limb. Expression of HH receptor SMO and target
gene GLII indicates active HH signaling in muscle lineage
cells (Pax3+, Myf5+) as well as in SHH surrounding lateral
plate-derived mesenchymal cells [42].

Conversely, in the embryonic tongue, SHH is present
in the entire epithelium of the mandibular arches and the
developing tongue [82—84] (Fig. 3B). Its downstream sig-
naling components, including the SMO receptor and GLI
transcriptional activators, are expressed in both the epithe-
lium and the CNCC-derived mesenchyme [83]. However,
by E18.5, as the epithelium differentiates into taste and
non-taste epithelium, SHH expression becomes restricted
to taste cells, and HH signaling occurs only in cells of the
taste epithelium [83]. Our recent studies confirm the ab-
sence of HH signaling, as indicated by Glil expression, in
embryonic tongue muscles [85]. Notably, epithelial SHH
in the tongue primarily signals to the CNCC-derived mes-
enchyme, which in turn supports tongue muscle develop-
ment [23] — a notably distinctive mechanism from the
mesoderm-directed HH signaling observed in limb muscle
formation. Overall, the HH pathway in tongue development
exhibits greater complexity and temporal regulation than in
limb development.
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5.4 HH Signaling Regulation of Limb and Tongue Muscles

Mouse, chick and zebrafish have conserved steps of
skeletal muscle development parallel to humans [86,87].
Studies using vertebrate models or in vifro mouse or chick
cells have determined that HH signaling regulates distinct
stages of both limb and tongue myogenesis (Table 2, Ref.
[22,23,42,73,83,85,87-102]). Specifically, in limb, Shh
ligand is responsible for muscle migration, proliferation,
fusion, differentiation of slow fiber types, muscle size and
muscle mass. In the tongue, limited studies indicate its crit-
ical role in tongue formation and initial myofiber arrange-
ment. Similarly, the HH receptor Smo affects all stages of
limb myogenesis; in the tongue, its primary function lies
in myoblast migration-mediated tongue formation. Addi-
tionally, Smo overexpression can disorganize lingual mus-
cle structure.

Another HH receptor, Gasl, also plays a vital role in
skeletal myogenesis. Although in limb in vitro, it enhances
myotube formation and myoblast differentiation, our re-
cent studies in tongue with in vivo Gasl deletion suggest
it also has roles in muscle cell proliferation, differentiation
and maturation during fetal myogenesis [85]. Intriguingly,
these effects are not due to muscle-cell specific deletion.
Global deletion, including additional epithelium and stro-
mal Gas! deletion, results in altered lingual intrinsic mus-
cles that consequently affect tongue shape and size [85].
Further, Gas! functions via alternate pathways to HH sig-
naling. On the other hand, Gli transcription factors initiate
MREF activation in limb (Fig. 1), while in tongue its deletion
from mesenchyme results in aglossia [87]. Overall, numer-
ous studies indicate essential roles of HH signaling in limb
myogenesis. However, no similarly comprehensive body
of research exists for tongue myogenesis (Table 2). Avail-
able studies indicate vital roles of HH signaling in tongue
formation and initial myofiber patterning, but the regulation
once the muscles are arranged remains understudied.
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Table 2. Hedgehog signaling functions in limb and tongue muscles*.

Model system Functions in limb muscle Functions in tongue muscle

Shh/Thh Ligand

e Spatiotemporal control of myogenesis [88] o Spatiotemporal effects—earlier the deletion, maximum the effects [23]

. o Distal MPC migration [88] e Tongue formation (aglossia) [102]

Shh Deletion (Sh4~/~ mouse) ) ; ) o ) )
e Formation of differentiated muscle fibers in distal limb region [89]

e Slow MyHC accumulation [90]

Zebrafish embryos [91,92] Mouse epithelium (K14+) [23]
Shh overexpression e Myoblast fusion, slow fiber differentiation o Tongue shape
e Myofiber arrangement
ShivIh reduction Chick emb.ryos (ED3) [93] . ShhMFCSY~ mouse [23] . .
e Muscle size and mass at ED12 after Ihh reduction e Myofiber arrangement with Shh reduction
Chicken HH22 limb bud culture and mouse myoblast culture [90]
e Terminal differentiation of myogenic cells, myoblasts and slow MyHC
Mouse E10.5 limb bud organ culture [89]
e Myogenic factor maintenance
e Myogenic cell differentiation
Mouse E13.5 limb myogenic cell culture [42]
e Slow muscle fiber formation
E11 chick embryo myogenic cell culture [94]
In vitro supplementation e Cell proliferation Research not available

e Increase myotube size

e Gli-1 nuclear localization in myoblast

Chicken HH17 limb bud culture [95]

e Promotes MyoD+ myoblast proliferation

e Increases muscle mass and MyHC expression

e Represses differentiation of slow MyHC in the posterior limb
Zebrafish embryos [91,92]

e Myoblast fusion, slow fiber differentiation

e Hindlimb muscle differentiation [93]

. . e e Muscle mass formation [90,93] .
Thh ligand deletion (74h~/~ mouse) Research not available

e Cell cycle exit of fetal myoblasts [93]
e No roles in myogenic specification [93]

Smo receptor

Pax3°e; Smo™" mouse [42,88]
e Timely implementation of myogenesis

Somite-specific deletion e Distal MPC migration Research not available
e Cell-autonomous initiation in the ventral muscle masses, proliferation

o Slow muscle fiber differentiation
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Table 2. Continued.

Model system

Functions in limb muscle

Functions in tongue muscle

Mesenchyme-specific deletion

Prx1€7; Smo™" mouse (lateral plate-derived) [42]
e Non-cell-autonomous patterning along anteroposterior axis

Wnt1€; Smo™" mouse (CNCC-derived) [23]
e Tongue formation (aglossia)

Muscle connective tissue-specific d-
eletion

Tcf4CFPCretneo. §moll mouse [42]
o Cell-autonomous slow muscle fiber formation

Research not available

Myoblast-specific deletion

Myf56re; Smo™" and MyoDC"e; Smo!' mice [42]
o Distal limb muscle formation

Hand2¢7¢; Smo™" mouse [96]
e Migration
e Tongue formation (agenesis)

Smo overexpression

Research not available

Hand2¢; R26Smo™? mouse [22]
e Disorganized muscular structure
SAG treatment (E10.5 mouse) [97]
o Bifid tongue

In vitro Smo inhibitor

Chick myogenic cells [42]

e Directional migration

Mouse embryonic P19 cells overexpressing Gli2 and fibroblast [73]

e Regulates MyoD, Myf5 and MyHC expression, proliferation, and differentiation
e MyoD requires HH signaling for conversion of fibroblasts into muscle
Zebrafish Smu (Smo) mutant [98]

o Slow muscle fiber differentiation but not formation

Tongue formation (microglossia) [83,99]

Gas1/Cdon co-receptor

Gas I modulation in vivo and in vitro

Gas| transfection in mouse myoblast C2C12 cells and primary myoblasts derived from
Cdon™/+ and Cdon™/~ mice [100]
e Gasl enhances myotube formation and myoblast differentiation, in a Cdon-dependent

manner

GasI1~/~ mouse [85]

e Muscle cell proliferation, differentiation and maturation during fetal myogenesis in a
CDON-independent manner

Gli transcription factors

Gli Deletion (Gli2/—; Gli3*/~ mou-
se, Gli2~/=; Gli3~/~ mouse, Gli3~/~;
Shh~/~ mouse)

e Initiate Myf5 transcription in ventral MPCs [88]
e No aid in dorsal limb myogenesis [88]

e Tongue formation (aglossia) [101]

Mesenchyme-specific deletion

Research not available

Wnt1€e; GIi2MT; GIi3™M" mice [87]
e Tongue formation (aglossia)

In vitro Glil supplementation

e Opposite findings to Shh [95]
e Both Glil and Shh have a preferential effect on ventral muscle mass [95]

Research not available

*in the last 25 years; MPC, Myogenic progenitor cells; MyHC, Myosin Heavy Chain.
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6. Myogenesis Stage-Specific Comparison
Between Tongue and Limb Muscle for HH
Signaling Regulation

6.1 Determination and Migration

In limbs, SHH organizes myoblast distribution along
multiple axes and is crucial for distal migration [88].
It directs the anteroposterior axis non-cell-autonomously
through lateral plate-derived limb mesenchyme [42], while
also acting cell-autonomously on a subset of limb myoblasts
to regulate autopod muscle formation [88]. Loss of SHH
delays MRF activation, disrupting muscle formation, but
does not prevent the proximal migration of myoblasts into
the limb bud [88].

Tongue myoblast precursors migrate as a cohesive
strand along a distinct and complex pathway [103]. My-
oblast determination in the tongue occurs in a posterior-to-
anterior direction [23]. Interactions between CNCC- and
mesoderm-derived cells contribute to this process through
HH signaling [104]. However, reduced SHH expression or
inhibition of SHH signaling in CNCC-derivatives does not
appear to directly impact myoblast determination (Table 2).
In contrast, epithelial SHH acts non-cell-autonomously
through mandibular CNCC-derived mesenchyme to guide
the unidirectional myoblast migration to the tongue pri-
mordium [21]. Deletion of Shi, membrane receptor Smo,
or transcription factors G/i2 and G/i3 in CNCC-derivatives
leads to aglossia due to impaired myoblast migration [23,
82,84,87,96,101,102] (Fig. 4A). This demonstrates the ne-
cessity of non-cell-autonomous HH signaling for the migra-
tion of tongue myoblast precursors and subsequent muscle
formation.

Together, in the limb, SHH functions both
cell-autonomously  within myoblasts and non-cell-
autonomously through limb mesenchyme to control
myoblast distribution and distal migration. In contrast, in
the tongue, SHH signaling operates solely in a non-cell-
autonomous manner from the epithelium to CNCC-derived
mesenchyme, orchestrating myoblast migration but not
determination.

6.2 Proliferation

Determined myoblasts undergo extensive prolifera-
tion while maintaining an undifferentiated state, a process
essential for increasing muscle mass [105]. HH-responding
Glil+ cells are present in limb muscle during and after my-
oblast migration, suggesting ongoing HH pathway activ-
ity in muscle progenitors [80,94]. In the limb, SHH dele-
tion or loss of cell-autonomous HH signaling does not im-
pair the proliferation of embryonic myoblasts in mice [88].
Instead, non-myogenic tissues appear to influence myo-
genic proliferation and differentiation [106]. In the poste-
rior hindlimb of late chick embryos, SHH indirectly sup-
ports myoblast proliferation by maintaining cells in an un-
differentiated state, a stage equivalent to E14 in mice [95].

Additionally, ectopic SHH expression in chick muscle cells
has been shown to induce myoblast proliferation in vitro
[94], reinforcing a potential cell-intrinsic role for HH sig-
naling in promoting limb myoblast proliferation under spe-
cific conditions.

Tongue mandibular explant cultures treated with SMO
inhibitors exhibit microglossia [83,99] (Fig. 4B), primar-
ily due to decreased proliferation of CNCC-derived mes-
enchymal cells [99]. Interestingly, despite the reduction in
CNCC-derivatives proliferation upon HH pathway inhibi-
tion, the proliferation of myoblasts and expression of key
MRFs such as MyoD and Myf5 remain unaffected [99]. This
might be due to that fact that CNCCs support the prolifer-
ation of myogenic precursors through paracrine signaling,
particularly via TGF-{ pathways [107,108].

Some in vivo studies of the tongue show that reduc-
tion of Shh expression in the epithelium or decreased HH
pathway activity in CNCCs, as indicated by reduced ex-
pression of target genes Glil and Ptchl, does not disrupt
either CNCC-derived mesenchyme or myogenic cells pro-
liferation [23,101,104]. These results contrast with studies
in which CNCC-specific Smo haploinsufficiency resulted in
diminished mesenchymal proliferation [84] and that reduc-
tion of SHH in distal ectoderm reduces myoblast prolifer-
ation at E11.5 [82]. Such discrepancies may reflect poten-
tial context-dependent effects or differences in experimen-
tal design, timing, or degree of pathway suppression. Our
recent research indicates HH-independent roles of receptor
Gasl in regulating Pax7+ myoblast numbers and muscle
cell proliferation at E18.5, potentially as a compensatory
response to reduced numbers of mature fibers and an in-
creased demand for new fiber formation [85].

Overall, studies on limb and tongue myogenesis sug-
gest that HH signaling may not be not essential for embry-
onic myoblast proliferation. However, the findings in limb
muscle showing that ectopic SHH can induce proliferation
underscore its context-dependent role. In contrast, during
tongue development, alternative pathways or compensatory
mechanisms may regulate myogenic proliferation indepen-
dently of HH input.

6.3 Differentiation

Limb muscles contain variable distributions of both
slow and fast fibers (Table 1). HH signaling promotes
slow muscle fiber differentiation by inducing slow MyHC
expression in a larger precursor pool of myoblast to sup-
press fast myofiber formation [90,109,110]. Overexpres-
sion of SHH leads to an increased proportion of slow fibers,
whereas continuous deletion disrupts overall muscle forma-
tion by E16.5 [89]. Fast fiber formation in the absence of
HH signaling in zebrafish studies further support this find-
ing [91,92]. THH deletion also results in defective muscle
differentiation [93]. Notably, SHH expression ceases in the
limb at E16.5 in mice but Ptchl remains in fetal myoblasts,
indicating a possible transition to the IHH signaling seen in
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A 05 Shh deletion > E11.5-E18.5
Smo/Gli2/Gli3 deletion Aglossia,
in CNCCs No myoblast migration
B E10.5 Shh delei E14.5 Microglossia,
SIeHon > - Impaired myofiber
SMO inhibitors in vitro arrangement
C E11.5 E14.5
. Altered tongue shape ,
Shh deletion > Impaired myofiber
arrangement
D E11.5 ERS
i Altered tongue shape ,
Shh overexpression Normal myofiber
) arrangement
E E12.5 E14.5
Shh deletion Subtle disruptions in
> myofiber arrangement
E13.5
Shh reduction
F E0.5 > Subtle disruptions in
myofiber arrangement
G E10.5 Smo overexpression Sl
in CNCCs
- ) Bifid tongue

E18.5

, Altered tongue shape ,
H Eos Gasideisiion > Impaired myofiber
count and size

Fig. 4. Graphic illustration of the impact of altering the HH pathway components on tongue morphology and muscle fiber
organization. (A) Constitutive deletion of Shi, or CNCC-specific deletion of Smo, Gli2 or Gli3 results in aglossia, attributed to disrupted
myoblast migration. (B) Conditional Shh deletion mouse model or in vitro SMO inhibition beginning at E10.5 results in reduced tongue
size and loss of the characteristic striated architecture of intrinsic muscles by E14.5. (C) Conditional Shh deletion at E11.5 results in
altered tongue shape and disorganized myotube patterning. (D) Ectopic overexpression of Shh in the K14+ epithelial domain perturbs
overall tongue morphology but preserves intrinsic muscle organization. (E) Deletion of Shh after the initial establishment of muscle
fibers causes only mild disorganization, indicating a temporally restricted requirement for SHH in muscle patterning. (F) Constitutive
reduced expression of Shk does not disrupt muscle patterning. (G) Constitutive activation of SMO in CNCC derivatives induces bifid
tongue formation. (H) Constitutive deletion of Gasl reduces tongue size and alters shape due to impaired myofiber count and size.
The initiation points of modulations are indicated on the left, whether constitutive (E0.5) or induced at specific developmental stages.
The timing of tissue analysis is shown on the right. The colors represent epithelium (blue), CNCC-derived mesenchyme (purple), and
myoblasts/myofibers (red).
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the developing bone anlagen [93]. This shift from SHH to
IHH highlights the dynamic regulation of HH signaling in
limb muscle development and the necessity of maintaining
proper signaling levels for muscle fiber differentiation.

Fast-twitch fibers predominate in tongue muscles,
with a smaller population of slow-twitch fibers also present
(Table 1). Notably, slow fibers are especially enriched in
the posterior region of the extrinsic genioglossus muscle
[32,111]. If Shh is deleted after myoblast migration, mus-
cle fiber differentiation into intrinsic or extrinsic types are
unimpaired [41] (Fig. 4C). This indicates less dependence
on HH signaling in tongue muscle fiber differentiation than
for limb muscle differentiation. On the other hand, al-
ternative pathways, including the TGF3-Smad4-Fgf6 cas-
cade, as well as fibroblast growth factor (FGF), and Notch,
signaling, play more prominent roles in myoblast fusion
and terminal differentiation in the tongue [48,55,107,112].
Although components of these pathways such as suppres-
sion of FGF through Foxf2 are regulated by HH signaling
[112,113], direct evidence addressing the role of HH sig-
naling in fiber-type specification is limited. Our recent re-
search further suggests that Gas/ deletion reduces overall
differentiated muscle cells and MyHC-embryonic expres-
sion through mechanisms independent of canonical HH sig-
naling [85].

The slow and fast fiber specification is responsive
to innervation [114,115], which itself can be shaped by
CNCC-derived mesenchyme [116,117]. We hypothesize
that HH signaling might regulate fiber specification indi-
rectly through its role in CNCC rather than directly on myo-
genic cells [118]. In summary, no studies to date have
definitively shown that HH signaling directly determines
slow vs. fast fiber fate in lingual myogenesis.

Given the necessity of HH signaling in slow fiber-type
specification in limb muscles and the relative scarcity of
slow fibers in the tongue, the direct impact of HH signaling
on fast fiber differentiation in tongue remains unclear and
warrants further investigation.

6.4 Patterning

HH signaling plays a multifaceted role in dictating the
spatiotemporal organization of limb musculature. It has
been shown that non-myogenic tissues, particularly mus-
cle mesenchyme, contribute significantly to muscle pat-
terning [119,120]. Conditional Smo deletion in such non-
muscle limb mesenchyme resulting in a significant loss
of antero-posterior muscle patterning while the failure of
cell-autonomous removal of Smo activity in the somites
themselves to affect this patterning reinforces its non-cell-
autonomous role [42]. Myoblasts have receptors for mes-
enchymal extracellular matrix (ECM) components com-
prising heparan sulphate proteoglycans [121,122], which
can bind with SHH and mediate distinct patterning [123].
Separately, ectopic expression of Shh in the anterior com-
partment of the chick wing leads to dramatic muscle re-
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patterning, with anterior muscles adopting posterior-like
characteristics in a mirror-image arrangement [ 124].

In the mouse tongue, SHH is not present in muscle
cells or ECM of embryonic tongue [83,85]. However, it
can still control intrinsic muscle patterning via its interac-
tion with Ptchl+ or Smo+ CNCC-derivatives [23]. SHH
mediation in the development of lingual tendons also aids
indirectly by providing a scaffold for the normal pattern-
ing of intrinsic muscle fibers. In mice with Shh deletion
from E10.5, the normal striated architecture of the intrin-
sic muscles was lost and tongue size reduced at E14.5
(Fig. 4B). Once lingual muscles are migrated, Ptchl/HH
signaling inhibition in CNCCs specifically leads to hy-
poglossia, tongue clefting, and disorganized myotube ar-
rangement at E14.5 (Fig. 4C). However, overexpression of
Shh in K14+ epithelium at this stage distorts tongue ar-
chitecture but retains normal arrangement of the intrinsic
muscles (Fig. 4D). Further, deletion of Shh after the ini-
tial arrangement of muscle fibers results in subtle organiza-
tional disruptions (Fig. 4E), suggesting temporal SHH loss
at later stages produces milder effects. Notably, a reduc-
tion, but not complete elimination, of SHH does not alter
lingual muscle patterning [23,125] (Fig. 4F). The presence
of multiple SHH sources in the tongue [9,126,127] may ac-
count for the graded severity of tongue defects. In contrast,
Smo overexpression in CNCC-derivatives resulted in a dis-
organized muscular structure [22] (Fig. 4F) while pharma-
cological SMO overactivation caused the formation of bifid
tongue [97] (Fig. 4G).

Additionally, deletion of HH co-receptors Gas/ and
Boc affects pharyngeal tongue formation at E15.5 [128].
Anterior tongue formation occurred but muscle patterning
was not investigated. Expression of HH signaling target
gene and activator G/i/ and HH co-receptors Gas!, Cdon,
and Boc has previously been observed in embryonic tongue
at E11.5 [129]. We recently identified Gas!, both gene and
protein, as well as CDON and BOC in the embryonic lin-
gual muscles at E18.5 [85]. Intriguingly, constitutive dele-
tion of Gasl alters tongue morphology and size as well as
the number and size of myofibers at E18.5 (Fig. 4H). HH-
responding G/i/+ cells are notably absent in lingual muscles
at this stage [83,85], and their expression in the epithelium
and mesenchyme remains unchanged following Gas/ dele-
tion. These findings suggest that the role of HH signaling
in muscle organization during tongue development may in-
volve non-canonical or indirect mechanisms.

Overall, an intricate interplay between SHH and the
ECM is fundamental to limb muscle patterning. In con-
trast, in the tongue, SHH acts through CNCC-derived mes-
enchyme and tendon scaffolding, rather than the ECM, in a
temporally regulated manner.

6.5 Maturation

A hallmark of muscle cell maturational progression
is the sequential expression of distinct MyHC isoforms.
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The MyHC isoform expression, including embryonic and
neonatal, is tightly regulated during muscle embryonic mat-
uration [130,131]. Studies on myogenesis regulation have
primarily focused on the differentiation of MyHC into slow
and fast fibers. However, no literature is currently avail-
able for studies specifically focusing on the regulation of
neonatal and embryonic MyHC isoforms by HH signaling
in either tongue or limb muscles. Our recent studies show
that Gas! deletion significantly reduced MyHC-embryonic
expression, but not MyHC-neonatal, without disrupting HH
signaling [85].

The development of the NMJ is also a critical step
in muscle maturation, enabling effective communication
between motor neurons and muscle fibers [132]. SHH is
identified as a key regulator in motor neuron development
[133,134]. HH signaling is also essential for the devel-
opment and patterning of the central nervous system and
neural tube, influencing the fate and proliferation of neu-
ral progenitors [135,136]. However, its direct involvement
in NMJ formation or maturation in limb or tongue muscles
during embryonic development has not been established.
We observed a significant reduction in NMJ area follow-
ing embryonic deletion of Gasl, as well as a percentage
overlap between nerve terminals and muscle endplates [85].
Whether these NM1J structural changes in Gas/ mutants
translate into muscle functional deficits remains unknown.

Taken together, the role of HH signaling in regulat-
ing muscle maturation in both the tongue and limb warrants
further investigation. Our recent findings suggest that HH
co-receptor Gas! supports muscle maturation through non-
canonical HH signaling.

7. Conclusion

Overall, HH signaling is essential for embryonic myo-
genesis in both limb and lingual skeletal muscles. Numer-
ous studies have demonstrated that the loss of key HH path-
way components, such as Shh or Smo, leads to significant
muscle dysmorphogenesis, though the nature and severity
of'these defects differ between the limb and tongue (Table 2,
Fig. 4). These findings underscore the distinct and context-
dependent roles of HH signaling in limb versus tongue mus-
cle development. However, important gaps remain in our
understanding of HH signaling in the lingual muscle, partic-
ularly during the stages of myoblast proliferation, differen-
tiation, and fiber maturation. Further studies are needed to
elucidate HH-mediated fetal myogenesis during tongue em-
bryonic development. A detailed understanding of the path-
way regulation would advance our fundamental knowledge
of tongue muscle growth and maturation as well as poten-
tially offer new therapeutic avenues for muscle regeneration
and repair in congenital or acquired disorders.
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