Front. Biosci. (Landmark Ed) 2026; 31(1): 46519
https://doi.org/10.31083/FBL46519

Landmark

Review

The Fundamental Mechanism of Transcranial Electrical Stimulation in
Post-Stroke Rehabilitation

Hong Ju Lee'®, Hwa Kyoung Shin'2®, Yong-Il Shin®*®, Ji-Hwan Kim**®,
Byung Tae Choil:?*

1BK21 Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, 50612 Yangsan, Republic of Korea
2Department of Korean Medical Science, School of Korean Medicine, Pusan National University, 50612 Yangsan, Republic of Korea
3Department of Rehabilitation Medicine, School of Medicine, Pusan National University, 50612 Yangsan, Republic of Korea
4Department of Sasang Constitutional Medicine, Division of Clinical Medicine 4, School of Korean Medicine, Pusan National University, 50612
Yangsan, Republic of Korea
*Correspondence: jani77@pusan.ac.kr (Ji-Hwan Kim); choibt@pusan.ac.kr (Byung Tae Choi)

Academic Editor: Thomas Heinbockel

Submitted: 12 September 2025 Revised: 4 November 2025  Accepted: 6 November 2025  Published: 21 January 2026

Abstract

Stroke is a leading cause of long-term disability, and many patients fail to achieve complete recovery following cerebral injury. Therefore,
post-stroke rehabilitation is essential to restore impaired function. Transcranial electrical stimulation (tES), transcranial direct current
stimulation (tDCS), and transcranial alternating current stimulation (tACS) have emerged as promising neuromodulation approaches to
enhance post-stroke recovery. These treatments have therapeutic effects to restore impaired function by modulating cortical excitabil-
ity and reorganizing brain tissue through electrical stimulation. However, the fundamental mechanisms underlying these therapeutic
effects remain poorly understood. This review focused on the neurobiological mechanisms underlying tES that extend beyond cortical
excitability and encompass long-term neuroplasticity, cerebral blood flow, neurometabolism, and neuroinflammatory modulation. Our
summary provides a comprehensive understanding of tES processes and plays a vital role in the advancement of improved treatments.
Additionally, our review promotes enhanced clinical outcomes through interactions with various stroke rehabilitation strategies.
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1. Introduction

Patients who experience stroke frequently fail to
achieve full neurological recovery, resulting in long-term
impairment that markedly diminishes quality of life and re-
mains a leading cause of chronic disability [1,2]. Despite
advances in stroke management, no targeted therapy cur-
rently exists to repair damaged neural tissue and fully re-
store function, leaving most post-stroke patients dependent
upon rehabilitation interventions [3—5]. Non-invasive brain
stimulation encompasses electrical, magnetic, optical, and
ultrasound modalities, with electrical stimulation being the
most applicable [6-8].

Transcranial electrical stimulation (tES) for stroke re-
habilitation is an emerging therapeutic approach that mod-
ulates cortical excitability and induces long-lasting effects,
with minimal side effects [6,9,10]. tES includes two major
modalities, direct current stimulation (tDCS) and transcra-
nial alternating current stimulation (tACS), with the tDCS
method predominantly utilized in clinical practice as a stan-
dard [11].

tDCS involves the administration of a constant weak
direct current via two scalp electrodes to influence corti-
cal excitability in a targeted cortical area [6,12—14]. Early
investigations of tDCS have focused on the modulation

of cortical excitability influenced by polarity, producing
contrasting effects on neuronal excitability [12—14]. An-
odal tDCS increases cortical excitability, whereas cathodal
tDCS decreases it [6,12,13].

tACS applies a mild sinusoidal alternating electric cur-
rent at a designated frequency across the scalp to modulate
brain activity and function as neural oscillation entrainment
[15-17]. tACS is sometimes regarded as a variant of tran-
scranial magnetic stimulation delivered at a predetermined
frequency [17]. Cortical excitability, according to anodal
and cathodal currents, can be clearly distinguished in tDCS;
however, in tACS, the effects on cortical excitability are in-
tricate because of the interplay between cortical excitation
and inhibition [12,13,15,18].

Despite many promising clinical trials of tES for
stroke rehabilitation, either alone or in combination with
other therapies, the number of study showing minimal or
different effects remains a concern for its clinical applica-
tion [7]. Moreover, the mechanisms underlying its bene-
ficial effects remain to be elucidated. tDCS and tACS re-
semble electrical stimulation; however, because the elec-
tricity used differs between direct and alternating currents,
the underlying mechanisms in the brain may manifest dif-
ferently. tES may have therapeutic effects not only through
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cortical excitability induced by electrical stimulation but
also via various biological mechanisms or processes. Elu-
cidating these putative pathways is essential for the devel-
opment of clinical interventions and therapeutic strategies.
A literature search was conducted on PubMed using the
terms “tES”, “tDCS”, and “tACS” alongside “stroke” to
provide the transparency and reproducibility necessary for
this mechanism-oriented review. Exclusion criteria were
rigorously enforced for literature that solely presented clin-
ical outcome measurements without significant mechanis-
tic analysis or research that predominantly concentrated on
non-electrical brain stimulation methods unless they eluci-
dated a fundamental tES mechanism. Therefore, this study
aimed to review the mechanisms of tDCS and tACS, with a
focus on stroke rehabilitation.

2. Cortical Excitability and Neural Network
Response

2.1 Re-Adjustment of Interhemispheric Imbalance

Following a unilateral stroke, the inhibitory interac-
tion between the cerebral hemispheres is impaired through
the transcallosal pathway [19,20]. The lesioned ipsi-
lateral hemisphere exhibits reduced excitability, whereas
the undamaged contralateral hemisphere becomes hyperex-
citable, disturbing the normal balance of interhemispheric
inhibition via an excessive influence on the stroke-affected
side. This phenomenon is referred to as interhemispheric
imbalance, or the interhemispheric competition model [19,
21,22]. The ipsilesional hemisphere remains inactive ow-
ing to continuous inhibition of the symmetrical healthy
hemisphere, potentially worsening functional impairment
for the patient [5,19,22].

Direct current electrical stimulation can modulate cor-
tical excitability by modifying the membrane potential
threshold through the involvement of N-methyl-d-aspartate
(NMDA) receptors [12,23,24]. Clinically, anodal stim-
ulation leads to neuronal depolarization, whereas catho-
dal stimulation leads to hyperpolarization [6,12,13]. Cor-
tical excitability is crucial to restore brain function, with
an equilibrium between excitatory glutamatergic and in-
hibitory gamma-aminobutyric acid-expressing (GABAer-
gic) neurons [7,23,25]. Following stroke, neuronal inhibi-
tion increases in the peri-infarct region, which is mediated
by gamma-aminobutyric acid (GABA) A receptors, result-
ing from impaired GABA transporter function [7,26,27].
This indicates that the interhemispheric imbalance is not
solely a decrease in neuronal excitability but rather a neu-
rochemical mechanism involving dysregulation of GABA
tone. To correct this asymmetry, anodal tDCS is applied to
the ipsilesional hemisphere to enhance cortical excitability,
whereas cathodal tDCS is administered to the contralesional
hemisphere to suppress excitability, with both approaches
potentially combined through simultaneous bihemispheric
stimulation [6,21,28,29]. These configurations reduce the

inhibitory influence of the intact hemisphere on the lesioned
hemisphere.

To optimize the alleviation of interhemispheric im-
balance, the integration of anodal tDCS and bihemispheric
tDCS with constraint-induced movement therapy is utilized
[30-32]. tDCS stimulation in each hemisphere varies ac-
cording to polarity; nonetheless, a reduction in GABA lev-
els has been noted [33], and the influence of tDCS on
motor performance is negatively correlated with GABA
concentration [34]. tACS in both hemispheres can phase-
specifically modulate connections between brain regions
within the corresponding frequency band; however, no
studies have applied this to stroke [35].

The interhemispheric competition model serves as a
valid mechanistic basis for the efficacy of tES treatment
post-stroke by readjusting the balance of interhemispheric
inhibition. However, the treatment of stroke with tES needs
to be performed cautiously, considering the polarity, dose,
and configuration of the electrodes based on the pathophys-
iological framework of stroke, as these factors yield vary-
ing clinical outcomes [10,36,37]. The application of an-
odal stimulation in the early stages of stroke considers the
inflammatory response of the brain, which adversely af-
fects clinical outcomes [10,38], whereas cathodal tDCS fa-
cilitates superior clinical recovery in this stage [10,39,40].
Moreover, excessive stimulation of GABA signaling during
stroke recovery diminishes neuronal excitability and im-
pedes recovery [27,41]. If tES is applied uniformly in this
model without considering the pathological frameworks at
different stages after stroke, it is likely to yield different
clinical outcomes [7].

2.2 Structural Reserve as Integration of Interhemispheric
Inhibition and Vicariation

A novel neural rehabilitation model, termed the bi-
modal balance-recovery model, was introduced to address
the limitations of the oversimplified interhemispheric im-
balance model, incorporating interhemispheric inhibition
and structural reserve post-stroke [7]. When the structural
reserve is high, the affected hemisphere can restore nor-
mal interhemispheric balance. However, when the struc-
tural reserve is low, the contribution of the contralesional
hemisphere may be beneficial; this mechanism is referred
to as vicariation or interhemispheric compensation [42]. In-
tact residual networks can compensate for the injured hemi-
sphere through brain reorganization; hence, activation of
the healthy hemisphere may represent an effective thera-
peutic strategy to promote functional recovery post-stroke
[7,43,44]. The proposed model facilitates a patient-specific
approach to brain stimulation tailored to the neural archi-
tecture of individual patients [7].

Clinical evidence from transcranial magnetic stimula-
tion has questioned the ability of the interhemispheric com-
petition model to modulate abnormal transcallosal inhibi-
tion, based on the assumption that all patients belong to
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a single cohort [45—47]. There were no signs of changes
in the interhemispheric imbalance or contralesional hemi-
sphere hyperexcitability [45,47—49]. Interhemispheric in-
hibition and baseline impairments exhibit bimodality, al-
lowing for a criterion impairment level for patient classifi-
cation based on the bimodal effects of the contralateral brain
[49].

In patients with moderate-to-severe impairment, en-
hancing contralesional excitability with anodal tDCS or bi-
lateral stimulation can improve motor performance [50,51].
Ipsilesional excitability initially diminishes and then in-
creases, correlating with impairment and function; how-
ever, interhemispheric inhibition remains symmetrical [45].
In a rodent stroke model, the contralesional cortex exhibited
anatomical adaptation in response to stroke size [52]. Pa-
tients with severe stroke primarily relied on the undamaged
hemisphere for functional recovery, whereas those with mi-
nor stroke did not [53]. Application of anodal tDCS to the
contralesional cortex shows markedly enhanced recovery
relative to ipsilesional stimulation. Therefore, the intact
hemisphere can facilitate the recovery of impaired func-
tion [54,55]. These findings demonstrate that the role of the
contralesional hemisphere in healing increases with lesion
severity. To restore interhemispheric activity, tES thera-
peutic options are selected according to the degree of indi-
vidual damage.

2.3 Neural Entrainment and Synchronizations

The brain inherently displays rhythmic activity at var-
ious frequencies—waves § (1-4 Hz), 6 (4-8 Hz), o (8—12
Hz), B (12-30 Hz), and ~ (30-80 Hz)—resulting from the
firing timing of a group of neurons; these synchronizations
are crucial for normal cerebral function [15,56,57]. Stroke
leads to neuronal death or disruption of synaptic connec-
tions, resulting in diminished coordination of neuronal ac-
tivity and disruption of endogenous oscillations [58,59].

Externally applied electric fields modify the evoked
network activity, and entrainment-based tACS can be syn-
chronized to normalize endogenous oscillation patterns at
a relevant frequency [15,60,61]. Periodic electrical stimu-
lation of the tACS interacts with normal oscillations in the
brain, synchronizing neuronal firing rhythms to the corre-
sponding frequency [15,16,62]. tDCS, measured by elec-
troencephalography, modulates oscillatory activity, which
is a marker and facilitator of neuroplasticity [63,64]. tDCS
does not directly enforce the inherent frequency in the brain;
rather, it indirectly modifies endogenous oscillations in the
brain through long-term alterations in neuronal spike rates
and synaptic activity [44,65,66].

Clinical studies support the potential of tES in alter-
ing neuronal networks via synchronization and coordina-
tion mechanisms [67-69]. In animal studies, tACS cor-
rects atypical neuronal firing patterns by resynchronizing
neurons to a healthy rhythm [70,71]. The tDCS-induced
interhemispheric brain coherence in the low gamma fre-

&% IMR Press

quency range promotes functional recovery after stroke
[72]. Therefore, the therapeutic benefits of administering
tES are related to the recovery of healthy brain oscillations
and the restoration of interregional coherence within corti-
cal networks.

3. Enhancement of Neuroplasticity and
Paired Associative Stimulation

3.1 Long-Term Neuroplasticity

Neuroplasticity is the unique capacity of the brain to
create new synapses and reorganize neural networks in re-
sponse to stimuli. Following a stroke, this mechanism is
essential for the continuous regeneration of injured brain
tissue. The basic theoretical premise of tES, which under-
lies its significant therapeutic efficacy, indicates the reorga-
nization of brain circuits [17]. Long-term therapeutic ben-
efits are produced via polarity-specific long-term potentia-
tion (LTP), which is triggered by tES-induced intracellular
calcium levels and forms connections with various down-
stream pathways [29,54,55,73,74].

Moreover, successive tES stimulation causes initial
cortical excitability, which is then transmitted to subcortical
areas by activating NMDA receptors, intracellular calcium
cascades, and other pathways [13,14,75]. Connection-
based diffusion from the cerebral cortex to the subcortical
areas following tES may be correlated with the therapeutic
outcomes of functional recovery in stroke. Similar to neuro-
plasticity in the healthy brain, a time-limited window exists
post-stroke to enhance functional recovery, which can be
strengthened and reorganized through training and appro-
priate stimuli [5,44].

tES promotes neuronal pathways that improve neu-
roplasticity and functional reorganization in injured brains
[76]. Furthermore, combinations with other rehabilitation
programs have a synergistic effect and improve therapies
based on Hebbian plasticity [76—79]. In animal studies,
tDCS exerts neuroprotective effects by maintaining neu-
roplasticity by modifying genes linked to plasticity, neu-
roplastic biomarkers, and brain circuits [80-82]. Brain-
derived neurotrophic factor (BDNF)-tropomyosin-related
kinase receptor B (TrkB) signaling is involved in the ther-
apeutic effects of tDCS on functional recovery and neuro-
plasticity [83,84].

Neuroplasticity, a key feature of functional recovery
after stroke, results from processes that facilitate the reorga-
nization of brain networks. Thus, by providing stimulation
in response to brain activity, tES-induced neuroplasticity
may be similar to activity-dependent therapy [85-87]. tES
augments the neuroplasticity of the brain, facilitating the re-
covery of functions in neural circuits impaired by stroke via
the formation of new synapses. When combined with reha-
bilitative therapy, it promotes restoration of various func-
tions, restoring and compensating for pre-injury functions
through additional processes, including Hebbian plasticity,
homeostatic metaplasticity, and vicariation.
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3.2 Improvement With tES-Paired Associative Stimulation

Hebbian plasticity, proposed by Donald Hebb in 1949,
is founded on the premise that “neurons that fire together,
wire together” [88]. This theory offers a conceptual frame-
work to elucidate how experience and learning facilitate
the adaptation and enhancement of neural networks [89,90].
Post-stroke, patients reacquire motor learning with repeti-
tive practice similar to that of healthy individuals, indicat-
ing synaptic reinforcement at the cerebral level within the
motor network based on Hebbian plasticity [91]. Synap-
tic connections are reinforced by the simultaneous activity
of two neurons, which encompass coactivation, LTP, and
long-term depression (LTD). Similar to LTP and LTD, re-
peated tES sessions cause long-lasting changes in synaptic
efficacy via NMDA receptor-mediated calcium dynamics,
resulting in the insertion or removal of synaptic receptors
[92-94].

Clinical tDCS enhances Hebbian plasticity during task
performance, particularly when administered in a task-
specific manner that interacts with endogenous plasticity
[95,96]. Simultaneous stimulation of the motor cortex and
peripheral nerves using paired associative tACS improves
the corticospinal excitability of the motor neurons, elicit-
ing an LTP-like response [97]. Providing temporally syn-
chronized stimulation tailored to a patient’s movements or
cerebral activity enhances the synaptic connections of the
remaining neural pathways and intensifies learning effects.
Therefore, the integration of other therapies, such as con-
sistent exercise with tES, may facilitate the reorganization
of the cerebral cortex and markedly improve functional re-
covery in patients with stroke.

Although Hebbian plasticity is a fundamental com-
ponent of brain learning and memory, it can destabilize
neural circuits if operating excessively or irregularly [98].
Homeostatic metaplasticity is a self-regulatory mechanism
that modulates LTP or LTD in response to prior synaptic
activity, thereby preventing excessive excitation or inhibi-
tion and maintaining brain activity within the physiologi-
cal range [98,99]. When numerous reinforcement processes
occur, they exhibit a reduced sensitivity to further reinforce-
ment.

The Bienenstock—Cooper—Munro (BCM)-like plastic-
ity model, which dynamically adjusts the plasticity thresh-
old according to the activation history, has been elucidated
[100-102]. This mechanism can improve recovery out-
comes after stroke by efficiently regulating synaptic re-
sponses based on the brain’s previous activity state and tES
intervention. To prevent metaplastic inhibition, excitatory
inputs must be modulated or delayed after the completion
of a high-intensity task. In contrast, short-term tDCS be-
fore training can increase plasticity of the motor cortex,
which magnifies synaptic changes during subsequent prac-
tice. Homeostatic metaplasticity offers a theoretical frame-
work for the significance of the timing, dosage, and se-
quencing of tES and other training [102,103]. Precondi-

tioning the brain with cathodal tDCS enhances alterations
in neuronal excitability caused by anodal tDCS or intermit-
tent theta burst stimulation [103,104]. Following cathodal
tDCS, mesh glove stimulation can be used to modify mo-
tor cortex excitability in metaplastic modulation [105]. The
concurrent application of anodal tDCS and neuromuscular
electrical stimulation failed to yield the anticipated syner-
gistic effect, which was potentially attributable to the influ-
ence of homeostatic plasticity [106]. However, tDCS does
not significantly improve motor fatigue or excitability regu-
lation in healthy adults, nor does it affect neuroexcitability,
indicating a limited influence of metaplasticity on implicit
motor learning [107-109].

The tES treatment of stroke promotes neuroplasticity
in the injured brain by utilizing the principles of Hebbian
plasticity and homeostatic metaplasticity. tES enables the
simultaneous activation of neurons, reinforcement of acti-
vated neurons to restore functional connections, or reduc-
tion of excessive excitability to preserve the stability of the
neural network. These mechanisms may alter the timing
and intensity of tES to optimize neuroplasticity.

3.3 Augmentation of Growth Factors

tES facilitates motor recovery following stroke by
stimulating the release of growth and neurotrophic fac-
tors that activate neuroplasticity, neuronal survival, and
brain reorganization [29,54,83,110]. tDCS activates cal-
cium channels, which trigger the activation of downstream
cascades that promote the production of growth factors
[13,29,83,111]. The brain contains numerous pathways
composed of axonal fibers that connect various cerebral re-
gions [112]. Thus, tES elevates intracellular calcium levels
in the non-stimulated cortical hemisphere, indicating that
calcium may trigger the release of neuroprotective factors
at non-stimulated sites [29,54,73,113].

tDCS increases neuroplasticity within the motor cor-
tex through BDNF secretion and TrkB activation, which are
crucial mechanisms to improve neurological function af-
ter stroke [29,114]. The BDNF genotype in patients with
stroke affects motor learning capability, as people with the
atypical BDNF genotype show reduced efficacy in enhanc-
ing motor learning by tDCS [115,116]. However, the thera-
peutic benefits of tDCS may differ according to catechol-O-
methyltransferase genotype polymorphism, whereas those
of BDNF may not [117]. A reduction in BDNF levels may
have positive effects on recovery, highlighting the need for
electrode positioning, polarity adjustments, and personal-
ized intensity [70].

tDCS facilitates BDNF-TrkB signaling and func-
tional recovery, with multifaceted biological mechanisms
contributing to brain recovery and regeneration beyond
simple electrical stimulation [29,83,84,110]. tDCS pro-
vides a molecular basis for neuroplasticity by modifying
neuroplasticity-related genes, such as BDNF, cyclic adeno-
sine monophosphate (cAMP) response element-binding
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protein, synapsin I, and calcium/calmodulin-dependent
protein kinase II [80,81]. tDCS elevates BDNF lev-
els and indicators of axonal regeneration in the peri-
infarct cortex, along with neuroprotection and neuro-
plasticity facilitated by the BDNF/TrkB—phosphoinositide
3-kinase (PI3K)/protein kinase B (Akt) pathways [118,
119].  Moreover, the continuous use of tDCS upregu-
lates the expression of activity-dependent growth factors,
such as BDNF, growth/differentiation factor 5 (GDF5),
and platelet-derived growth factor subunit A (PDGFA)
[54,118]. These factors govern the proliferation and dif-
ferentiation of oligodendrocyte progenitors, thereby facili-
tating functional recovery [54,120,121]. tDCS/tACS treat-
ment regulates inflammatory cytokines in microglia as well
as the activation of neurotrophic factors, such as BDNF and
fibroblast growth factor 9 [70].

Neurotrophic factors stimulate the proliferation, dif-
ferentiation, and survival of neural stem cells, facilitating
neuronal formation and maturation [122,123]. From a re-
generative medicine perspective, tDCS activates adult neu-
rogenesis regardless of its polarity; cathodal tDCS some-
times has an even greater effect [110,124,125]. Addition-
ally, tDCS induces the differentiation of neural stem cells
by inhibiting Notch1 signaling [126]. Furthermore, anodal
tDCS treatment promotes cell proliferation in the ipsile-
sional striatum, subventricular zone, and corpus callosum
[54].

One of the main mechanisms by which tES promotes
neuroplasticity in stroke rehabilitation is the upregulation of
the expression of growth factors, specifically BDNF. This
highlights the essential functions of tES in neuronal sur-
vival, synapse formation and reformation, axonal growth,
and restoration of connections between neurons, thus fa-
cilitating the reorganization and functional recovery of im-
paired brain circuits.

4. Reorganization by Enhancing
Neurovascular Function and
Neurometabolism
4.1 Regulation of Cerebral Blood Flow and Neurovascular
Coupling
Diaschisis is a condition characterized by reduced
brain activity in regions not directly affected by injury fol-
lowing stroke. It is reversible and gradually recovers over
time and primarily occurs in regions that are structurally
and functionally linked to the affected area owing to the loss
of input and rapid neurochemical alterations [127,128]. Vi-
cariation, the functional reorganization of the brain in which
diaschisis is irreversible and permanent, occurs when a per-
manently impaired part of the brain is functionally replaced
by another area [129,130]. The adult brain undergoes con-
siderable structural and functional reorganization after in-
jury, which is crucial for recovery [131,132].
Diaschisis and vicariation during stroke recovery, and
alterations such as disruption or compensation within func-
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tional networks, are closely related to cerebral blood flow
(CBF) and neurometabolism, including the rates of oxygen
and glucose consumption. The diaschitic region exhibits
a reduction in CBF linked to the metabolic rate with no
physical damage, whereas neuronal activity and blood flow
serve as crucial indicators of functional reorganization of
the brain [127,129]. This entails the synchronized function
of neurons, astrocytes, and vascular cells; however, neu-
rovascular coupling (NVC) is impaired after a stroke [133].
The NVC regulates neuronal activity and CBF via coordi-
nated signaling across many cells [134]. During the recov-
ery phase, rehabilitation training or tES influences CBF,
which, in turn, affects neuroplasticity and neuronal reorga-
nization, leading to functional recovery.

Clinical trials have been conducted to investigate the
interaction between nerves and blood vessels through tES
because it may affect CBF velocity [51,135]. tDCS modu-
lates CBF and intracranial compliance, alleviating hemo-
dynamic load on the affected hemisphere [136,137]. In
contrast, tACS alters cerebral hemodynamics, including en-
hanced blood flow velocity and diminished blood flow re-
sistance [ 138]. The response of blood flow velocity to tDCS
differs among individuals, which is attributable to varia-
tions in baseline neuronal excitability and cerebral blood
velocity [135]. The integration of tDCS and computer-
aided training effectively modulates CBF in patients with
stroke [139]. Ischemia results in an imbalance in cerebral
oxygen saturation, which is strongly correlated with EEG
readings; however, this imbalance, resulting from cere-
bral vasomotor reactivity, is restored by tDCS [136,140—
143]. In animal studies, tDCS reduced both the incidence
and severity of cerebral vasospasms, with alterations in
blood flow depending on polarity [144—146]. tACS affects
CBEF, leading to increased blood flow at specific frequen-
cies [147,148].

These results indicate that tDCS may elicit functional
CBF responses by enhancing vasodilation, and tACS indi-
rectly influences CBF via frequency-dependent modulation
of neural rhythms. tES modulates CBF during stroke reha-
bilitation and is linked to neurometabolic activity that en-
hances the delivery of oxygen and nutrients to the affected
areas or other regions. The augmentation of CBF may be as-
sociated with the restoration of NVC and the enhancement
of neuroplasticity, which play a role in the remodeling of
functional networks post-stroke.

4.2 Enhancement of Neurometabolism

Stroke markedly disrupts neurometabolism in the
brain. Hence, cerebral reorganization or functional recov-
ery refers to the restoration of the brain’s energy system
[149,150]. Restoration of ATP synthesis, mitochondrial ac-
tivity, and metabolic conditions, together with NVC, is cru-
cial to maintain the functionality of the recovered neural
network [134,151,152]. Therefore, therapeutic strategies
for stroke should employ a comprehensive approach that
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integrates functional induction with metabolic support, in-
cluding the optimization of mitochondrial activities. The
tES approach may enhance energy utilization and recovery
in neuronal cells; however, data on its impact on mitochon-
drial activation and dynamics are limited.

The administration of tDCS to healthy individuals el-
evates cerebral energy consumption, leading to a temporary
state of energy depletion, which causes changes in systemic
glucose metabolism and related hormones [153]. Nonethe-
less, tDCS therapy in patients with stroke does not alter
brain metabolite concentrations [ 154]. In preclinical animal
study, tDCS decreases mitochondrial damage and preserves
mitochondrial quality control signaling in neurons [155].
This indicates that tACS exhibits mitochondrial activity,
which is linked to therapeutic advantages [151,152,156].
This suggests that tACS, similar to exercise therapy, af-
fects neurotrophic factors, such as BDNF signaling, per-
haps improving mitochondrial complex subunits and func-
tion through the peroxisome proliferator-activated receptor
gamma co-activator (PGC-1«)- fibronectin type III domain
containing 5 (FNDCS5)-BDNF pathway [157,158].

Restoring and stabilizing the metabolic environment
is essential for the efficacy of stroke rehabilitation and is
necessary to optimize these effects from the early stages of
stroke until recovery [149,150]. Employing tES to restore
and regulate brain metabolism may facilitate functional re-
covery by enhancing neuroplasticity and reorganization.
This function is likely associated with enhanced blood flow
metabolism, and further investigation is required.

5. Enhancing Neuronal Survival via
Anti-Neuroinflammation

Following ischemic stroke, a severe reduction in
CBF leads to an infarct zone characterized by a dam-
aged ischemic core, resulting in irreversible necrosis along
the surrounding penumbra [159]. Clinical research sup-
ports the prevention of neuronal death by positioning the
penumbra/peri-infarct region, which is defined by a par-
tially preserved blood supply and temporary neuronal vi-
ability, and is a pivotal concept in stroke neuroprotection
[160-162]. Major research targets in stroke, including
excitotoxicity, oxidative stress, apoptosis, and inflamma-
tion, are all related to neuronal survival in the penumbra
[163,164]. Cathodal tDCS therapy in patients with stroke
exhibits a potentially beneficial effect by reducing the ex-
tent of ischemic and infarct regions through the inhibition
of excitotoxic effects and penumbral salvage [39,40].

Preclinical animal studies on changes in cerebral in-
farction through the regulation of inflammation and neu-
ral death are more diverse than clinical studies. tDCS
enhances activated microglia in both anodal and catho-
dal configurations, eliciting an innate immune response
[165]; however, cathodal tDCS facilitates superior recov-
ery by modulating neuroinflammatory responses and apop-
tosis [10,166,167]. The polarity of tDCS, especially that

of cathodal tDCS, reduces cell death through the allevia-
tion of inflammatory markers and oxidative stress and the
regulation of NMDA receptors [168,169]. tDCS promotes
neuronal survival via the Cezanne-SIRT6-DNA damage
regulation pathway or via DNA fragmentation [170,171].
The anti-inflammatory response and enhancement of nerve
plasticity and angiogenesis associated with tDCS are facil-
itated by the cyclic guanosine monophosphate-adenosine
monophosphate (cGMP-AMP) synthase stimulator of the
interferon gene pathway [172]. Cathodal tDCS suppresses
ferroptosis through the dual mechanisms of mitophagy inhi-
bition and nuclear factor erythroid 2-related factor 2 (Nrf2)
activation [167].

Electrical stimulation at 20 Hz diminishes neu-
roinflammation and apoptosis-related markers via the
BDNF/TrkB and PI3K/Akt/mTOR pathways [173],
whereas 20 Hz tACS modulates 11 genes typically as-
sociated with apoptosis and inflammatory responses,
along with tDCS [70]. Research on the effects of tDCS
on detrimental factors in stroke has demonstrated its
neuroprotective effects via the regulation of propionic acid
[174], 3-oxo-lithocholic acid [175], isoleucine [176], and
surplus locus protein 4 [177]. The effects of tDCS vary
according to the polarity, and its application during the
ischemia and reperfusion stages can markedly improve
neuroprotection against cerebral injury [169,171].

tDCS treatment exerts therapeutic effects by inhibiting
neuronal damage and reducing the levels of inflammatory
factors via the NMDA-mediated sterol regulatory element-
binding protein 1 (SREBP1) pathway [55]. tDCS/tACS
treatments also commonly regulate stroke brain immune-
related targets in response to damage-associated molecu-
lar patterns (DAMPs), including DAMPs (S100 calcium-
binding protein A9 (s100a9)) and its receptor (toll-like
receptor 4 (Tlr4) and myeloid differentiation primary re-
sponse 88 (Myd88)), phagocytosis receptor (triggering re-
ceptor expressed on myeloid cells 2 (Trem2)), signaling
cascade (signal transducer and activator of transcription 1
(Statl) and nuclear factor kappa-light-chain-enhancer of ac-
tivated B cells (NFkB)), and cytokines (interleukin (IL)-6
(IL-6), IL-1p, and tumor necrosis factor alpha (TNF-«))
[70].

Cathodal tDCS demonstrates superior neuroprotection
in relevant stroke models. This may be due to the modula-
tion of neuroinflammatory pathways that provide neuropro-
tective effects, particularly during the acute and subacute
periods after ischemia. Following a stroke, tES modulates
inflammation-related mechanisms to mitigate excessive re-
sponses and safeguard the surrounding tissues. Further-
more, its anti-inflammatory effects enhance neuronal sur-
vival by regulating various apoptotic and survival-related
factors. The anti-neuroinflammatory properties of tES are
important in preventing brain injury and promoting func-
tional recovery during rehabilitation.
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6. Indirect Involvement of the Peripheral
Nerve System

tES focuses on neuroplasticity and network reorgani-
zation by modulating cortical excitability and related pro-
cesses; however, the possibility of indirect involvement of
the peripheral nervous system (PNS) has been raised. In
humans and rodents, tES accounts for approximately 75%
of the current applied to the scalp, owing to the soft tissue
and the skull, making it insufficient to entrain neural activ-
ity [178,179]. To stimulate the cortex, either a higher inten-
sity current than conventional tES is employed [178], or dif-
ferent high-frequency currents are delivered to the brain to
create temporal interference at different frequencies, selec-
tively stimulating the deep brain [180]. Because of the tran-
scranial and transcutaneous stimulation, the effect of tACS
on the motor system can be elicited solely by transcutaneous
stimulation [179].

Involvement of the PNS may be an important consid-
eration in the design of tES therapy. The effects of tES can
be modulated or enhanced by the PNS, and synergistic out-
comes can be achieved by combining central and PNS stim-
ulations [181,182]. Similar to cortical excitability in the
tES, calcium channels involving NMDA receptors are im-
portant signaling components that represent the therapeu-
tic advantages of PNS [70,183]. Recent studies have indi-
cated the possible indirect effects of tDCS via the trigeminal
nerve [184,185] and have highlighted the role of the vagus
nerve in the outcomes of tDCS [186].

Clinical and physiological parameters improve when
tDCS and PNS are applied simultaneously, proving to be
more effective than when used in isolation [181,187,188].
Nonetheless, it is equally accurate that combined stimula-
tion does not invariably exhibit additional effects or con-
sistently reveals enhanced efficacy [108,189]. Electrical
stimulation techniques, including tDCS, tACS, and elec-
troacupuncture, positively influence motor function in a
stroke model via a shared mechanism that modulates neu-
ronal cell death, regardless of whether the stimulation tar-
gets the cerebral cortex or the peripheral somatosensory in-
put [70]. Therefore, these therapeutic interventions can in-
duce both bottom-up and top-down bidirectional neural ac-
tivation, leading to synergistic advantages [182].

7. Collaborative Relationships Across
Mechanisms

We investigated the therapeutic effects of tES in stroke
rehabilitation, including cortical excitability, neuroplastic-
ity, neurovascular and neurometabolic stability, inflamma-
tory regulation, and the role of peripheral nerves. These
categories of molecular mechanisms indicating therapeutic
effects interact interdependently, going beyond simple cor-
tical excitability. This dynamic interaction forms a com-
plex loop that enhances its therapeutic benefits (Fig. 1A).
tDCS normalizes cortical connections disrupted by stroke
through neural rewiring, leading to the recovery of mo-
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tor function [190]. Enhancements in motor and cogni-
tive functions correlate with elevated expression of growth
factors, including GDF5 and PDGFA, along with neuro-
genesis in the subventricular zone [54]. Motor function
recovery includes activation of the BDNF/TrkB pathway,
synaptic remodeling, restoration of brain connections, and
potential enhancement of angiogenesis [83]. For recov-
ery of motor and cognitive functions, NMDA-dependent
SREBPI signaling and related inflammatory factors, such
as cyclooxygenase-2 (COX-2) and Akt, are involved [55].
Therefore, the modulation of neuronal excitability elicited
by tES facilitates neuroplasticity and the secretion of neu-
rotrophic factors, such as BDNF, thereby maintaining long-
term functional recovery. They also diminish neuroplastic-
ity deficits along with anti-neuroinflammation and reorga-
nization through neurovascular and neurometabolic stabil-

ity.

8. Conclusions

There are still gaps in the knowledge regarding the
stimulation protocols, parameters, long-term effects, and
basic mechanisms of tES in relation to stroke rehabilita-
tion. This highlights the inapplicability of animal models
in humans and their disconnection from therapeutic prac-
tices. However, there are questions regarding whether tES
can activate the cortex by passing through the skull. Ro-
dent studies have used higher intensities than human stud-
ies, even when considering head size, complicating the di-
rect application to clinical scenarios [191-194]. Clinically,
field intensities higher than those employed in traditional
tES guarantee consistent cortical excitability in the human
brain [178,193].

tES treatment requires enhanced precision in cur-
rent administration and spatial focality in the cerebral cor-
tex. The traditional large rectangular pad induces nonfo-
cal current diffusion [195,196] thus, small ring-based high-
definition (HD) electrodes are employed to overcome this
[197,198]. The modified HD electrode with integrated nee-
dles enhances the focus relative to traditional HD elec-
trodes; however, it exhibits limitations in accurate stim-
ulation [55]. Moreover, newly developed electrodes and
excessive stimulus intensity intended to enhance cortical
activity and local stimulation may induce uncomfortable
sensations such as edge effects; therefore, further clini-
cal and animal studies are needed to address this problem
[199,200].

The goal of post-stroke treatment to date has been to
reduce the initial impact and complications and to maximize
functional ability through comprehensive physical therapy,
employing a strategy aimed at activating a limited window
of neuroplasticity during the early stages [5,7,44]. How-
ever, depending on the stage after stroke, functional re-
covery is achieved through stage-specific modulation of
inflammation, neuroplasticity, NVC, network reorganiza-
tion, and structural remodeling [44,83,201]. The design
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Fig. 1. Therapeutic mechanisms of tES in stroke rehabilitation. (A) Therapeutic mechanisms of tES in stroke rehabilitation. (1)
Cortical excitability, a crucial factor in brain function recovery through NMDA receptors, is induced by anodal and cathodal stimulation,
leading to neural depolarization and hyperpolarization, respectively. This is influenced by the balance between excitatory glutamatergic
and inhibitory GABAergic neurons. Depending on the severity and stage of the stroke, it is applied to either alleviate interhemispheric
imbalance or promote interhemispheric compensation. Additionally, synchronizing the unique brain rhythmic activity that appears as
the firing timing of neuron groups is also an essential mechanism for brain function recovery. (2) Successive tES stimulation induces
long-lasting neuroplasticity by activating NMDA receptors and the intracellular calcium cascade, thereby facilitating the reorganization of
brain networks. The tES can be influenced by Hebbian plasticity and homeostatic metaplasticity to optimize neuroplasticity. tES regulates
the expression of neuroplasticity-related genes, as well as growth factors and neurotropic factors, through intracellular calcium signaling
and the downstream cascade. (3) Vicariation in stroke, a functional reorganization of the brain, is associated with the regulation of CBF
and neurometabolism by tES. CBF regulation, which responds to the energy required for brain, is controlled by NVC, and blood flow
is associated with increased neurometabolic activity. (4) tES promotes cell survival by regulating stroke brain immune-related targets,
including NMDA receptors, DAMPs and their receptors, phagocytic response, and inflammatory cytokines. The enhancement of neuronal
survival through anti-inflammatory mechanisms, particularly in the penumbra/peri-infarct area, is crucial. (5) Due to the fact that most of
the current from tES is lost as it passes through the skull, the therapeutic effect may be accomplished by stimulating the trigeminal nerve,
a peripheral nerve, on the scalp. (B) The therapeutic effects of tES in stroke rehabilitation are linked to multiple processes. Different
strategies are required for functional rehabilitation depending on the stroke stage. Owing to the potential for diverse clinical outcomes
from the application of varying tES parameters, such as polarity, frequency, intensity, duration, electrode configuration, stimulation target,
and session frequency, a careful design is required. tES, transcranial electrical stimulation; NMDA, N-methyl-d-aspartate; GABAergic,
gamma-aminobutyric acid-expressing; CBF, cerebral blood flow; NVC, neurovascular coupling; DAMPs, damage-associated molecular

patterns.

approach for tES needs to be varied based on the stage of  and number of sessions (Fig. 1B). tES is non-invasive and
the stroke because it may produce different outcomes de-  is expected to promote functional recovery in patients with
pending on parameters, such as polarity, frequency, inten- stroke through various mechanisms with repeated applica-
sity, duration, electrode configuration, stimulation target, tions. However, careful prescription design of tES is re-
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quired, considering its parameters and the post-stroke stage.
Along with the standardization of each parameter, analysis
of the long-term effects of repeated applications and per-
sonalized stimulation combined with other treatments will
lead to improved tES strategies.
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