

Review

# Integrin Signaling and ECM Proteins in hPSC Maintenance and Differentiation

Tianchen Wei<sup>1,2</sup>, Zack Z. Wang<sup>1,\*</sup> 

<sup>1</sup>Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

<sup>2</sup>Biotechnology in Advanced Academic Programs, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD 21218, USA

\*Correspondence: [zwang51@jhmi.edu](mailto:zwang51@jhmi.edu) (Zack Z. Wang)

Academic Editor: Rajesh Katre

Submitted: 5 September 2025 | Revised: 16 October 2025 | Accepted: 28 October 2025 | Published: 21 January 2026

## Abstract

Integrin signaling serves as a fundamental regulator in human pluripotent stem cell (hPSC) biology, mediating adhesion, survival, and pluripotency through interactions with extracellular matrix (ECM) components. Specific integrins, including  $\alpha 6\beta 1$ ,  $\alpha v\beta 5$ , and  $\alpha 3\beta 1$ , engage ECM ligands such as laminin-511/521 and vitronectin (VTN) to sustain hPSC self-renewal. These engagements trigger essential downstream pathways, including PI3K/AKT, MAPK/ERK, focal adhesion kinase (FAK)-Src, and RhoA/Rho-associated protein kinase (ROCK), thereby maintaining the expression of pluripotency factors like OCT4, NANOG, and SOX2 while integrating mechanotransductive cues. FAK and Src convert ECM-derived mechanical signals into biochemical responses, regulating cytoskeletal reorganization, YAP/TAZ nuclear translocation, and context-dependent gene expression. For scalable, xeno-free culture, recombinant substrates such as truncated vitronectin (VTN-N) and laminin-511/521 E8 fragments, paired with defined media (e.g., Essential 8 or mTeSR1), support robust hPSC expansion under good manufacturing practice (GMP) conditions. Extending to differentiation, integrin-ECM crosstalk directs lineage commitment across diverse fates, including hematopoietic, cardiovascular, neural, hepatic, epithelial, endodermal, and oligodendroglial lineages, by fine-tuning signaling specificity and ECM composition. This review focuses on recent advances in the mechanistic interplay between integrin signaling and ECM proteins in hPSC maintenance, mechanotransduction, and lineage-directed differentiation, emphasizing defined culture systems and their translational potential in regenerative medicine.

**Keywords:** human pluripotent stem cells; integrins; extracellular matrix (ECM); pluripotency; differentiation; mechanotransduction

## 1. Introduction

Integrin-extracellular matrix (ECM) interactions are central to realizing the translational potential of human pluripotent stem cells (hPSCs) in regenerative medicine, disease modeling, and cell-based therapy. By providing biochemical and biomechanical cues that regulate adhesion, survival, and lineage specification, integrin signaling enables the development of defined culture systems that support large-scale expansion and controlled differentiation of hPSCs into clinically relevant cell types [1]. These integrin-guided processes are essential for generating functional derivatives for cell replacement therapies, constructing physiologically relevant *in vitro* disease models, and advancing drug discovery platforms. However, key challenges remain for clinical translation, including reducing cultivation costs, eliminating animal-derived components, and optimizing xeno-free ECMs and media formulations compatible with good manufacturing practice (GMP) standards. Addressing these challenges through a deeper mechanistic understanding of integrin-ECM signaling will be critical for achieving reproducible, safe, and scalable hPSC-based therapies.

The goal of this review is to elucidate how integrin signaling orchestrates hPSC behavior, from adhesion and survival to self-renewal and lineage specifica-

tion, through dynamic interactions with defined ECM components. We aim to summarize current understanding of integrin-ECM-mediated signaling pathways, including PI3K/AKT, MAPK/ERK, focal adhesion kinase (FAK)-Src, and RhoA/Rho-associated protein kinase (ROCK), and their integration with mechanotransductive regulators such as YAP/TAZ. By focusing on how specific integrin-ligand pairs govern hPSC pluripotency and differentiation, we seek to define the molecular principles that enable xeno-free, scalable hPSC culture and guide lineage-specific differentiation. Ultimately, this review aims to advance strategies for engineering ECM-based microenvironments that enhance the safety, efficiency, and translational potential of hPSC-derived cell therapies.

## 2. Unique Characteristics of ECM-Integrin Signaling in hPSCs

In hPSCs, highly expressed integrins, such as  $\alpha 6\beta 1$ ,  $\alpha v\beta 5$ ,  $\alpha 3\beta 1$ , and to a lesser extent  $\alpha 5\beta 1$  and  $\alpha 7\beta 1$ , mediate key interactions with ECM proteins including laminin-511/521, vitronectin (VTN), and fibronectin (FN) [2,3]. These interactions activate downstream signaling cascades, including PI3K/AKT, MAPK/ERK, FAK-Src, and RhoA/ROCK, to sustain pluripotency or induce lineage differentiation. Among these,  $\alpha 6\beta 1$ -laminin and  $\alpha v\beta 5$ -



Copyright: © 2026 The Author(s). Published by IMR Press.  
This is an open access article under the CC BY 4.0 license.

**Publisher's Note:** IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

VTN interactions are particularly critical for maintaining pluripotency [3,4]. Compared with somatic cells and adult stem cell types, such as mesenchymal stem cells (MSCs) or hematopoietic stem cells (HSCs), hPSCs display unique integrin expression profiles and mechanosensitivity tailored to their pluripotent nature. For example, fibroblasts primarily utilize  $\alpha 5\beta 1$ –FN interactions to support migration and tissue repair [5,6], whereas HSCs depend on  $\alpha 4\beta 1$  for Vascular Cell Adhesion Molecule-1 (VCAM-1)-mediated niche anchoring [7,8]. In contrast, hPSCs rely on  $\alpha 6\beta 1$  and  $\alpha v\beta 5$  to engage laminin-511/521 and VTN, activating PI3K/AKT, FAK-Src, and RhoA/ROCK signaling [2,4,9–11]. In particular,  $\alpha 6\beta 1$ –laminin interactions are essential for single-cell survival and clonal propagation through Fyn–RhoA/ROCK signaling [9,12,13]. These signaling cascades are crucial for regulating key pluripotency genes such as OCT4, NANOG, and SOX2.

hPSCs also are highly sensitive to ECM stiffness, with FAK-Src signaling tuned to softer substrates (e.g., laminin-based matrices) compared to MSCs, which respond to a broader range of stiffness via  $\alpha 2\beta 1$ –collagen interactions [14–16]. This heightened mechanosensitivity and reliance on specific integrin-ligand pairs (e.g.,  $\alpha 6\beta 1$ –laminin,  $\alpha v\beta 5$ –VTN) enable hPSCs to maintain a delicate balance between self-renewal and differentiation, distinguishing them from somatic cells and adult stem cells with more lineage-restricted signaling profiles.

### 3. Integrin Structure and Functional Classification

Integrin signaling governs hPSC behavior by transducing ECM-derived cues into intracellular responses that regulate adhesion, survival, pluripotency, and differentiation. Integrins are transmembrane heterodimers composed of one  $\alpha$  (120–180 kDa) and one  $\beta$  (90–120 kDa) subunit, forming 24 distinct heterodimer receptors from 18  $\alpha$  and 8  $\beta$  subunits [17]. They are functionally categorized into four groups: (1) arginine–glycine–aspartic acid (RGD)-binding, (2) leukocyte cell-adhesion, (3) collagen-binding, and (4) laminin-binding integrins (Table 1) [18,19]. While integrins primarily mediate cell-ECM adhesion, they also support direct or indirect cell-cell interactions. For instance,  $\alpha 4\beta 1$  on hematopoietic stem/progenitor cells (HSPCs) binds to VCAM-1 on endothelial or stromal cells, contributing to niche interactions [20–22], whereas fibroblast-derived fibronectin (FN) can serve as bridges to indirectly link integrins on neighboring cells to promote intercellular communication [23].

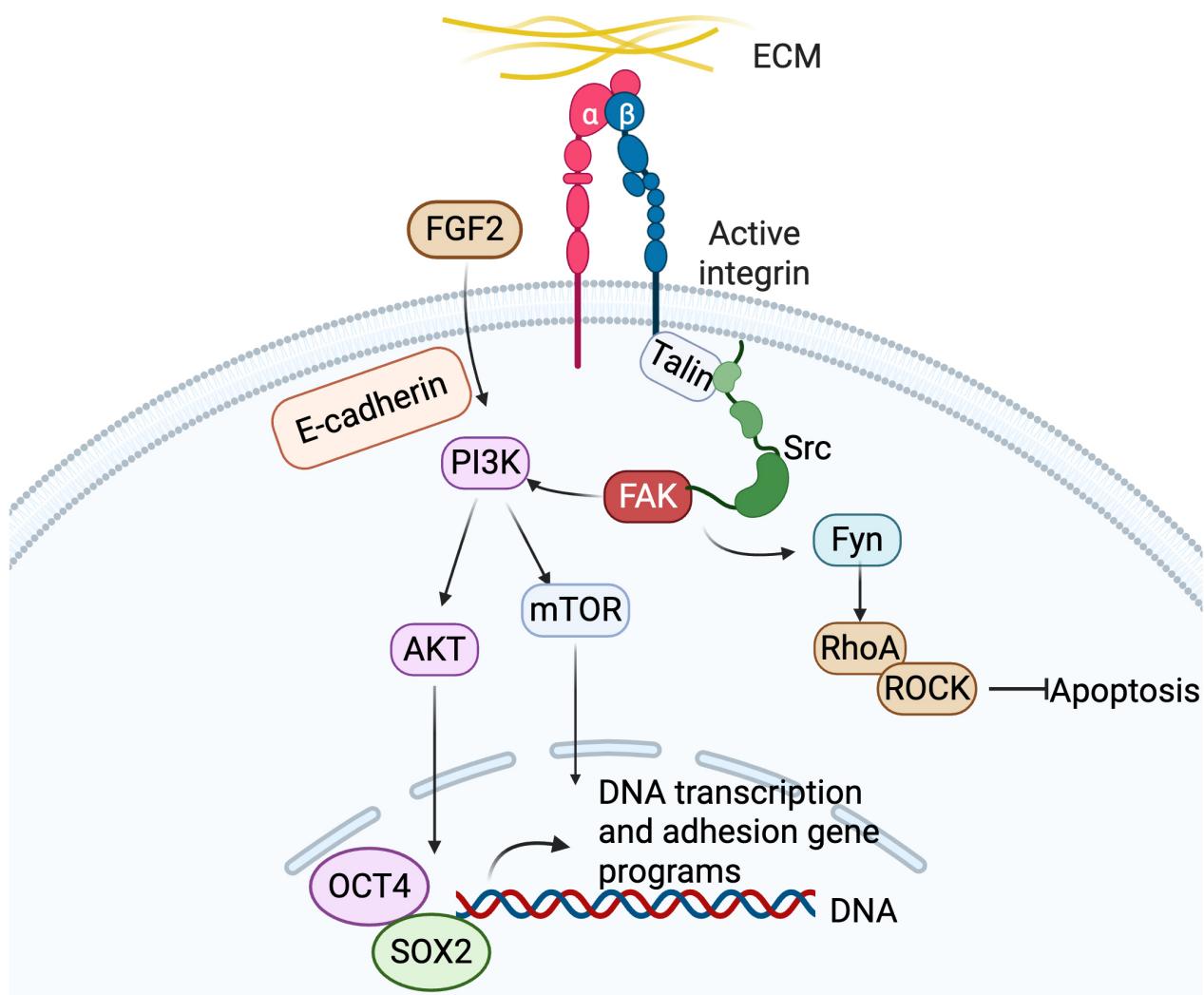
The functional versatility of integrins arises from their ability to pair with multiple subunits, bind diverse ligands, and activate overlapping intracellular pathways. Some integrins occupy more than one functional group or have overlapping ligand specificities. For example,  $\alpha 4\beta 1$ , classified as a leukocyte integrin, also binds specific sites on FN in an RGD-independent manner. This complexity reflects: (1)

certain  $\alpha$  subunits pairing with multiple  $\beta$  subunits (e.g.,  $\alpha 4$  with  $\beta 1$  and  $\beta 7$ ); (2) certain  $\beta$  subunits pairing with multiple  $\alpha$  subunits (e.g.,  $\beta 2$  with  $\alpha L$ ,  $\alpha M$ , and  $\alpha X$ ); (3) individual integrins interacting with multiple ligands (e.g.,  $\alpha 4\beta 1$  to VCAM-1 and FN); and (4) individual ECM ligands binding multiple integrins (e.g., FN to  $\alpha v\beta 3$ ,  $\alpha v\beta 6$ ,  $\alpha 5\beta 1$ , and  $\alpha 4\beta 1$ ) [24].

### 4. Mechanotransduction and Integrins

Integrins are crucial mediators of mechanotransduction, the process by which cells sense and respond to mechanical forces from their ECM and neighboring cells [25]. In hPSCs, integrins bind to ECM components to create a physical and biochemical link between internal cellular cytoskeleton and its external surroundings, and act as mechano-sensors, detecting cues like substrate stiffness, shear stress, or ECM topography. These signals are transduced through pathways such as FAK and Src, modulating cytoskeletal organization, gene expression, and cell fate decisions (Fig. 1) [26–28]. For example, integrins (e.g.,  $\alpha 6\beta 1$ ,  $\alpha v\beta 5$ ) binding to ECM proteins, laminin-511 or VTN, promote adhesion, proliferation, pluripotency, or differentiation into specific lineages such as neural or mesodermal. This process integrates physical cues with molecular signaling to regulate hPSC identity and function. Kim *et al.* [29] demonstrated that ECM stiffness regulates hPSC behavior through mechanotransduction. By culturing hPSCs on tunable cell-derived matrices, they showed that matrix stiffness modulates adhesion, growth, migration, and pluripotency, identifying an optimal stiffness range for maintaining the pluripotent state [29].

#### 4.1 FAK-Src Complex Activation


FAK activation is one of the major integrin-mediated signaling events. Mechanical forces or ECM binding induces integrin clustering, recruiting FAK to focal adhesions through interactions with talin and paxillin. FAK undergoes autophosphorylation at tyrosine 397 (Y397), creating a docking site for blinding Src Homology 2 (SH2) domain of Src family [28,30]. Src binding to FAK-Y397 disrupts autoinhibitory conformation of Src, enabling phosphorylation of additional FAK sites (e.g., Y576/Y577) for full kinase activation. The FAK-Src complex recruits downstream effectors like Grb2, PI3K, and p130Cas, amplifying downstream signaling [31–34]. In hPSCs,  $\alpha 6\beta 1$ -laminin interactions activate FAK-Src, promoting PI3K/AKT signaling to sustain pluripotency markers and prevent apoptosis [10,35].

#### 4.2 Cytoskeletal Dynamics Regulation of RhoA/ROCK Signaling

The FAK-Src complex activates RhoA, promoting actin polymerization and actomyosin contractility via ROCK-mediated myosin light chain phosphorylation. This enhances cytoskeletal tension, critical for cell migration and adhesion maturation. In hPSCs,  $\alpha 6\beta 1$ -laminin inter-

**Table 1. Integrin categories.**

| Category                          | Examples                                                                        | Binding specificity                                                                                                                                                                                                                                         |
|-----------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RGD-binding integrins             | $\alpha 5\beta 1$ , $\alpha v\beta 3$ , $\alpha v\beta 5$ , $\alpha IIb\beta 3$ | Recognize the arginine-glycine-aspartic acid (RGD) motif found in many extracellular matrix (ECM) proteins, such as fibronectin (FN), vitronectin (VTN), and fibrinogen.                                                                                    |
| Leukocyte cell-adhesion integrins | $\alpha L\beta 2$ , $\alpha M\beta 2$ , $\alpha X\beta 2$ , $\alpha D\beta 2$   | Primarily expressed on white blood cells and mediate cell-to-cell adhesion by binding to intercellular adhesion molecules (ICAMs) and other counter-receptors on endothelial cells. The $\beta 2$ subunit is a defining feature of many of these integrins. |
| Collagen-binding integrins        | $\alpha 1\beta 1$ , $\alpha 2\beta 1$ , $\alpha 10\beta 1$ , $\alpha 11\beta 1$ | Recognize specific GFOGER (O = hydroxyproline) sequences in collagen, the most abundant protein in the ECM.                                                                                                                                                 |
| Laminin-binding integrins         | $\alpha 3\beta 1$ , $\alpha 6\beta 1$ , $\alpha 7\beta 1$ , $\alpha 6\beta 4$   | Mediate cell adhesion to laminin, a major component of the basement membrane. Some of these integrins, like $\alpha 6\beta 4$ , are particularly important for forming hemidesmosomes, which anchor epithelial cells to the basement membrane.              |



**Fig. 1. Activation of integrin signaling by ECM proteins to regulate hPSC adhesion, pluripotency and differentiation.** ECM, extracellular matrix; hPSC, human pluripotent stem cell. Created in BioRender (<https://BioRender.com/b1mqg26>).

action activates Fyn, a Src family kinase, which synergizes with RhoA/ROCK signaling pathway. Fyn-RhoA-ROCK

signaling pathway inhibits Rho-associated protein kinase (ROCK) activity to maintain pluripotency [9,36]. The

FAK-Src complex phosphorylates paxillin and p130Cas, and strengthens interactions with Crk and Nck adaptors, stabilizing focal adhesions, while vinculin and  $\alpha$ -actinin reinforce integrin-actin linkages under tension, enabling force transmission [37]. ROCK inhibitors, such as Y-27632, are typically used to support hPSC survival and pluripotency during single-cell passaging [36].

#### 4.3 Gene Expression Modulation

Cytoskeletal tension through the engagement of  $\alpha 6\beta 1$ -laminin and  $\alpha v\beta 5$ -VTN inhibits Hippo pathway kinases (LATS1/2), preventing YAP/TAZ phosphorylation. Dephosphorylated YAP/TAZ translocate to the nucleus, binding TEAD transcription factors to drive proliferation/survival genes (e.g., CTGF, CYR61) via Src and Rac [38,39]. FAK-Src activation of MAPK/ERK is critical for stem cell proliferation via Grb2-SOS and PI3K-Akt via PIP3 pathways, promoting transcription factors like FOXO1 for cell cycle progression and pluripotency maintenance [40,41].  $\alpha 6\beta 1$ -laminin and  $\alpha v\beta 5$ -VTN signaling also synergizes with EGFR/HER2 to amplify ERK and AKT activation, sustaining OCT4 and NANOG expression [3,42,43]. These pathways collectively ensure hPSC self-renewal by integrating mechanical and biochemical cues.

#### 4.4 Functional Outcomes

FAK activation protects cells from anoikis [44], making integrins natural targets for regulating anoikis resistance. This resistance is essential for hPSC survival during single-cell passaging and differentiation [45,46]. Anoikis, a form of apoptosis induced by detachment from ECM, is a major contributor to low post-transplantation survival rates in stem cell therapy. For example, anoikis limits the efficiency of hESC-derived cardiomyocyte (hESC-CM) engraftment in cardiac repair [47]. Co-transplantation with biocompatible ECM materials can mitigate anoikis by providing structural and biochemical cues that support cell survival [48].

FAK-Src signaling drives cytoskeletal remodeling, focal adhesion turnover, and directional motility. FAK phosphorylation is required for MSC differentiation [49], while in cancer stem cells, FAK promotes migration and epithelial-to-mesenchymal transition (EMT), enhancing invasive potential [50]. In hPSCs, integrin-mediated activation of  $\alpha 6\beta 1$  and  $\alpha v\beta 5$  protects against anoikis through FAK-Src and downstream PI3K/AKT signaling, supporting single-cell survival and clonal propagation, particularly via  $\alpha 6\beta 1$ -laminin interactions [13,44–46]. Concurrently, YAP/TAZ and ERK/AKT pathways suppress apoptosis and promote proliferation [38,40]. ECM stiffness further modulates Src activity, tuning hPSC responses to matrix rigidity and influencing self-renewal versus differentiation [51–53]. Inhibition of Src accelerates differentiation across all germ layers, linking FAK-Src signaling to cell cycle control and the maintenance of pluripotency [51,53,54]. These studies

highlight a link between FAK-Src signaling, cell cycle regulation, and hPSC differentiation potential.

### 5. Integrin Signaling for iPSC Pluripotency

Mouse embryonic fibroblasts (MEFs) were initially used as feeder cells for derivation and maintenance of hESCs [55]. Human foreskin fibroblasts later provided a xeno-free alternative culturing system to replace MEFs [56]. Matrigel, derived from mouse sarcoma tumors, served as feeder-free system for hESC growth [2,57]. However, those feeders and Matrigel are allogeneic or xenogeneic origin with potential source of variability and viral or bacterial contamination. Matrigel is a complex and undefined mixture of ECM proteins, including laminins, collagen IV, fibronectin, and other basement membrane proteins, triggering complex integrin signaling. The undefined composition of Matrigel complicates standardization of hPSC culture and differentiation.

Integrin-ECM interactions are essential for hPSC maintenance and lineage specification (Table 2, Ref. [3, 4,58–65]). High levels of integrin  $\alpha 6$  and  $\beta 1$ , moderate levels of  $\alpha 2$ , and low levels of  $\alpha 1$ ,  $\alpha 2$ , and  $\alpha 3$ , and  $\beta 4$  are expressed in hPSCs [2]. The predominant  $\alpha 6\beta 1$  integrin binds to laminins, suggesting that laminins play a critical role in hPSC maintenance. A study by S. Rodin *et al.* [3] demonstrated that human recombinant laminin-511 can effectively support the long-term self-renewal and pluripotency of hPSCs, establishing a defined, animal-product-free culture system for hPSCs. Laminin-511 promotes hPSC survival through  $\alpha 6\beta 1$  integrin activation and downstream Fyn–RhoA–ROCK signaling, providing a mechanistic basis for its ability to support cell viability during single-cell passaging [9]. Villa-Diaz *et al.* [10] further demonstrated that integrin  $\alpha 6\beta 1$  sustains hPSC self-renewal by maintaining FAK in an inactive state. Perturbation of FAK signaling promotes hPSC differentiation, revealing a regulatory mechanism in which integrin-ECM interactions modulate intracellular signaling to control stem cell fate in response to the microenvironment [10]. Truncated laminin-511 or -521 E8 fragments (~200–300 kDa) contains integrin-binding regions, supporting feeder-free hPSC culture [58,66]. Recombinant human laminin-511/521 E8 fragments, iMatrix-511 and iMatrix-521, ensures defined, xeno-free feeder-free hPSC culture. VTN, particularly its truncated vitronectin form (VTN-N), also support hPSC growth via its RGD-dependent binding to  $\alpha v\beta 5$  in hPSCs with Essential 8 (E8) medium [4,67,68].

#### 5.1 Laminin-511/521 Interacting With $\alpha 6\beta 1$ and $\alpha 3\beta 1$

Laminin isoforms are widely used for the maintenance of hPSC pluripotency, particularly in defined, feeder-free culture systems. Laminin-511 and laminin-521 are heterotrimeric glycoproteins, composed of  $\alpha$ ,  $\beta$  and  $\gamma$  chains [69]. They are key ECM components for hPSC culture, supporting pluripotency and cell survival by binding to  $\alpha 6\beta 1$

**Table 2. Key integrins involved in hPSC maintenance and differentiation.**

| Integrin receptor         | ECM ligands                           | hPSC pluripotency | hPSC differentiation                              | signaling             | References |
|---------------------------|---------------------------------------|-------------------|---------------------------------------------------|-----------------------|------------|
| $\alpha 6\beta 1$         | Laminin-511, Laminin-521, Laminin-111 | Major role        | Neural, cardiac, hepatocyte                       | PI3K/Akt, FAK and ILK | [3,58,61]  |
| $\alpha v\beta 5$         | VTN (via RGD sequence)                | Major role        | Hemogenic endothelial, endothelial, hematopoietic | FAK and ILK           | [4,59,60]  |
| $\alpha v\beta 3$         | VTN, FN (RGD)                         | Secondary role    | Hemogenic endothelial, hematopoietic              | PI3K and FAK          | [59,60]    |
| $\alpha 5\beta 1$         | FN (RGD)                              | Less effective    | Mesenchymal, endothelial, cardiac                 | MAPK/PI3K             | [59,63]    |
| $\alpha 3\beta 1$         | Laminin-511, -521, -111               | Low affinity      | Neural, epithelial, hepatocyte                    |                       | [58,61,62] |
| $\alpha 4\beta 1$ (VLA-4) | VCAM-1, FN (CS-1 region)              | Minimal role      | Hematopoietic, endothelial                        | MAPK/PI3K             | [64,65]    |
| $\alpha 7\beta 1$         | Laminin-111, -211                     | Minor role        | Myogenic, neural, hepatocyte                      |                       | [58,61,62] |

**Table 3. Integrins in hPSC lineage differentiation.**

| Lineage                   | Key integrins                                                                                                  | Role                                                                                                                                                                                                                      | Key pathways                                           | References            |
|---------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------|
| Cardiac                   | $\alpha 3\beta 1$ , $\alpha 6\beta 1$ , $\alpha 4\beta 1$ , $\alpha v\beta 1$ , $\alpha 2\beta 1$ , $\alpha 5$ | Facilitate cardiomyocyte differentiation; FN promotes mesoderm via $\alpha 4\beta 1$ and $\alpha v\beta 1$ ; $\alpha 2\beta 1$ enhances maturation; Laminin-111/-421 support organoid formation; laminin-521 inhibits it. | PI3K/AKT (ILK inhibition reduces AKT phosphorylation). | [83–86,107]           |
| Endothelial               | $\alpha v\beta 3$ , $\alpha v\beta 5$                                                                          | Drive endothelial commitment with VTN; Laminin-411 and Collagen IV enhance CD31 expression; FN inhibits via TGF $\beta$ .                                                                                                 | VEGF via PI3K/AKT and MAPK/ERK.                        | [87–89]               |
| Hematopoietic             | $\alpha v\beta 3$ , $\alpha v\beta 5$ , $\alpha 4\beta 1$ , $\beta 1$                                          | Promote hematopoietic transition with VTN; $\alpha 4\beta 1$ maintains stem cells; $\beta 1$ aids homing and engraftment.                                                                                                 | PI3K/AKT and MAPK/ERK enhance VEGF signaling.          | [60,90,91]            |
| Neural                    | $\alpha 6\beta 1$ , $\alpha 5$ , $\beta 1$                                                                     | Support dopaminergic neurons with laminin-521/-511; mediate progenitor adhesion/migration; aid Schwann cell differentiation and myelination.                                                                              | PI3K and MAPK.                                         | [92–95]               |
| Hepatic and Cholangiocyte | $\alpha 3\beta 1$ , $\alpha v\beta 5$ , $\alpha 5\beta 1$                                                      | Drive hepatocytes and definitive endoderm with laminin-521/-511; laminin-411 E8 promotes cholangiocytes.                                                                                                                  | PI3K/AKT and MAPK regulate growth.                     | [61,62,96,99,103,104] |
| Corneal Epithelial        | $\alpha 3\beta 1$ , $\alpha 6\beta 1$                                                                          | Enhance adhesion with laminin-332 E8.                                                                                                                                                                                     | Supports wound healing and mechanotransduction.        | [97,98]               |
| Definitive Endoderm       | $\alpha 5\beta 1$ , $\alpha 3\beta 1$ and $\alpha v\beta 5$                                                    | Enhance endoderm transition with RGD peptides and matrix stiffness; $\beta 1$ crucial for specification.                                                                                                                  | MEK-ERK and PI3-kinase regulated by integrin-ECM.      | [99–102]              |
| Oligodendrocyte           | $\alpha v\beta 3$ , $\alpha v\beta 5$ , $\beta 1$                                                              | Support maturation with VTN and laminin; aid myelination.                                                                                                                                                                 | PI3K, MAPK, Fyn kinase, Cdc42/Rac1.                    | [105,106]             |

and  $\alpha 3\beta 1$  integrins in hPSCs [3,13,70]. Other integrins, such as  $\alpha 7\beta 1$  and  $\alpha 6\beta 4$ , may also contribute to laminin-511 and laminin-521 binding for supporting cell adhesion [69]. Compared to  $\beta 1$  chain of laminin-511,  $\beta 2$  chain of laminin-521 enhances  $\alpha 6\beta 1$  binding affinity, improving adhesion, single-cell survival and clonal propagation via PI3K/Akt signaling [13].

E8 fragments of laminin-511 and laminin-521, containing the C-terminal E8 region (LG1-3 domains of the  $\alpha 5$  chain, parts of  $\beta 1/\beta 2$ , and  $\gamma 1$  chains), retain integrin-binding activity, ensuring robust adhesion, survival, and pluripotency [58,66]. By excluding non-essential domains, E8 fragments reduce complexity, improve purity, and maintain the critical cell-binding activity of full-length laminins [13]. When paired with defined media (e.g., E8 or

mTeSR1), iMatrix-511 and iMatrix-521 support good manufacturing practice (GMP)-compliant, cost-effective, and scalable hPSC culture.

### 5.2 Vitronectin Interacting With $\alpha v\beta 3$ and $\alpha v\beta 5$

VTN, a monomeric glycoprotein (75 kDa in ECM, or 65 kDa and 10 kDa fragments in plasma), contains an RGD (Arg-Gly-Asp) motif in its somatomedin B domain for integrin binding, and domains for binding heparin, collagen, and plasminogen activator inhibitor-1 (PAI-1). The RGD motif of VTN primarily binds to  $\alpha v\beta 3$  and  $\alpha v\beta 5$  integrins to mediate cell adhesion, migration, survival and pluripotency via PI3K/AKT and MAPK/ERK pathways [4,59]. The truncated VTN-N form, defined recombinant human protein, supports xeno-free culture conditions and is effec-

tive at concentrations of approximately 500 ng/cm<sup>2</sup> in conjunction with Essential 8 or mTeSR1 medium [67,71].

mTeSR1 contains BSA, which acts as a carrier for lipids and other components and is known to bind to non-specific surfaces, whereas Essential 8 (E8) medium does not contain BSA. E8 medium is specifically designed as a simplified, defined alternative to mTeSR1, with the goal of reducing variability by removing undefined components like BSA. However, a study comparing two feeder-free culture systems for deriving hiPSCs from fibroblasts found the Matrigel/mTeSR1 combination to be significantly more efficient than the Vitronectin/E8 system in generating hiPSC colonies and expressing pluripotency markers [72]. It provides a key insight into how specific culture conditions can influence the efficiency of generating and maintaining high-quality hiPSCs, which is crucial for their eventual use in therapeutic applications and disease modeling.

## 6. Integrin Signaling in hPSC Differentiation

Laminin-511 and laminin-521 are the most abundant laminin subtype expressed in hPSCs [73–76]. The crosstalk between laminins and hPSCs not only supports hPSC pluripotency, but also hPSC differentiation since differentiation protocols of hPSCs often require single-cell dissociation, which can induce apoptosis in hPSCs [77]. Laminin are expressed in early stage of embryos, suggesting a role of guiding the earliest steps of embryonic development [78–81]. During hPSC differentiation, the expression pattern of laminin isoforms changes. The expression of laminin-511, but not laminin-521, is increased by retinoic acid (RA)-induced mesodermal and endodermal differentiation in hESCs, indicating that laminin isoforms are involved in lineage differentiation [82]. Other Integrin ligands, such as VTN and FN, also have profound influences on differentiation when combined with specific growth factors (Table 3, Ref. [60–62,83–107]).

### 6.1 Mesoderm Differentiation

The interaction of specific ECM proteins with integrins such as  $\alpha 5\beta 1$  and  $\alpha 6\beta 1$  in hPSCs modulates key signaling pathways, including BMP and Wnt, to promote early mesoderm formation and the subsequent development of cardiac, vascular, and hematopoietic lineages.

#### 6.1.1 Cardiac Differentiation

In human cardiac tissue, laminins (e.g., laminin-211, -221, -411, -421, -511, and -521) are highly expressed during fetal cardiac development and in adult cardiac tissue [108]. Their interactions with  $\alpha 3\beta 1$  and  $\alpha 6\beta 1$  integrins are involved in cardiac-ECM interactions for normal cardiac function. The combination effects of laminin-521 and laminin-221 on cardiovascular differentiation in hPSCs have been demonstrated [109,110]. Laminin-111 and -421 promote the generation of hPSC-derived heart organoids [83,111]. FN is essential for hPSC differentiation into car-

diomyocytes. Endogenous FN accumulation in ECM is critical for mesoderm formation, particularly towards cardiac lineage differentiation. Specific knockdown FN in hPSCs prevented mesoderm formation and subsequent hPSC-CM generation [83]. Antibody blocking study showed that integrins  $\alpha 4\beta 1$  and  $\alpha v\beta 1$ , but not  $\alpha 5\beta 1$ , are key receptors mediating the binding of FN to cells to regulate cardiac differentiation of hPSCs [83]. The downstream signaling molecule integrin-linked kinase (ILK) is activated by these integrins. Inhibiting ILK leads to a decrease in phosphorylated AKT, a crucial molecule involved in cell survival and proliferation. This reduction in phosphorylated AKT is associated with increased apoptosis, ultimately inhibiting cardiac differentiation [83,84]. Stimulation of collagen integrins ( $\alpha 2\beta 1$ ) at the progenitor stage using vitronectin-collagen I matrices accelerates hiPSC-derived cardiomyocyte maturation, yielding a ~3-fold increase in cardiac troponin I expression, enhanced sarcomere development, and improved beating potency. Integrin inhibition experiment to block the function of the  $\alpha 2\beta 1$  integrin confirms the essential role of integrin stimulation in the process [85]. Additionally, integrin  $\alpha 5$  subunit is critical for the early stages of hPSC-cardiac differentiation, by establishing the correct cell identity during the development of mesodermal progenitors [86].

#### 6.1.2 Endothelial Differentiation

Laminin-411 is important for increasing hPSC-derived endothelial differentiation via the activation of multiple signaling pathways, including Focal Adhesion Kinase (FAK), Integrin-Linked Kinase (ILK), Notch, and  $\beta$ -catenin pathways. Activating Wnt signaling through small molecules improves laminin 411-guided endothelial differentiation [87]. While Laminin 411 alone increase endothelial differentiation of hPSCs, an optimized ECM formulation consisting of collagen I, collagen IV, and laminin 411 significantly enhances hPSC endothelial differentiation, compared to laminin 411 + FN or Matrigel. Collagen IV and laminin 411 enhance the expression of endothelial markers like CD31, while TGF $\beta$  signaling inhibits endothelial differentiation [88]. VTN also promotes endothelial lineage commitment through synergistic  $\alpha v\beta 3$  and  $\alpha v\beta 5$  signaling, enhancing VEGF signaling via PI3K/AKT and MAPK/ERK pathways [60,89].  $\alpha v\beta 3$  and  $\alpha v\beta 5$  integrins, acting as vitronectin receptors, are involved in endothelial cell adhesion and migration, which are crucial for normal vascular development and function. Blocking  $\alpha v\beta 3$  and  $\alpha v\beta 5$  integrins by antagonists inhibits endothelial cell invasion and differentiation induced by angiogenic factors like VEGF and FGF-2. Integrin  $\alpha v\beta 3$  is a significant player in endothelial cell survival and angiogenesis, especially in tumor development. Blocking  $\alpha v\beta 3$  results in inhibiting tumor angiogenesis. The interaction between VEGFR2 and  $\alpha v\beta 3$  is required for VEGFR2 phosphorylation and the activation of mitogenic pathways involving FAK [112–114].

### 6.1.3 Hematopoietic Differentiation

VTN-integrin signaling directs hPSC differentiation toward hematopoietic lineages. As in embryonic development, hematopoietic differentiation from hPSCs proceeds through three major developmental stages: (1) mesodermal induction from hPSCs, (2) specification of hemogenic endothelium from mesodermal progenitors, and (3) endothelial-to-hematopoietic transition (EHT) to generate hematopoietic stem and progenitor cells. VTN promotes the development of hematopoietic-fated mesoderm and hemogenic endothelial cells, upregulating key hematopoietic transcriptional factors, including GATA2, PU.1, GATA1, GFI1B, and KLF1 [60]. Synergistic  $\alpha v\beta 3$  and  $\alpha v\beta 5$  integrin signaling supports hematopoietic development, with  $\alpha v\beta 3$  specifically enhancing VEGF signaling to promote endothelial lineage commitment [60,115,116].

Integrins also modulate ECM organization to regulate cell signaling during hematopoiesis, with  $\alpha 4\beta 1$  integrin playing a key role in HSC maintenance [117,118]. Importantly, Michaels *et al.* [90] demonstrated that co-presentation of DLL4 with VCAM1 during EHT increased production of T-cell-competent hematopoietic progenitors by more than 80-fold compared with DLL4 alone, implicating  $\alpha 4\beta 1$ -VCAM1 engagement as a pro-hematopoietic cue during EHT.

Beyond  $\alpha v$  and  $\alpha 4$  integrins,  $\beta 1$  integrin plays essential roles in hematopoiesis, including HSC homing and engraftment [119]. Yuzuriha *et al.* [91] further reported that laminin-421 or laminin-121 regulates the hematopoietic potential of hPSC derivatives through a  $\beta 1$ -integrin to ILK to  $\beta$ -catenin/JUN pathway, identifying a specific  $\beta 1$ -integrin-centered mechanism controlling hPSC hematopoietic induction.

## 6.2 Ectoderm Differentiation

The ectoderm is the outermost of the three primary germ layers in early embryogenesis. During development, it differentiates into neuroectoderm and non-neural ectoderm. Given the difficulty of isolating adult stem cells from neural tissues, generating neuroectodermal lineages from hPSCs has become a central focus in current ectoderm differentiation studies.

### 6.2.1 Neural Differentiation

Both laminin-511 and laminin-521 provide essential signals that support the survival and self-renewal of hPSCs while priming them for subsequent differentiation. These laminins also facilitate the differentiation of hPSCs into dopaminergic neurons [92]. The laminin  $\alpha 5$  chain in both laminin-521 and -511 is crucial for providing a controlled environment for hPSC-derived neurons by cross-talking with integrins and ECM proteins such as collagens and FN [93].

Laminin-511, in particular, promotes the survival and differentiation of midbrain dopaminergic neurons by en-

gaging integrin  $\alpha 3\beta 1$  on the neuronal surface, which activates YAP signaling and its nuclear translocation [120]. Laminin-521 is widely used as a supportive matrix for culturing and differentiating hPSCs into various neuronal subtypes, owing to its ability to mimic the native cellular environment and enable robust expansion and directed differentiation in a defined, xeno-free system.

The interaction between laminin-521 and integrin  $\alpha 6\beta 1$  plays a major role in neural progenitor adhesion and migration during central nervous system (CNS) development [94,95,121]. In the peripheral nervous system and in hPSCs,  $\beta 1$  integrin signaling is critical for Schwann cell differentiation and myelination. Studies using Schwann cell-specific knockout models and *in vitro* system have demonstrated that  $\beta 1$  integrin is essential not only for early nerve development but also for initiating myelination [96,122–124].

### 6.2.2 Corneal Epithelial Differentiation

The surface ectoderm gives rise to the corneal epithelium, conjunctival epithelium, lens, and the epidermis of the eyelids. Among ECM components, laminin-332 is an essential constituent of the basement membrane of corneal epithelial cells and plays a central role in supporting their growth. Specifically, E8 fragments from laminin-332 markedly enhance adhesion and expansion of iPSC-derived corneal epithelial cells compared with fragments from other laminins. This difference in adhesive properties across laminin substrates enables the selective enrichment of iPSC-derived corneal epithelial cells over other ocular cell types [97]. Integrin  $\alpha 3\beta 1$ , which exhibits high affinity for laminin-332, is a major determinant of corneal epithelial adhesion. Binding of  $\alpha 3\beta 1$  integrin to laminin-332, including its E8 fragment, activates several intracellular signaling pathways, including FAK/ERK, PI3K/Akt, Rho GTPase and Src kinases in corneal epithelial cells. These pathways regulate fundamental cellular processes like proliferation, migration, and survival [98,125–128].

## 6.3 Endoderm Differentiation

### 6.3.1 Definitive Endoderm

Definitive endoderm is an epithelial cell layer formed during early embryonic development that gives rise to multiple internal organs and tissues, including the digestive tract (stomach, intestines, liver, pancreas), respiratory system (lungs, trachea, bronchi) and thyroid gland. Definitive endodermal progenitors are characterized by the expression of key transcription factors, such as SOX17, GATA4, and FOXA2 [129].

Integrin signaling, in coordination with other pathways, plays a crucial role in guiding the differentiation of definitive endoderm into specific organ lineages. FN and VTN are major ECM components that promote definitive endoderm specification by interacting with integrins  $\alpha 5\beta 1$ ,  $\alpha 3\beta 1$  and  $\alpha v\beta 5$  [99–101,130,131]. Specifically, the dif-

ferentiation process was associated with an increase in FN-binding integrin  $\alpha 5$  (ITGA5) and VTN-binding integrin  $\alpha v$  (ITGAV). Blocking  $\alpha 5$  and  $\alpha v$  integrins with shRNA disrupted endodermal differentiation, while cell isolation based on  $\alpha 5$  and  $\alpha v$  expression enriched for endoderm cells, indicating that these interactions are critical for endodermal differentiation [99].

Synthetic PEG-based hydrogel functionalized with cyclic RGD peptides have been shown to support hPSC attachment and promote transition to definitive endoderm. In this context, matrix stiffness emerges as a key mechanical cue, with FAK signaling serving as a downstream intracellular mediator of integrin-ECM interactions [102]. During the early stages of definitive endoderm differentiation, integrin-mediated traction forces are required for SMAD2 phosphorylation and nuclear translocation, which enhances the expression of definitive endoderm markers, such as SOX17, thereby linking mechanical signaling to TGF- $\beta$  pathway activation [100].

### 6.3.2 Hepatic and Cholangiocyte Differentiation

Laminin-521 and -511, interacting with primarily  $\alpha 3\beta 1$  integrin, support hPSC differentiation into definitive endoderm and subsequently into hepatocytes. The use of recombinant laminin-511 and -521, either alone or in combination, provides a defined, xeno-free substrate that significantly improves the efficiency and quality of hPSC-derived hepatocytes [61,62,103]. During the differentiation of hPSCs into definitive endoderm, there is a shift in integrin expression. The pluripotency-associated integrins ( $\alpha 3\beta 1$ ,  $\alpha 6\beta 1$ ) are downregulated, while definitive endoderm cells show high expression of other integrins, such as  $\alpha v\beta 3$  binding to VTN and  $\alpha 5\beta 1$  binding to FN [96,99]. Integrin-linked kinase (ILK) is an intracellular protein that acts at the cell-matrix interface to integrate signals from integrins. In primary hepatocytes, ILK is involved in matrix-induced differentiation. Hepatocytes lacking ILK undergo incomplete maturation, suggesting its importance in achieving full hepatocyte function, a mechanism likely shared by hPSC-derived cells [132]. To understand the precise control of the ECM for cell fate decisions, E8 fragments from different laminins were used to induce iPSC differentiation [104]. While E8 fragments from other laminin isoforms do not, E8 fragments from laminin-411 and laminin-511 specifically promote the differentiation of iPSCs into cholangiocyte-like epithelial cells, increasing in the expression of cholangiocyte-specific markers and formation of larger and more numerous cholangiocyte cysts in a three-dimensional (3D) collagen gel, mimicking the bile duct structures found *in vivo* [104].

### 6.3.3 Oligodendrocyte Differentiation

VTN-integrin signaling, combining with signaling molecules sonic hedgehog (Shh), retinoic acid (RA), and noggin, supports hPSC differentiation into oligodendro-

cytes, mediated by  $\alpha v$ -containing integrins, such as  $\alpha v\beta 3$  and  $\alpha v\beta 5$ , via both PI3K/AKT and MAPK/ERK pathways [105,106,133]. While  $\alpha v\beta 3$  primarily activates the MAPK pathway to promote proliferation,  $\alpha v\beta 5$  preferentially activates the PI3K pathway, which is essential for the oligodendrocyte differentiation, specifically for the transition from oligodendrocyte progenitor cells to mature oligodendrocytes. [133–136]. However, the roles of PI3K/AKT and MAPK/ERK pathways are not always straightforward, with timing and coordination being critical for successful differentiation and myelination.

Besides VTN, other ECM proteins may interact with integrins in oligodendrocytes to initiate intracellular signaling cascades, influencing crucial functions like proliferation, survival, and maturation that are essential for CNS myelination [137,138]. Laminin-2, found on the surface of axons, binds to the  $\alpha 6\beta 1$  integrin on oligodendrocytes to enhance membrane formation, promotes survival, and is critical for myelination [139]. While laminin promotes myelination, FN can inhibit the differentiation and maturation of oligodendrocytes [138]. Elevated FN is often found in CNS lesions and can negatively regulate oligodendrocyte differentiation, making it an antagonist to laminin in this process. However, the roles of FN and laminin-2, as well as downstream signaling in hPSC differentiation into oligodendrocytes remain unknown.

### 6.4 The Effect of 3D Culture on Integrin Signaling in hPSC

Transitioning from conventional 2D monolayer cultures to 3D systems profoundly alters integrin signaling in hPSCs, particularly during lineage differentiation, such as organoid formation. Enhanced cell–cell and cell–ECM interactions in 3D systems create a more physiologically relevant microenvironment than 2D cultures, thereby enhancing the fidelity of hPSC differentiation and tissue morphogenesis [140]. For example, cardiomyocytes derived from 2D hPSC cultures fail to fully recapitulate the electrophysiological and contractile properties of native heart tissue [141–143]. In contrast, 3D organoid systems have been successfully established to generate diverse tissue types from hPSCs, including the brain, eyes, kidney, lung, stomach, intestine, inner ear, skin, thyroid, and liver [144–153].

Synthetic 3D matrices, such as polyethylene glycol (PEG)-based hydrogels, offer defined and tunable microenvironments that improve reproducibility and control compared to conventional organoid methods. For instance, Chow *et al.* [154] demonstrated that encapsulating hPSC-CMs in a 3D PEG hydrogel improved cardiac function and tissue integrity following myocardial infarction in rats, suggesting indirect paracrine or remodeling effect despite limited long-term cell survival. Within such systems, integrins mediate cell–matrix attachment and transduce essential “outside-in” signals that regulate survival, proliferation, and mechanosensation. Functionalization of hydrogels with integrin-binding peptides, particularly RGD mo-

tif, enhances cell adhesion [155]. Through RGD–integrin interactions, cells form focal adhesions that physically couple the cytoskeleton with the ECM, promoting dynamic cell–matrix crosstalk and activating intracellular signaling pathways that govern adhesion, spreading, proliferation, migration, differentiation, and mechanotransduction. During vascular differentiation of iPSCs, 3D PEG hydrogels have been shown to upregulate ECM components and integrins relative to 2D cultures, facilitating the formation of functional vascular networks [156].

Despite these advances, fully recapitulating human physiology in 3D hPSC cultures remains challenging, largely due to the absence of a vascular network capable of delivering oxygen and nutrients while removing metabolic waste. Nevertheless, the integration of 3D culture systems with defined xeno-free ECMs controlled mechanical properties represents a promising direction for future studies aimed at modeling human development and disease and advancing hPSC-based tissue engineering and therapeutic applications.

## 7. Summary and Future Perspectives

Integrin-ECM interactions are fundamental to hPSC maintenance and lineage specification. The transition from xenogeneic feeders such as MEFs and Matrigel to defined substrates like laminin-511/521 and VTN has enabled xeno-free, reproducible culture systems suitable for clinical translation. In the pluripotent state,  $\alpha 6\beta 1$ -laminin and  $\alpha v\beta 5$ -VTN interactions sustain adhesion, survival, and self-renewal through PI3K/AKT, MAPK/ERK, FAK-Src, and RhoA/ROCK signaling, maintaining expression of pluripotency genes OCT4, NANOG, and SOX2. FAK serves as a key signaling hub integrating these cascades to promote adhesion, survival, and p53 degradation [157].

hPSCs exhibit distinct integrin profiles and heightened mechanosensitivity compared to somatic and adult stem cells, relying primarily on  $\alpha 6\beta 1$  and  $\alpha v\beta 5$  for pluripotency maintenance. During differentiation, specific integrin-ligand pairs direct lineage commitment: laminin- $\alpha 6\beta 1/\alpha 3\beta 1$  interactions favor cardiac and neural lineages; VTN- $\alpha v\beta 3/\beta 5$  supports endothelial, hematopoietic, and oligodendrocyte specification; and FN- $\alpha 5\beta 1$  promotes mesoderm and endoderm differentiation. Recombinant laminin E8 fragments and VTN-N provide defined, scalable platforms that preserve stem cell integrity and enable controlled lineage induction. Collectively, these findings underscore integrin signaling as a central regulator of hPSC biology, from self-renewal to lineage-specific differentiation.

Despite these advances, challenges remain in translating integrin-ECM biology into fully defined, GMP-compliant hPSC platforms. Current recombinant ECM proteins remain costly and variable, and the complexity of integrin signaling networks complicates the dissection of ligand-specific effects on pluripotency and lineage choice.

Furthermore, conventional 2D culture systems often fail to capture the spatial, mechanical, and topographical cues that regulate integrin clustering and focal adhesion dynamics *in vivo*.

Future research should focus on engineering synthetic ECMs with tunable biochemical and biomechanical properties to systematically dissect integrin-mediated mechanisms under controlled conditions. Integration of bioengineered hydrogels, 3D microenvironments, and advanced imaging and omics approaches will enable high-resolution mapping of integrin signaling networks. Additionally, combining these systems with CRISPR-based perturbation and mechanobiological modeling may reveal how integrin signaling integrates with pathways such as Wnt, Notch, and TGF- $\beta$  to orchestrate hPSC fate.

Ultimately, the development of cost-effective, scalable, and xeno-free ECM platforms, together with a deeper mechanistic understanding of integrin-ECM crosstalk, will be essential for achieving reproducible, safe, and efficient hPSC-based applications in regenerative medicine, disease modeling, and cell therapy manufacturing.

## Author Contributions

TW: Contributed to drafting the manuscript and preparing the figures. ZZW: Involved in study design, manuscript writing, and final approval of the manuscript. Both authors contributed to editorial changes in the manuscript. Both authors read and approved the final manuscript. Both authors have participated sufficiently in the work and agreed to be accountable for all aspects of the work.

## Ethics Approval and Consent to Participate

Not applicable.

## Acknowledgment

Not applicable.

## Funding

This work was supported by Maryland Stem Cell Research Fund (2024-MSCRFD-6400).

## Conflict of Interest

The authors declare no conflict of interest.

## Declaration of AI and AI-Assisted Technologies in the Writing Process

During manuscript preparation, Google Gemini 3 and OpenAI GPT-4.1 were used for language editing and grammar checking. The authors reviewed and edited all text and take full responsibility for the content of the published work.

## References

- [1] Lambshead JW, Meagher L, O'Brien C, Laslett AL. Defining synthetic surfaces for human pluripotent stem cell culture. *Cell Regeneration (London, England)*. 2013; 2: 7. <https://doi.org/10.1186/2045-9769-2-7>.
- [2] Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, *et al.* Feeder-free growth of undifferentiated human embryonic stem cells. *Nature Biotechnology*. 2001; 19: 971–974. <https://doi.org/10.1038/nbt001-971>.
- [3] Rodin S, Domogatskaya A, Ström S, Hansson EM, Chien KR, Inzunza J, *et al.* Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. *Nature Biotechnology*. 2010; 28: 611–615. <https://doi.org/10.1038/nbt.1620>.
- [4] Braam SR, Zeinstra L, Litjens S, Ward-van Oostwaard D, van den Brink S, van Laake L, *et al.* Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. *Stem Cells (Dayton, Ohio)*. 2008; 26: 2257–2265. <https://doi.org/10.1634/stemcells.2008-0291>.
- [5] Miron-Mendoza M, Graham E, Manohar S, Petroll WM. Fibroblast-fibronectin patterning and network formation in 3D fibrin matrices. *Matrix Biology: Journal of the International Society for Matrix Biology*. 2017; 64: 69–80. <https://doi.org/10.1016/j.matbio.2017.06.001>.
- [6] Lobert VH, Brech A, Pedersen NM, Wesche J, Oppelt A, Malerød L, *et al.* Ubiquitination of alpha 5 beta 1 integrin controls fibroblast migration through lysosomal degradation of fibronectin-integrin complexes. *Developmental Cell*. 2010; 19: 148–159. <https://doi.org/10.1016/j.devcel.2010.06.010>.
- [7] Santis Larrain O, Alhaj Kadour A, Agarwala S, Li W, Blaser BW, Lasarev MR, *et al.* Vcam1 in endothelial and stromal cells regulates hematopoietic stem cell contact with the niche. *bioRxiv*. 2025. <https://doi.org/10.1101/2025.08.30.673252>. (preprint)
- [8] Gupta S, Gangenahalli G. Vascular Cell Adhesion Molecule 1-Mediated Targeting of Human Hematopoietic Stem Cells to Bone Marrow Is Effective in Conferring Regeneration and Survival in Lethally Irradiated Mice. *Transplantation and Cellular Therapy*. 2022; 28: 667.e1–667.e10. <https://doi.org/10.1016/j.jtc.2022.07.012>.
- [9] Nakashima Y, Tsukahara M. Laminin-511 Activates the Human Induced Pluripotent Stem Cell Survival via  $\alpha 6\beta 1$  Integrin-Fyn-RhoA-ROCK Signaling. *Stem Cells and Development*. 2022; 31: 706–719. <https://doi.org/10.1089/scd.2022.0010>.
- [10] Villa-Diaz LG, Kim JK, Laperle A, Palecek SP, Krebsbach PH. Inhibition of Focal Adhesion Kinase Signaling by Integrin  $\alpha 6\beta 1$  Supports Human Pluripotent Stem Cell Self-Renewal. *Stem Cells (Dayton, Ohio)*. 2016; 34: 1753–1764. <https://doi.org/10.1002/stem.2349>.
- [11] Yu JSL, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. *Development (Cambridge, England)*. 2016; 143: 3050–3060. <https://doi.org/10.1242/dev.137075>.
- [12] Alsobaei S, Alsobaei T, Mantalaris S. Rho-Associated Protein Kinase Inhibitor and Hypoxia Synergistically Enhance the Self-Renewal, Survival Rate, and Proliferation of Human Stem Cells. *Stem Cells and Cloning: Advances and Applications*. 2022; 15: 43–52. <https://doi.org/10.2147/SCCAA.S365776>.
- [13] Rodin S, Antonsson L, Niaudet C, Simonson OE, Salmela E, Hansson EM, *et al.* Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. *Nature Communications*. 2014; 5: 3195. <https://doi.org/10.1038/ncomms4195>.
- [14] Shih YRV, Tseng KF, Lai HY, Lin CH, Lee OK. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. *Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research*. 2011; 26: 730–738. <https://doi.org/10.1002/jbmr.278>.
- [15] Popov C, Radic T, Haasters F, Prall WC, Aszodi A, Gullberg D, *et al.* Integrins  $\alpha 2\beta 1$  and  $\alpha 11\beta 1$  regulate the survival of mesenchymal stem cells on collagen I. *Cell Death & Disease*. 2011; 2: e186. <https://doi.org/10.1038/cddis.2011.71>.
- [16] Gerardo H, Lima A, Carvalho J, Ramos JRD, Couceiro S, Travassos RDM, *et al.* Soft culture substrates favor stem-like cellular phenotype and facilitate reprogramming of human mesenchymal stem/stromal cells (hMSCs) through mechanotransduction. *Scientific Reports*. 2019; 9: 9086. <https://doi.org/10.1038/s41598-019-45352-3>.
- [17] Moreno-Layseca P, Icha J, Hamidi H, Ivaska J. Integrin trafficking in cells and tissues. *Nature Cell Biology*. 2019; 21: 122–132. <https://doi.org/10.1038/s41556-018-0223-z>.
- [18] Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, *et al.* Targeting integrin pathways: mechanisms and advances in therapy. *Signal Transduction and Targeted Therapy*. 2023; 8: 1. <https://doi.org/10.1038/s41392-022-01259-6>.
- [19] Hynes RO. Integrins: bidirectional, allosteric signaling machines. *Cell*. 2002; 110: 673–687. [https://doi.org/10.1016/s0092-8674\(02\)00971-6](https://doi.org/10.1016/s0092-8674(02)00971-6).
- [20] Oostendorp RA, Reisbach G, Spitzer E, Thalmeier K, Diemann H, Mergenthaler HG, *et al.* VLA-4 and VCAM-1 are the principal adhesion molecules involved in the interaction between blast colony-forming cells and bone marrow stromal cells. *British Journal of Haematology*. 1995; 91: 275–284. <https://doi.org/10.1111/j.1365-2141.1995.tb05290.x>.
- [21] Kanemaru K, Noguchi E, Tokunaga T, Nagai K, Hiroyama T, Nakamura Y, *et al.* Tie2 Signaling Enhances Mast Cell Progenitor Adhesion to Vascular Cell Adhesion Molecule-1 (VCAM-1) through  $\alpha 4\beta 1$  Integrin. *PLoS One*. 2015; 10: e0144436. <https://doi.org/10.1371/journal.pone.0144436>.
- [22] Kavanagh DPJ, Durant LE, Crosby HA, Lalor PF, Frampton J, Adams DH, *et al.* Haematopoietic stem cell recruitment to injured murine liver sinusoids depends on (alpha)4(beta)1 integrin/VCAM-1 interactions. *Gut*. 2010; 59: 79–87. <https://doi.org/10.1136/gut.2008.168054>.
- [23] Daley WP, Peters SB, Larsen M. Extracellular matrix dynamics in development and regenerative medicine. *Journal of Cell Science*. 2008; 121: 255–264. <https://doi.org/10.1242/jcs.006064>.
- [24] Imhof BA, Dunon D. Leukocyte migration and adhesion. *Advances in Immunology*. 1995; 58: 345–416. [https://doi.org/10.1016/s0065-2776\(08\)60623-9](https://doi.org/10.1016/s0065-2776(08)60623-9).
- [25] Di X, Gao X, Peng L, Ai J, Jin X, Qi S, *et al.* Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. *Signal Transduction and Targeted Therapy*. 2023; 8: 282. <https://doi.org/10.1038/s41392-023-01501-9>.
- [26] Ohgushi M, Minaguchi M, Sasai Y. Rho-Signaling-Directed YAP/TAZ Activity Underlies the Long-Term Survival and Expansion of Human Embryonic Stem Cells. *Cell Stem Cell*. 2015; 17: 448–461. <https://doi.org/10.1016/j.stem.2015.07.009>.
- [27] Beyer TA, Weiss A, Khomchuk Y, Huang K, Ogunjimi AA, Varelas X, *et al.* Switch enhancers interpret TGF- $\beta$  and Hippo signaling to control cell fate in human embryonic stem cells. *Cell Reports*. 2013; 5: 1611–1624. <https://doi.org/10.1016/j.celrep.2013.11.021>.
- [28] Katoh K. Integrin and Its Associated Proteins as a Mediator for Mechano-Signal Transduction. *Biomolecules*. 2025; 15: 166. <https://doi.org/10.3390/biom15020166>.
- [29] Kim IG, Gil CH, Seo J, Park SJ, Subbiah R, Jung TH, *et al.* Mechanotransduction of human pluripotent stem cells cultivated on tunable cell-derived extracellular matrix. *Biomaterials*. 2018; 150: 100–111. <https://doi.org/10.1016/j.biomaterials.2017.10.150>.

- 016.
- [30] Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. *Molecular and Cellular Biology*. 1994; 14: 1680–1688. <https://doi.org/10.1128/mcb.14.3.1680-1688.1994>.
- [31] Di Stefano P, Leal MPC, Tornillo G, Bisaro B, Repetto D, Pincini A, *et al.* The adaptor proteins p140CAP and p130CAS as molecular hubs in cell migration and invasion of cancer cells. *American Journal of Cancer Research*. 2011; 1: 663–673.
- [32] Chang YC, Su W, Cho EA, Zhang H, Huang Q, Philips MR, *et al.* Molecular basis for autoinhibition of RIAM regulated by FAK in integrin activation. *Proceedings of the National Academy of Sciences of the United States of America*. 2019; 116: 3524–3529. <https://doi.org/10.1073/pnas.1818880116>.
- [33] Downey-Biechler C, Craig DH, More SK, Basson MD. Inside-out signaling through FAK-integrin axis may regulate circulating cancer cell metastatic adhesion. *Proceedings of the National Academy of Sciences of the United States of America*. 2019; 116: 19795–19796. <https://doi.org/10.1073/pnas.1904767116>.
- [34] Bolós V, Gasent JM, López-Tarruella S, Grande E. The dual kinase complex FAK-Src as a promising therapeutic target in cancer. *OncoTargets and Therapy*. 2010; 3: 83–97. <https://doi.org/10.2147/ott.s6909>.
- [35] Ramazzotti G, Ratti S, Fiume R, Follo MY, Billi AM, Rusciano I, *et al.* Phosphoinositide 3 Kinase Signaling in Human Stem Cells from Reprogramming to Differentiation: A Tale in Cyttoplasmic and Nuclear Compartments. *International Journal of Molecular Sciences*. 2019; 20: 2026. <https://doi.org/10.3390/ijms20082026>.
- [36] Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, *et al.* A ROCK inhibitor permits survival of dissociated human embryonic stem cells. *Nature Biotechnology*. 2007; 25: 681–686. <https://doi.org/10.1038/nbt1310>.
- [37] Zaidel-Bar R, Milo R, Kam Z, Geiger B. A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions. *Journal of Cell Science*. 2007; 120: 137–148. <https://doi.org/10.1242/jcs.03314>.
- [38] Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, *et al.* Role of YAP/TAZ in mechanotransduction. *Nature*. 2011; 474: 179–183. <https://doi.org/10.1038/nature10137>.
- [39] Elbediwy A, Vincent-Mistiaen ZI, Spencer-Dene B, Stone RK, Boeing S, Weulek SK, *et al.* Integrin signalling regulates YAP and TAZ to control skin homeostasis. *Development* (Cambridge, England). 2016; 143: 1674–1687. <https://doi.org/10.1242/dev.133728>.
- [40] Schlaepfer DD, Mitra SK, Illic D. Control of motile and invasive cell phenotypes by focal adhesion kinase. *Biochimica et Biophysica Acta*. 2004; 1692: 77–102. <https://doi.org/10.1016/j.bbamcr.2004.04.008>.
- [41] Zhang X, Yalcin S, Lee DF, Yeh TYJ, Lee SM, Su J, *et al.* FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. *Nature Cell Biology*. 2011; 13: 1092–1099. <https://doi.org/10.1038/ncb2293>.
- [42] Yu X, Miyamoto S, Mekada E. Integrin alpha 2 beta 1-dependent EGF receptor activation at cell-cell contact sites. *Journal of Cell Science*. 2000; 113: 2139–2147. <https://doi.org/10.1242/jcs.113.12.2139>.
- [43] Lal S, Kersch C, Beeson KA, Wu YJ, Muldoon LL, Neuwest EA. Interactions between  $\alpha\beta$ -Integrin and HER2 and Their Role in the Invasive Phenotype of Breast Cancer Cells In Vitro and in Rat Brain. *PloS One*. 2015; 10: e0131842. <https://doi.org/10.1371/journal.pone.0131842>.
- [44] Frisch SM, Vuori K, Ruoslahti E, Chan-Hui PY. Control of adhesion-dependent cell survival by focal adhesion kinase. *The Journal of Cell Biology*. 1996; 134: 793–799. <https://doi.org/10.1083/jcb.134.3.793>.
- [45] Wang X, Lin G, Martins-Taylor K, Zeng H, Xu RH. Inhibition of caspase-mediated anoikis is critical for basic fibroblast growth factor-sustained culture of human pluripotent stem cells. *The Journal of Biological Chemistry*. 2009; 284: 34054–34064. <https://doi.org/10.1074/jbc.M109.052290>.
- [46] Gao L, Nath SC, Jiao X, Zhou R, Nishikawa S, Krawetz R, *et al.* Post-Passage rock inhibition induces cytoskeletal aberrations and apoptosis in Human embryonic stem cells. *Stem Cell Research*. 2019; 41: 101641. <https://doi.org/10.1016/j.scr.2019.101641>.
- [47] Chan AT, Karakas MF, Vakrou S, Afzal J, Rittenbach A, Lin X, *et al.* Hyaluronic acid-serum hydrogels rapidly restore metabolism of encapsulated stem cells and promote engraftment. *Biomaterials*. 2015; 73: 1–11. <https://doi.org/10.1016/j.biomaterials.2015.09.001>.
- [48] Tan Y, Wang L, Chen G, Liu W, Li Z, Wang Y, *et al.* Hyaluronate supports hESC-cardiomyocyte cell therapy for cardiac regeneration after acute myocardial infarction. *Cell Proliferation*. 2020; 53: e12942. <https://doi.org/10.1111/cpr.12942>.
- [49] Teo BKK, Wong ST, Lim CK, Kung TYS, Yap CH, Ramagopal Y, *et al.* Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase. *ACS Nano*. 2013; 7: 4785–4798. <https://doi.org/10.1021/nn304966z>.
- [50] Luo M, Guan JL. Focal adhesion kinase: a prominent determinant in breast cancer initiation, progression and metastasis. *Cancer Letters*. 2010; 289: 127–139. <https://doi.org/10.1016/j.canlet.2009.07.005>.
- [51] Lian X, Selekmann J, Bao X, Hsiao C, Zhu K, Palecek SP. A small molecule inhibitor of SRC family kinases promotes simple epithelial differentiation of human pluripotent stem cells. *PLoS One*. 2013; 8: e60016. <https://doi.org/10.1371/journal.pone.0060016>.
- [52] Cai X, Wang KC, Meng Z. Mechanoregulation of YAP and TAZ in Cellular Homeostasis and Disease Progression. *Frontiers in Cell and Developmental Biology*. 2021; 9: 673599. <https://doi.org/10.3389/fcell.2021.673599>.
- [53] Chetty S, Engquist EN, Mehanna E, Lui KO, Tsankov AM, Melton DA. A Src inhibitor regulates the cell cycle of human pluripotent stem cells and improves directed differentiation. *The Journal of Cell Biology*. 2015; 210: 1257–1268. <https://doi.org/10.1083/jcb.201502035>.
- [54] Zhang X, Simerly C, Hartnett C, Schatten G, Smithgall TE. Src-family tyrosine kinase activities are essential for differentiation of human embryonic stem cells. *Stem Cell Research*. 2014; 13: 379–389. <https://doi.org/10.1016/j.scr.2014.09.007>.
- [55] Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, *et al.* Embryonic stem cell lines derived from human blastocysts. *Science (New York, N.Y.)*. 1998; 282: 1145–1147. <https://doi.org/10.1126/science.282.5391.1145>.
- [56] Richards M, Fong CY, Chan WK, Wong PC, Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. *Nature Biotechnology*. 2002; 20: 933–936. <https://doi.org/10.1038/nbt726>.
- [57] Braam SR, Denning C, Matsa E, Young LE, Passier R, Mummery CL. Feeder-free culture of human embryonic stem cells in conditioned medium for efficient genetic modification. *Nature Protocols*. 2008; 3: 1435–1443. <https://doi.org/10.1038/nprot.2008.140>.
- [58] Miyazaki T, Futaki S, Suemori H, Taniguchi Y, Yamada M, Kawasaki M, *et al.* Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. *Nature Communications*. 2012; 3: 1236. <https://doi.org/10.1038/ncomms2231>.

- [59] Rowland TJ, Miller LM, Blaschke AJ, Doss EL, Bonham AJ, Hikita ST, *et al.* Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. *Stem Cells and Development*. 2010; 19: 1231–1240. <https://doi.org/10.1089/scd.2009.0328>.
- [60] Shen J, Zhu Y, Zhang S, Lyu S, Lyu C, Feng Z, *et al.* Vitronectin-activated  $\alpha v\beta 3$  and  $\alpha v\beta 5$  integrin signalling specifies haematopoietic fate in human pluripotent stem cells. *Cell Proliferation*. 2021; 54: e13012. <https://doi.org/10.1111/cpr.13012>.
- [61] Cameron K, Tan R, Schmidt-Heck W, Campos G, Lyall MJ, Wang Y, *et al.* Recombinant Laminins Drive the Differentiation and Self-Organization of hESC-Derived Hepatocytes. *Stem Cell Reports*. 2015; 5: 1250–1262. <https://doi.org/10.1016/j.stemcr.2015.10.016>.
- [62] Kanninen LK, Harjumäki R, Peltoniemi P, Bogacheva MS, Salmi T, Porola P, *et al.* Laminin-511 and laminin-521-based matrices for efficient hepatic specification of human pluripotent stem cells. *Biomaterials*. 2016; 103: 86–100. <https://doi.org/10.1016/j.biomaterials.2016.06.054>.
- [63] Schwarzbauer JE, DeSimone DW. Fibronectins, their fibrillogenesis, and in vivo functions. *Cold Spring Harbor Perspectives in Biology*. 2011; 3: a005041. <https://doi.org/10.1101/cshperspect.a005041>.
- [64] Li W, Ishihara K, Yokota T, Nakagawa T, Koyama N, Jin J, *et al.* Reduced alpha4beta1 integrin/VCAM-1 interactions lead to impaired pre-B cell repopulation in alpha 1,6-fucosyltransferase deficient mice. *Glycobiology*. 2008; 18: 114–124. <https://doi.org/10.1093/glycob/cwm107>.
- [65] Joo HJ, Kim H, Park SW, Cho HJ, Kim HS, Lim DS, *et al.* Angiopoietin-1 promotes endothelial differentiation from embryonic stem cells and induced pluripotent stem cells. *Blood*. 2011; 118: 2094–2104. <https://doi.org/10.1182/blood-2010-12-323907>.
- [66] Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K, *et al.* A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. *Scientific Reports*. 2014; 4: 3594. <https://doi.org/10.1038/srep03594>.
- [67] Prowse ABJ, Doran MR, Cooper-White JJ, Chong F, Munro TP, Fitzpatrick J, *et al.* Long term culture of human embryonic stem cells on recombinant vitronectin in ascorbate free media. *Biomaterials*. 2010; 31: 8281–8288. <https://doi.org/10.1016/j.biomaterials.2010.07.037>.
- [68] Takada K, Nakatani R, Moribe E, Yamazaki-Fujigaki S, Fujii M, Furuta M, *et al.* Efficient derivation and banking of clinical-grade human embryonic stem cell lines in accordance with Japanese regulations. *Regenerative Therapy*. 2022; 21: 553–559. <https://doi.org/10.1016/j.reth.2022.10.006>.
- [69] Domogatskaya A, Rodin S, Tryggvason K. Functional diversity of laminins. *Annual Review of Cell and Developmental Biology*. 2012; 28: 523–553. <https://doi.org/10.1146/annurev-cellbio-101011-155750>.
- [70] Hayashi Y, Furue MK. Biological Effects of Culture Substrates on Human Pluripotent Stem Cells. *Stem Cells International*. 2016; 2016: 5380560. <https://doi.org/10.1155/2016/5380560>.
- [71] Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, *et al.* Chemically defined conditions for human iPSC derivation and culture. *Nature Methods*. 2011; 8: 424–429. <https://doi.org/10.1038/nmeth.1593>.
- [72] Hey CAB, Saltókova KB, Bisgaard HC, Møller LB. Comparison of two different culture conditions for derivation of early hiPSC. *Cell Biology International*. 2018; 42: 1467–1473. <https://doi.org/10.1002/cbin.10966>.
- [73] Miyazaki T, Futaki S, Hasegawa K, Kawasaki M, Sanzen N, Hayashi M, *et al.* Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. *Biochemical and Biophysical Research Communications*. 2008; 375: 27–32. <https://doi.org/10.1016/j.bbrc.2008.07.111>.
- [74] Evseenko D, Schenke-Layland K, Dravid G, Zhu Y, Hao QL, Scholes J, *et al.* Identification of the critical extracellular matrix proteins that promote human embryonic stem cell assembly. *Stem Cells and Development*. 2009; 18: 919–928. <https://doi.org/10.1089/scd.2008.0293>.
- [75] Laperle A, Hsiao C, Lampe M, Mortier J, Saha K, Palecek SP, *et al.*  $\alpha$ -5 Laminin Synthesized by Human Pluripotent Stem Cells Promotes Self-Renewal. *Stem Cell Reports*. 2015; 5: 195–206. <https://doi.org/10.1016/j.stemcr.2015.06.009>.
- [76] Vuoristo S, Virtanen I, Takkunen M, Palgi J, Kikkawa Y, Rouselle P, *et al.* Laminin isoforms in human embryonic stem cells: synthesis, receptor usage and growth support. *Journal of Cellular and Molecular Medicine*. 2009; 13: 2622–2633. <https://doi.org/10.1111/j.1582-4934.2008.00643.x>.
- [77] Brizzi MF, Tarone G, Defilippi P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. *Current Opinion in Cell Biology*. 2012; 24: 645–651. <https://doi.org/10.1016/j.ceb.2012.07.001>.
- [78] Cooper AR, MacQueen HA. Subunits of laminin are differentially synthesized in mouse eggs and early embryos. *Developmental Biology*. 1983; 96: 467–471. [https://doi.org/10.1016/0012-1606\(83\)90183-5](https://doi.org/10.1016/0012-1606(83)90183-5).
- [79] Dziadek M, Timpl R. Expression of nidogen and laminin in basement membranes during mouse embryogenesis and in teratocarcinoma cells. *Developmental Biology*. 1985; 111: 372–382. [https://doi.org/10.1016/0012-1606\(85\)90491-9](https://doi.org/10.1016/0012-1606(85)90491-9).
- [80] Li S, Edgar D, Fässler R, Wadsworth W, Yurchenco PD. The role of laminin in embryonic cell polarization and tissue organization. *Developmental Cell*. 2003; 4: 613–624. [https://doi.org/10.1016/s1534-5807\(03\)00128-x](https://doi.org/10.1016/s1534-5807(03)00128-x).
- [81] Miner JH, Li C, Mudd JL, Go G, Sutherland AE. Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. *Development (Cambridge, England)*. 2004; 131: 2247–2256. <https://doi.org/10.1242/dev.01112>.
- [82] Pook M, Teino I, Kallas A, Maimets T, Ingerpuu S, Jaks V. Changes in Laminin Expression Pattern during Early Differentiation of Human Embryonic Stem Cells. *PloS One*. 2015; 10: e0138346. <https://doi.org/10.1371/journal.pone.0138346>.
- [83] Zhang J, Gregorich ZR, Tao R, Kim GC, Lalit PA, Carvalho JL, *et al.* Cardiac differentiation of human pluripotent stem cells using defined extracellular matrix proteins reveals essential role of fibronectin. *eLife*. 2022; 11: e69028. <https://doi.org/10.7554/eLife.69028>.
- [84] Cheng P, Andersen P, Hassel D, Kaynak BL, Limphong P, Juergensen L, *et al.* Fibronectin mediates mesendodermal cell fate decisions. *Development (Cambridge, England)*. 2013; 140: 2587–2596. <https://doi.org/10.1242/dev.089052>.
- [85] Barreto-Gamarra C, Domenech M. Integrin stimulation by collagen I at the progenitor stage accelerates maturation of human iPSC-derived cardiomyocytes. *Journal of Molecular and Cellular Cardiology*. 2025; 201: 70–86. <https://doi.org/10.1016/j.jmcc.2025.02.009>.
- [86] Neiman G, Scarafia MA, La Greca A, Santín Velazque NL, Garate X, Waisman A, *et al.* Integrin alpha-5 subunit is critical for the early stages of human pluripotent stem cell cardiac differentiation. *Scientific Reports*. 2019; 9: 18077. <https://doi.org/10.1038/s41598-019-54352-2>.
- [87] Hall ML, Givens S, Santosh N, Iacovino M, Kyba M, Ogle BM. Laminin 411 mediates endothelial specification via multiple signaling axes that converge on  $\beta$ -catenin. *Stem Cell Reports*. 2022; 17: 569–583. <https://doi.org/10.1016/j.stemcr.2022.01.005>.
- [88] Hall ML, Lin WH, Ogle BM. Optimizing extracellular matrix for endothelial differentiation using a design of experiments ap-

- proach. *Scientific Reports*. 2025; 15: 24479. <https://doi.org/10.1038/s41598-025-09256-9>.
- [89] Li R, Luo M, Ren M, Chen N, Xia J, Deng X, *et al.* Vitronectin regulation of vascular endothelial growth factor-mediated angiogenesis. *Journal of Vascular Research*. 2014; 51: 110–117. <https://doi.org/10.1159/000360085>.
- [90] Michaels YS, Edgar JM, Major MC, Castle EL, Zimmerman C, Yin T, *et al.* DLL4 and VCAM1 enhance the emergence of T cell-competent hematopoietic progenitors from human pluripotent stem cells. *Science Advances*. 2022; 8: eabn5522. <https://doi.org/10.1126/sciadv.abn5522>.
- [91] Yuzuriha A, Nakamura S, Sugimoto N, Kihara S, Nakagawa M, Yamamoto T, *et al.* Extracellular laminin regulates hematopoietic potential of pluripotent stem cells through integrin  $\beta$ 1-ILK- $\beta$ -catenin-JUN axis. *Stem Cell Research*. 2021; 53: 102287. <https://doi.org/10.1016/j.scr.2021.102287>.
- [92] Doi D, Samata B, Katsukawa M, Kikuchi T, Morizane A, Ono Y, *et al.* Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. *Stem Cell Reports*. 2014; 2: 337–350. <https://doi.org/10.1016/j.stemcr.2014.01.013>.
- [93] Hyysalo A, Ristola M, Mäkinen MEL, Häyrynen S, Nykter M, Narkilahti S. Laminin  $\alpha$ 5 substrates promote survival, network formation and functional development of human pluripotent stem cell-derived neurons in vitro. *Stem Cell Research*. 2017; 24: 118–127. <https://doi.org/10.1016/j.scr.2017.09.002>.
- [94] Hyväriinen T, Hyysalo A, Kapucu FE, Aarnos L, Vinogradov A, Eglen SJ, *et al.* Functional characterization of human pluripotent stem cell-derived cortical networks differentiated on laminin-521 substrate: comparison to rat cortical cultures. *Scientific Reports*. 2019; 9: 17125. <https://doi.org/10.1038/s41598-019-53647-8>.
- [95] Åstrand C, Chottea V, Falk A, Hedhammar M. Assembly of FN-silk with laminin-521 to integrate hPSCs into a three-dimensional culture for neural differentiation. *Biomaterials Science*. 2020; 8: 2514–2525. <https://doi.org/10.1039/c9bm01624d>.
- [96] Nodari A, Zambroni D, Quattrini A, Court FA, D’Urso A, Recchia A, *et al.* Beta1 integrin activates Rac1 in Schwann cells to generate radial lamellae during axonal sorting and myelination. *The Journal of Cell Biology*. 2007; 177: 1063–1075. <https://doi.org/10.1083/jcb.200610014>.
- [97] Shibata S, Hayashi R, Kudo Y, Okubo T, Imaizumi T, Katayama T, *et al.* Cell-Type-Specific Adhesiveness and Proliferation Propensity on Laminin Isoforms Enable Purification of iPSC-Derived Corneal Epithelium. *Stem Cell Reports*. 2020; 14: 663–676. <https://doi.org/10.1016/j.stemcr.2020.02.008>.
- [98] Zhou J, Chen F, Xiao J, Li C, Liu Y, Ding Y, *et al.* Enhanced functional properties of corneal epithelial cells by coculture with embryonic stem cells via the integrin  $\beta$ 1-FAK-PI3K/Akt pathway. *The International Journal of Biochemistry & Cell Biology*. 2011; 43: 1168–1177. <https://doi.org/10.1016/j.biocel.2011.04.010>.
- [99] Brafman DA, Phung C, Kumar N, Willert K. Regulation of endodermal differentiation of human embryonic stem cells through integrin-ECM interactions. *Cell Death and Differentiation*. 2013; 20: 369–381. <https://doi.org/10.1038/cdd.2012.138>.
- [100] Taylor-Weiner H, Ravi N, Engler AJ. Traction forces mediated by integrin signaling are necessary for definitive endoderm specification. *Journal of Cell Science*. 2015; 128: 1961–1968. <https://doi.org/10.1242/jcs.166157>.
- [101] Wong JCY, Gao SY, Lees JG, Best MB, Wang R, Tuch BE. Definitive endoderm derived from human embryonic stem cells highly express the integrin receptors alphaV and beta5. *Cell Adhesion & Migration*. 2010; 4: 39–45. <https://doi.org/10.4161/cam.4.1.10627>.
- [102] Mulero-Russe A, Mora-Boza A, Marquez EN, Ziegelski M, Helmuth M, García AJ. Synthetic hydrogel substrate for human induced pluripotent stem cell definitive endoderm differentiation. *Biomaterials*. 2025; 315: 122920. <https://doi.org/10.1016/j.biomaterials.2024.122920>.
- [103] Shiraki N, Yamazoe T, Qin Z, Ohgomori K, Mochitate K, Kume K, *et al.* Efficient differentiation of embryonic stem cells into hepatic cells in vitro using a feeder-free basement membrane substratum. *PloS One*. 2011; 6: e24228. <https://doi.org/10.1371/journal.pone.0024228>.
- [104] Takayama K, Mitani S, Nagamoto Y, Sakurai F, Tachibana M, Taniguchi Y, *et al.* Laminin 411 and 511 promote the cholangiocyte differentiation of human induced pluripotent stem cells. *Biochemical and Biophysical Research Communications*. 2016; 474: 91–96. <https://doi.org/10.1016/j.bbrc.2016.04.075>.
- [105] Blaschuk KL, Frost EE, French-Constant C. The regulation of proliferation and differentiation in oligodendrocyte progenitor cells by alphaV integrins. *Development* (Cambridge, England). 2000; 127: 1961–1969. <https://doi.org/10.1242/dev.127.9.1961>.
- [106] Gil JE, Woo DH, Shim JH, Kim SE, You HJ, Park SH, *et al.* Vitronectin promotes oligodendrocyte differentiation during neurogenesis of human embryonic stem cells. *FEBS Letters*. 2009; 583: 561–567. <https://doi.org/10.1016/j.febslet.2008.12.061>.
- [107] Ong LP, Bargehr J, Knight-Schrijver VR, Lee J, Colzani M, Bayraktar S, *et al.* Epicardially secreted fibronectin drives cardiomyocyte maturation in 3D-engineered heart tissues. *Stem Cell Reports*. 2023; 18: 936–951. <https://doi.org/10.1016/j.stemcr.2023.03.002>.
- [108] Kim H, Yoon CS, Kim H, Rah B. Expression of extracellular matrix components fibronectin and laminin in the human fetal heart. *Cell Structure and Function*. 1999; 24: 19–26. <https://doi.org/10.1247/csf.24.19>.
- [109] Yap L, Wang JW, Moreno-Moral A, Chong LY, Sun Y, Harmston N, *et al.* In Vivo Generation of Post-infarct Human Cardiac Muscle by Laminin-Promoted Cardiovascular Progenitors. *Cell Reports*. 2019; 26: 3231–3245.e9. <https://doi.org/10.1016/j.celrep.2019.02.083>.
- [110] Sung TC, Liu CH, Huang WL, Lee YC, Kumar SS, Chang Y, *et al.* Efficient differentiation of human ES and iPS cells into cardiomyocytes on biomaterials under xeno-free conditions. *Biomaterials Science*. 2019; 7: 5467–5481. <https://doi.org/10.1039/c9bm00817a>.
- [111] Lee J, Matsukawa H, Sawada K, Kaneko R, Ishino F. In vitro generation of human embryonic stem cell-derived heart organoids possessing physiological ion currents. *bioRxiv*. 2022. <https://doi.org/10.1101/2022.05.15.491904>. (preprint)
- [112] Nisato RE, Tille JC, Jonczyk A, Goodman SL, Pepper MS. alphaV beta 3 and alphaV beta 5 integrin antagonists inhibit angiogenesis in vitro. *Angiogenesis*. 2003; 6: 105–119. <https://doi.org/10.1023/B:AGEN.0000011801.98187.f2>.
- [113] Wang L, Zhang X, Pang N, Xiao L, Li Y, Chen N, *et al.* Glycation of vitronectin inhibits VEGF-induced angiogenesis by uncoupling VEGF receptor-2- $\alpha$ V $\beta$ 3 integrin cross-talk. *Cell Death & Disease*. 2015; 6: e1796. <https://doi.org/10.1038/cddis.2015.174>.
- [114] Kim S, Harris M, Varner JA. Regulation of integrin alpha V $\beta$ 3-mediated endothelial cell migration and angiogenesis by integrin alpha5beta1 and protein kinase A. *The Journal of Biological Chemistry*. 2000; 275: 33920–33928. <https://doi.org/10.1074/jbc.M003668200>.
- [115] Soldi R, Mitola S, Strasly M, Defilippi P, Tarone G, Bussolino F. Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. *The EMBO Journal*. 1999; 18: 882–892. <https://doi.org/10.1093/emboj/18.4.882>.
- [116] Byzova TV, Goldman CK, Pampori N, Thomas KA, Bett A, Shattil SJ, *et al.* A mechanism for modulation of cellular re-

- sponses to VEGF: activation of the integrins. *Molecular Cell*. 2000; 6: 851–860.
- [117] Khadilkar RJ, Ho KYL, Venkatesh B, Tanentzapf G. Integrins Modulate Extracellular Matrix Organization to Control Cell Signaling during Hematopoiesis. *Current Biology*: CB. 2020; 30: 3316–3329.e5. <https://doi.org/10.1016/j.cub.2020.06.027>.
- [118] Petty JM, Lenox CC, Weiss DJ, Poynter ME, Suratt BT. Crosstalk between CXCR4/stromal derived factor-1 and VLA-4/VCAM-1 pathways regulates neutrophil retention in the bone marrow. *Journal of Immunology* (Baltimore, Md.: 1950). 2009; 182: 604–612. <https://doi.org/10.4049/jimmunol.182.1.604>.
- [119] Potocnik AJ, Brakebusch C, Fässler R. Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow. *Immunity*. 2000; 12: 653–663. [https://doi.org/10.1016/s1074-7613\(00\)80216-2](https://doi.org/10.1016/s1074-7613(00)80216-2).
- [120] Zhang D, Yang S, Toledo EM, Gyllborg D, Saltó C, Carlos Villaescusa J, *et al.* Niche-derived laminin-511 promotes midbrain dopaminergic neuron survival and differentiation through YAP. *Science Signaling*. 2017; 10: eaal4165. <https://doi.org/10.1126/scisignal.aal4165>.
- [121] Emsley JG, Hagg T. alpha6beta1 integrin directs migration of neuronal precursors in adult mouse forebrain. *Experimental Neurology*. 2003; 183: 273–285. [https://doi.org/10.1016/s0014-4886\(03\)00209-7](https://doi.org/10.1016/s0014-4886(03)00209-7).
- [122] Feltri ML, Graus Porta D, Previtali SC, Nodari A, Migliavacca B, Cassetti A, *et al.* Conditional disruption of beta 1 integrin in Schwann cells impedes interactions with axons. *The Journal of Cell Biology*. 2002; 156: 199–209. <https://doi.org/10.1083/jcb.200109021>.
- [123] McKee KK, Yang DH, Patel R, Chen ZL, Strickland S, Takagi J, *et al.* Schwann cell myelination requires integration of laminin activities. *Journal of Cell Science*. 2012; 125: 4609–4619. <https://doi.org/10.1242/jcs.107995>.
- [124] Majd H, Amin S, Ghazizadeh Z, Cesulis A, Arroyo E, Lankford K, *et al.* Deriving Schwann cells from hPSCs enables disease modeling and drug discovery for diabetic peripheral neuropathy. *Cell Stem Cell*. 2023; 30: 632–647.e10. <https://doi.org/10.1016/j.stem.2023.04.006>.
- [125] Manohar A, Shome SG, Lamar J, Stirling L, Iyer V, Pumiglia K, *et al.* Alpha 3 beta 1 integrin promotes keratinocyte cell survival through activation of a MEK/ERK signaling pathway. *Journal of Cell Science*. 2004; 117: 4043–4054. <https://doi.org/10.1242/jcs.01277>.
- [126] Gonzales M, Haan K, Baker SE, Fitchmun M, Todorov I, Weitzman S, *et al.* A cell signal pathway involving laminin-5, alpha3beta1 integrin, and mitogen-activated protein kinase can regulate epithelial cell proliferation. *Molecular Biology of the Cell*. 1999; 10: 259–270. <https://doi.org/10.1091/mbc.10.2.259>.
- [127] Avizienyte E, Frame MC. Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. *Current Opinion in Cell Biology*. 2005; 17: 542–547. <https://doi.org/10.1016/j.ceb.2005.08.007>.
- [128] Sander EE, Collard JG. Rho-like GTPases: their role in epithelial cell-cell adhesion and invasion. *European Journal of Cancer* (Oxford, England: 1990). 1999; 35: 1905–1911. [https://doi.org/10.1016/s0959-8049\(99\)00293-2](https://doi.org/10.1016/s0959-8049(99)00293-2).
- [129] Lewis SL, Tam PPL. Definitive endoderm of the mouse embryo: formation, cell fates, and morphogenetic function. *Developmental Dynamics: an Official Publication of the American Association of Anatomists*. 2006; 235: 2315–2329. <https://doi.org/10.1002/dvdy.20846>.
- [130] Taylor-Weiner H, Schwarzbauer JE, Engler AJ. Defined extracellular matrix components are necessary for definitive endoderm induction. *Stem Cells* (Dayton, Ohio). 2013; 31: 2084–2094. <https://doi.org/10.1002/stem.1453>.
- [131] Wang H, Luo X, Leighton J. Extracellular Matrix and Integrins in Embryonic Stem Cell Differentiation. *Biochemistry Insights*. 2015; 8: 15–21. <https://doi.org/10.4137/BCL.S30377>.
- [132] Gkretsi V, Bowen WC, Yang Y, Wu C, Michalopoulos GK. Integrin-linked kinase is involved in matrix-induced hepatocyte differentiation. *Biochemical and Biophysical Research Communications*. 2007; 353: 638–643. <https://doi.org/10.1016/j.bbrc.2006.12.091>.
- [133] Ishii A, Furusho M, Macklin W, Bansal R. Independent and cooperative roles of the Mek/ERK1/2-MAPK and PI3K/Akt/mTOR pathways during developmental myelination and in adulthood. *Glia*. 2019; 67: 1277–1295. <https://doi.org/10.1002/glia.23602>.
- [134] Younes-Rapozo V, Felgueiras LOR, Viana NL, Fierro IM, Barja-Fidalgo C, Manhães AC, *et al.* A role for the MAPK/ERK pathway in oligodendroglial differentiation in vitro: stage specific effects on cell branching. *International Journal of Developmental Neuroscience: the Official Journal of the International Society for Developmental Neuroscience*. 2009; 27: 757–768. <https://doi.org/10.1016/j.ijdevneu.2009.08.014>.
- [135] Ishii A, Furusho M, Bansal R. Sustained activation of ERK1/2 MAPK in oligodendrocytes and schwann cells enhances myelin growth and stimulates oligodendrocyte progenitor expansion. *The Journal of Neuroscience: the Official Journal of the Society for Neuroscience*. 2013; 33: 175–186. <https://doi.org/10.1523/JNEUROSCI.1440-12.2013>.
- [136] Guardiola-Diaz HM, Ishii A, Bansal R. Erk1/2 MAPK and mTOR signaling sequentially regulates progression through distinct stages of oligodendrocyte differentiation. *Glia*. 2012; 60: 476–486. <https://doi.org/10.1002/glia.22281>.
- [137] O'Meara RW, Michalski JP, Kothary R. Integrin signaling in oligodendrocytes and its importance in CNS myelination. *Journal of Signal Transduction*. 2011; 2011: 354091. <https://doi.org/10.1155/2011/354091>.
- [138] Yamada M, Iwase M, Sasaki B, Suzuki N. The molecular regulation of oligodendrocyte development and CNS myelination by ECM proteins. *Frontiers in Cell and Developmental Biology*. 2022; 10: 952135. <https://doi.org/10.3389/fcell.2022.952135>.
- [139] Buttery PC, ffrench-Constant C. Laminin-2/integrin interactions enhance myelin membrane formation by oligodendrocytes. *Molecular and Cellular Neurosciences*. 1999; 14: 199–212. <https://doi.org/10.1006/mcne.1999.0781>.
- [140] Suarez-Martinez E, Suazo-Sanchez I, Celis-Romero M, Carnero A. 3D and organoid culture in research: physiology, hereditary genetic diseases and cancer. *Cell & Bioscience*. 2022; 12: 39. <https://doi.org/10.1186/s13578-022-00775-w>.
- [141] Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang HY, Speicher DW, *et al.* Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. *Journal of Cell Science*. 2008; 121: 3794–3802. <https://doi.org/10.1242/jcs.029678>.
- [142] Ahmed RE, Anzai T, Chanthra N, Uosaki H. A Brief Review of Current Maturation Methods for Human Induced Pluripotent Stem Cells-Derived Cardiomyocytes. *Frontiers in Cell and Developmental Biology*. 2020; 8: 178. <https://doi.org/10.3389/fcell.1.2020.00178>.
- [143] Patel L, Worch JC, Dove AP, Gehmlich K. The Utilisation of Hydrogels for iPSC-Cardiomyocyte Research. *International Journal of Molecular Sciences*. 2023; 24: 9995. <https://doi.org/10.3390/ijms24129995>.
- [144] Lee CT, Bendriem RM, Wu WW, Shen RF. 3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders. *Journal of Biomedical Science*. 2017; 24: 59. <https://doi.org/10.1186/s12929-017-0362-8>.
- [145] Jin ZB, Gao ML, Deng WL, Wu KC, Sugita S, Mandai M, *et al.* Stemming retinal regeneration with pluripotent stem cells.

- Progress in Retinal and Eye Research. 2019; 69: 38–56. <https://doi.org/10.1186/s13287-018-0958-2>.
- [146] Low JH, Li P, Chew EGY, Zhou B, Suzuki K, Zhang T, *et al.* Generation of Human PSC-Derived Kidney Organoids with Patterned Nephrin Segments and a De Novo Vascular Network. *Cell Stem Cell.* 2019; 25: 373–387.e9. <https://doi.org/10.1016/j.stem.2019.06.009>.
- [147] Leibel SL, McVicar RN, Winquist AM, Niles WD, Snyder EY. Generation of Complete Multi-Cell Type Lung Organoids From Human Embryonic and Patient-Specific Induced Pluripotent Stem Cells for Infectious Disease Modeling and Therapeutics Validation. *Current Protocols in Stem Cell Biology.* 2020; 54: e118. <https://doi.org/10.1002/cpsc.118>.
- [148] Broda TR, McCracken KW, Wells JM. Generation of human antral and fundic gastric organoids from pluripotent stem cells. *Nature Protocols.* 2019; 14: 28–50. <https://doi.org/10.1038/s41596-018-0080-z>.
- [149] Holloway EM, Wu JH, Czerwinski M, Sweet CW, Wu A, Tsai YH, *et al.* Differentiation of Human Intestinal Organoids with Endogenous Vascular Endothelial Cells. *Developmental Cell.* 2020; 54: 516–528.e7. <https://doi.org/10.1016/j.devcel.2020.07.023>.
- [150] Koehler KR, Nie J, Longworth-Mills E, Liu XP, Lee J, Holt JR, *et al.* Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells. *Nature Biotechnology.* 2017; 35: 583–589. <https://doi.org/10.1038/nbt.3840>.
- [151] Kim Y, Park N, Rim YA, Nam Y, Jung H, Lee K, *et al.* Establishment of a complex skin structure via layered co-culture of keratinocytes and fibroblasts derived from induced pluripotent stem cells. *Stem Cell Research & Therapy.* 2018; 9: 217.
- [152] Kurmann AA, Serra M, Hawkins F, Rankin SA, Mori M, Astapova I, *et al.* Regeneration of Thyroid Function by Transplantation of Differentiated Pluripotent Stem Cells. *Cell Stem Cell.* 2015; 17: 527–542. <https://doi.org/10.1016/j.stem.2015.09.004>.
- [153] Ramli MNB, Lim YS, Koe CT, Demircioglu D, Tng W, Gonzales KAU, *et al.* Human Pluripotent Stem Cell-Derived Organoids as Models of Liver Disease. *Gastroenterology.* 2020; 159: 1471–1486.e12. <https://doi.org/10.1053/j.gastro.2020.06.010>.
- [154] Chow A, Stuckey DJ, Kidher E, Rocco M, Jabbour RJ, Mansfield CA, *et al.* Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Encapsulating Hydrogels Improve Rat Heart Function Post Myocardial Infarction. *Stem Cell Reports.* 2017; 9: 1415–1422. <https://doi.org/10.1016/j.stemcr.2017.09.003>.
- [155] Neves MI, Moroni L, Barrias CC. Modulating Alginate Hydrogels for Improved Biological Performance as Cellular 3D Microenvironments. *Frontiers in Bioengineering and Biotechnology.* 2020; 8: 665. <https://doi.org/10.3389/fbioe.2020.00665>.
- [156] Zanotelli MR, Ardalani H, Zhang J, Hou Z, Nguyen EH, Swanson S, *et al.* Stable engineered vascular networks from human induced pluripotent stem cell-derived endothelial cells cultured in synthetic hydrogels. *Acta Biomaterialia.* 2016; 35: 32–41. <https://doi.org/10.1016/j.actbio.2016.03.001>.
- [157] Cance WG, Golubovskaya VM. Focal adhesion kinase versus p53: apoptosis or survival? *Science Signaling.* 2008; 1: pe22. <https://doi.org/10.1126/stke.120pe22>.