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Abstract

People with autism spectrum disorders (ASD) show a relative suppression of the melatonergic pathway across CNS and systemic cells.
The differential regulation of the mitochondrial melatonergic pathwaymay therefore be an important core aspect of ASD pathophysiology
in all its manifestations. Recent data across diverse human cells show that the melatonergic pathway is powerfully regulated by inter-
actions between signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB), with the composition of the NF-κB dimer determining whether the melatonergic pathway is upregulated or downregulated.
Diverse aspects of ASD pathoetiology and pathophysiology, including the aryl hydrocarbon receptor (AhR), microRNAs, suboptimal
mitochondrial function, pro-inflammatory cytokines, glucocorticoid receptor, vagal nerve, and oxytocin, are all intimately linked to
pineal and/or local melatonin regulation, indicating the relevance of the mitochondrial melatonergic pathway regulation in the pathoeti-
ology and pathophysiology of ASD. This article reviews and integrates diverse aspects of ASD pathoetiology and pathophysiology, with
implications for future research and treatment.
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1. Introduction

Autism spectrum disorder (ASD) is a neurodevelop-
mental disorder currently characterized by alterations in so-
cial interaction and communication, concurrent to restricted
interests and verbal or behavioral stereotypies. The pres-
ence of raised circulating serotonin levels has long been ap-
preciated to be evident inASD [1] inmany but not all people
classed on this spectrum [2]. Although this may arise from
increased antibodies against monoamine oxidase A (MAO-
A) [3], a number of investigators have proposed that raised
circulatory serotonin levels may occur due to a decreased
capacity to use serotonin as a necessary precursor to initiate
the melatonergic pathway, for example from a decrease in
chaperone protein, 14-3-3, stabilization of the first melaton-
ergic pathway enzyme, Aralkylamine N-acetyltransferase
(AANAT) [4]. Decreased 14-3-3 availability can arise from
increased microRNAs (miRNAs) such as miR-451 [5] and
miR-375 [6]. This is supported by data showing decreased
circadian/pineal [7] and systemic melatonergic pathway in-
duction in ASD [5] as well as the clinical utility of night-
timemelatonin treatment in management of sleep and wider
ASD symptomatology [8]. Recent work indicates that sup-
pressed pineal and local melatonergic pathway induction
may be a core aspect of ASD, as with many other diverse
medical conditions [9,10]. Suppressed mitochondrial mela-
tonin may therefore be intimately linked data showing sub-

optimal mitochondrial function in ASD [11,12] with wider
downstream developmental and ongoing consequences.

Numerous factors and processes are associated with
ASD pathoetiology and pathophysiology, including in-
creased phosphorylation and activation of signal transducer
and activator of transcription 3 (STAT3) [13–15] and nu-
clear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) [16–18] as well as related increases in interleukin
(IL)-6 [19–21]. Recent work indicates that the IL-6/Janus
Kinase (JAK)/STAT3 pathway interacts with the specific
dimer composition of NF-κB in the nucleus to either up-
regulate or down-regulate the mitochondrial melatonergic
pathway across diverse cell types, with NF-κB dimer com-
ponent effects specific to particular cells [22]. These au-
thors showed that the anti-inflammatory effect of IL-10 in
pineal, bone marrow, spleen and peritoneal cells is deter-
mined by the interactions of STAT3 and NF-κB dimer com-
position in the regulation of the melatonergic pathway [22].
As the suppression of themelatonergic pathway across CNS
and systemic cells has long been recognized as an aspect
of ASD pathophysiology [5,23,24] the regulation of STAT3
interactions with NF-κB dimer composition in the modula-
tion of the melatonergic pathway is likely to constitute core
aspects of ASD pathoetiology and pathophysiology, includ-
ing via alterations in mitochondrial function that are evident
in ASD [25].
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Alterations in the circadian rhythm [26–28] and corti-
sol activation of the glucocorticoid receptor (GR)-α in the
course of circadian regulation and hypothalamic-pituitary-
adrenal (HPA) axis activation during stress have long been
linked to ASD pathophysiology [29–31]. The suppression
of pineal melatonin [7], and systemic melatonin [5] as well
as gut microbiome-derived short-chain fatty acid, butyrate
[32] in ASD therefore disinhibits the GR-α, thereby mod-
ulating the circadian rhythm and stress response effects of
cortisol. This has relevance across a range of diverse medi-
cal conditions linked to decreased pineal melatonin and in-
creased gut dysbiosis, including Alzheimer’s disease [33],
cancer [34], and diabetes associated conditions, including
ASD [35] as well as for ASD pathoetiology driven by ges-
tational diabetes [36]. Circadian and stress/cortisol dys-
regulation arises from a decrease in both pineal melatonin
and gut derived butyrate. Both melatonin and butyrate in-
hibit GR-α nuclear translocation from the cytoplasm to the
nucleus [37,38], leading to a dysregulated circadian and
stress linked HPA axis activation in ASD pathoetiology and
pathophysiology [39,40]. As melatonin can inhibit STAT3
and NF-κB activation, the suppression of pineal melatonin
in ASD contributes to alterations in STAT3 interactions
with NF-κB dimer composition, thereby altering the modu-
lation of the systemic melatonergic pathway in ASD. As lo-
cal melatonin upregulation is a key aspect of the resolution
of local inflammation, including asmediated by vagal nerve
activation [41], the suppression of the local melatonergic
pathway in ASD has significant implications for attaining
resolution of inflammation systemically. Decreased vagal
nerve activation is common in ASD [42], which may there-
fore be confounded by a decreased capacity to induce lo-
cal melatonin in ASD across body organs/tissues [5]. Simi-
larly, the suppression of pineal melatonin increases gut dys-
biosis and gut permeability [43], which are typically associ-
ated with decreased gut microbiome-derived butyrate, link-
ing the classical gut associated changes in ASD with alter-
ations in circadian (pineal melatonin) and systemic (vagal)
processes associated with inflammation resolution.

This article reviews data on circadian and systemic
changes in the pathoetiology and pathophysiology of ASD.
It is proposed that alterations in circadian and systemic pro-
cesses are strongly determined by variations in the regula-
tion of the local mitochondrial melatonergic pathway. The
mitochondrial melatonergic pathway is regulated by alter-
ations in the canonical and non-canonical STAT3 interac-
tions with NF-κB dimer composition [22]. This has preven-
tion, treatment and future research implications including
by integrating data showing increased hyperglycemia in-
ducingmethylglyoxal and advanced glycation end-products
in ASD pathophysiology [44], thereby providing a context
for the association of diabetes/hyperglycemia with ASD
[35].

The next two sections briefly review the alterations in
circadian and local melatonin regulation. The first section

highlights the interactions of pineal melatonin and corti-
sol in the course of night-time dampening and resetting in
preparation for the coming day.

2. Night-Time Dampening and Resetting
Altered night-time dampening and resetting may be an

aspect of the pathoetiology and pathophysiology of an array
of diverse medical conditions, including Alzheimer’s dis-
ease [33] and cancer [45,46]. Changes in night-time mela-
tonin and cortisol interactions may also be core aspects of
conditions driving accelerated aging, such as type 2 dia-
betes mellitus (T2DM) [47]. T2DM is more common in
ASD and is proposed to contribute to ASD pathophysiol-
ogy [48]. The overlaps of ASD and T2DM may therefore
arise from suppressed pineal melatonin in ASD [49] and in
T2DM [50]. Suppressed pineal melatonin may arise from a
number of factors and processes that act to increase STAT3
and thereby attenuate AANAT enzymatic activity that ini-
tiates the melatonergic pathway [49,51]. Approximately
65% of people with ASD, vs controls, have less than 50%
of pineal melatonin levels [52], highlighting the importance
of incorporating pineal melatonin in ASD pathophysiology.
The role of the melatonergic pathway in the pathophysio-
logical overlaps of ASD and T2DM is highlighted by data
showing melatonin and melatonin receptor levels and allele
variants to modulate T2DM [50]. Consequently, any sup-
pression of pineal and/or local melatonin in ASD [5] would
be expected to increase T2DM risk/symptomatology, with
T2DM then contributing to the circadian and systemic un-
derpinnings of ASD via the attenuation of the capacity of
pineal and systemic cells to induce the melatonergic path-
way. Night-time changes in pineal melatonin and cortisol
in ASD, T2DM and aging are shown in Fig. 1 (Ref. [22,53–
57]).

Night-Time Melatonin and Cortisol Modulation of
Oxytocin and Vagal Nerve

The loss of pineal and local melatonin is typically
modelled as a loss of melatonin’s antioxidant and anti-
inflammatory capacity. However, pineal melatonin can act
on a number of systemic processes and body systems to in-
fluence processes of dampening and resolution of inflam-
mation. For example, melatonin directly, and via oxytocin
upregulation [58–60], can activate the vagal nerve, which
dampens inflammatory activity across different organs and
tissues via the release of acetylcholine (ACh) that activates
a number of ACh receptors, especially the alpha 7 nico-
tinic acetylcholine receptor (α7nAChR), to suppress im-
mune driven inflammation. This seems mediated via spe-
cialized proresolving mediators (SPMs) upregulation [61],
which changes the NF-κB dimer composition allowing dif-
ferent NF-κB dimer composition to interact with nuclear
pSTAT3 to upregulate (or down regulate) local melatonin
production [22,62]. Pineal melatonin also interacts with
this set of processes by increasing α7nAChR levels at night
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Fig. 1. Melatonin and cortisol circadian variations in ASD, T2DM and over age. Pineal melatonin dramatically decreases over
aging as indicated by ‘elderly’ vs ‘youth’ comparison. ASD, including as influenced by increased T2DM, suppresses pineal melatonin
levels, thereby enhancing the likelihood of accelerated aging driven changes. Pineal melatonin suppression in ASD may be mediated
by increased pSTAT3 in pinealocytes thereby suppressing AANAT activation and consequent induction of the melatonergic pathway.
Pineal melatonin suppression in ASD can be driven by the same processes that suppress local melatonin production across body cells
and systems [22], namely the interactions of heightened levels and activation STAT3 and NF-κB, which are determined by the specific
NF-κB dimer composition. Night-time and morning cortisol awakening response (CAR) cortisol levels tend to remain stable over aging,
although in some conditions cortisol levels may remain enhanced during the day following their morning CAR peak. Melatonin and
cortisol are highly interactive. Melatonin acts on the adrenal cortex to decrease cortisol release [53,54] whilst melatonin also suppresses
glucocorticoid receptor (GR)-α nuclear translocation from its complex in the cytoplasm [55]. Although other GR exist, including GR-
β, and GR locations can be plasma membrane, mitochondrial membrane and mitochondrial matrix [56], most data on cortisol effects
have been restricted to the cytoplasmic GR-α. The suppression of pineal melatonin in ASD, T2DM and over aging may therefore
disinhibit night-time cortisol influence across body cells and systems and therefore alter how cells, their microenvironments and body
systems are prepared for the coming day. Enhanced GR-α activation, as with raised pro-inflammatory cytokines, increases local cellular
cortisol production by 11 beta hydroxysteroid dehydrogenase 1 (11β-HSD1) [57], thereby increasing local cortisol’s influence on cell
function and intercellular, homeostatic interactions in the microenvironment in which all cells exist. Other factors pertinent to ASD
(and T2DM), including gut microbiome-derived butyrate and B cell lymphoma-2 (Bcl-2)-associated athanogene 1 (BAG-1), which also
inhibit GR-α nuclear translocation but are not included for clarity. Abbreviations: 11β-HSD1, 11 beta hydroxysteroid dehydrogenase;
BAG-1, bcl2-associated athanogene 1; CAR, cortisol awakening response; GR, glucocorticoid receptor; T2DM, type 2 diabetes mellitus;
ASD, autism spectrum disorders; STAT3, signal transducer and activator of transcription 3; AANAT, Aralkylamine N-acetyltransferase;
NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells.

[63], thereby upregulating the capacity of ACh and va-
gal nerve activation to dampen inflammatory activity. See
Fig. 2 (Ref. [5,63]).

In contrast to the effects of melatonin and oxytocin,
GR-α activation by cortisol has complex effects on the va-
gal nerve, including its suppression [64]. Heightened cor-
tisol effects in ASD are likely to be confounded by dis-
inhibited GR-α activation and consequent alterations in
the levels of GR-β and the GR localization site (cyto-

plasm, plasma membrane, mitochondrial membrane and
mitochondrial matrix), and 11β-HSD1 induction [65,66].
Consequently, cortisol may have heightened and differen-
tial effects in the absence of raised cortisol levels per se that
will be importantly determined by suppressed pineal and/or
local melatonin production. This also applies to the interac-
tions of cortisol with oxytocin, with cortisol having a rapid
negative feedback on oxytocin induction of adrenocorti-
cotropic hormone (ACTH) and the HPA axis [67], whilst
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Fig. 2. Pineal melatonin, including via oxytocin, regulates the vagal nerve. Pineal melatonin directly and via oxytocin induction can
activate the vagal nerve to release acetylcholine (ACh) on to the α7nAChR, which induces specialized proresolving mediators (SPMs).
As pineal melatonin increases the α7nAChR [63], this may be another route whereby suppressed pineal melatonin modulates wider
processes of dampening and resetting, including by the vagal nerve. SPMs can alter the NF-κB dimer composition by switching from
a pro-inflammatory dimer composition (typically p65/p50) to a resolution inducing NF-κB composition (typically c-Rel/p50) via the
upregulation of the local melatonergic pathway. The suppressed vagal activity and decreased oxytocin in ASD may therefore be inti-
mately linked to alterations in the circadian rhythm and the attenuated capacity to upregulate the local melatonergic pathway in any given
organ/tissue [5]. The suppression of pineal and local melatonin production may therefore be core aspects of ASD pathophysiology, in-
cluding from decreased pineal melatonin induction of hypothalamic paraventricular nucleus (PVN) oxytocin. Abbreviations: α7nAChR,
alpha 7 nicotinic acetylcholine receptor; Ach, acetylcholine; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; PVN,
paraventricular nucleus; SPMs, specialized pro-resolving mediators; STAT3, signal transducer and activator of transcription 3.

electroacupuncture suppresses enhanced HPA axis activity
via oxytocin upregulation [68]. The suppression of pineal
melatonin and melatonin’s induction of oxytocin is there-
fore a significant contributor to alterations in circadian and
stress induced HPA axis activation and regulation. Early
life stressors epigenetically regulate the methylation of the
GR and oxytocin receptors to alter the nature of social inter-
actions, as shown in preclinical models [69]. The capacity
of pineal melatonin to upregulate oxytocin as well as sup-
press GR-α nuclear translocation and adrenal cortex corti-
sol production would indicate that suppressed pineal (and
possibly local) melatonin in ASD will modulate the inter-
actions of the HPA axis with oxytocin and therefore vagal
nerve activation, and that this will interact with early stress
induced epigenetic changes in the GR and oxytocin recep-
tors.

The amygdala [6,70], hippocampus [71] and ven-
tral tegmental area (VTA)/nucleus accumbens (N.Acc) [72]
show alterations in ASD linked to affect, cognition and
motivation, respectively. Cortisol significantly modulates
these three sites and their associated functions, exemplified
by cortisol activation of the GR-α in the central amygdala
(CeA), which increases local corticotropin releasing hor-
mone (CRH) that upregulates the κ-opioid receptor and its
ligand, dynorphin, in the basolateral amygdala (BLA), lead-
ing to feelings of dysphoria, as shown in preclinical mod-
els [73]. This change in affective state can be prevented
by PVN oxytocin projections to CeA astrocytes that sup-
press CRH induction by cortisol at the CeA GR-α [74].
Such data indicate that the suppression of pineal and local
melatonin induction of oxytocin may allow cortisol/stress
to induce a dysregulated affective state (dysphoria) that is
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Fig. 3. Melatonin, oxytocin and vagal nerve modulate cognition, affect and motivation. Pineal and local melatonin may increase
oxytocin activation of the vagal nerve, with vagal ACh driving the α7nAChR/SPMs/NF-κB dimers pathway (purple shading) whilst also
coordinating the effects of cortisol by inhibiting GR-α induced CRH in the central amygdala (CeA) thereby suppressing dynorphin and κ-
opioid receptor activation in the basolateral amygdala (BLA) with parallel effects in the hippocampus and VTA/N.Acc in the regulation
of cognition and motivation, respectively (mechanisms not shown for clarity). The changes in the BLA and CeA will also modulate
hippocampal and VTA/N.Acc function, with consequences for wider brain interarea connectivity. The suppression of pineal and local
melatonin in ASD, including by attenuating oxytocin effects, will therefore have a wide range of CNS and systemic consequences relevant
to classical ASD pathoetiology and ongoing pathophysiology. Abbreviations: α7nAChR, alpha 7 nicotinic acetylcholine receptor; BLA,
basolateral amygdala; CeA, central amygdala; CRH, corticotrophin releasing hormone; GR, glucocorticoid receptor; N.Acc, nucleus
accumbens; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; PVN, paraventricular nucleus; SPMs, specialized
pro-resolving mediators; STAT3, signal transducer and activator of transcription 3; VTA, ventral tegmental area; CNS, central nervous
system.

not uncommon in ASD [75]. Similar factors and processes
also regulate hippocampal cognition and VTA/N.Acc mo-
tivation. As indicated above, the suppression of pineal and
local melatonin as well as oxytocin in ASD will modulate
the influence of the vagal nerve and cortisol/stress on affect,
cognition and motivation, as shown in Fig. 3.

3. Autism, the Opioidergic System,
Borderline Personality and Perceived Social
Rejection

There is a growing appreciation of the pathophysio-
logical overlaps of autism with borderline personality dis-
order (BPD) [76,77], with both showing significant alter-
ations in the opioidergic system. Perceived rejection sen-

sitivity is a key aspect of BPD pathophysiology [73] and
may be an unrecognized aspect of ASD affective dysreg-
ulation [78]. BPD [79], like ASD [80,81], is associated
with very high levels of non-suicidal self-injury, which may
arise from alexithymia and difficulties in emotion recogni-
tion/expression [82] or from white matter disruption [83]
and/or from perceived social rejection induced dysphoria
[73] driven by increased dynorphin in the CeA arising from
suppressed oxytocin, as shown in Fig. 3.

Alterations in the opioidergic system have long been
associated with ASD pathophysiology, with µ-opioid re-
ceptor knockout rodents being a preclinical ASDmodel that
shows improved social interactions following intranasal
oxytocin administration [84]. BPD pathophysiology is in-
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timately associated with decreased µ-opioid receptor acti-
vation coupled with increased κ-opioid receptor activation,
with some treatment efficacy being derived from ultra-low
dose buprenorphine, a partial µ-opioid receptor agonist and
κ-opioid receptor antagonist [85,86]. In different preclin-
ical ASD models (prenatal valproate and Fmr1-knockout)
buprenorphine increased social behaviors that correlated
with increased neuronal activity in the VTA/N.Acc and me-
dial prefrontal cortex (PFC) [87], with medial PFC activa-
tion negatively feeding back on amygdala activity [88]. Al-
terations in the µ-/κ-opioid receptor ratio across brain re-
gions can therefore have significant impacts on social be-
haviors and interarea brain patterned activity, as indicated
in preclinical models, with links to how early develop-
mental trauma/stress may modulate the pathophysiological
overlaps of ASD and BPD [89–91].

The regulation of the opioidergic system may be inti-
mately linked to alterations in pineal melatonin, with mela-
tonin acting on the pituitary to increase the µ-opioid re-
ceptor endogenous ligand, beta-endorphin [92], whilst a
specific fragment of beta-endorphin, called des-tyrosine-
gamma-endorphin (DTγE), dramatically increases pineal
melatonin, as shown in rodents [93]. In contrast, melatonin
inhibits the sleep disturbing effect of the κ-opioid recep-
tor [94,95]. Acute stress induced CRH increases dynorphin
that activates the κ-opioid receptor to suppress dopamine
release [96,97], which is proposed to suppress the reward
system and increase anhedonia, whilst chronic stress can
drive dysphoria and low mood via dynorphin activation
of the κ-opioid receptor [98]. Alterations in nociception
are common in ASD, including hypersensitivity and hy-
posensitivity [99], with affective aspects of nociception
significantly regulated by right amygdala κ-opioid recep-
tor activation [100] and the alterations in the µ-, κ-and
δ-opioidergic receptors arising from early developmental
stress [101]. This also has pathophysiological relevance
in BPD [73] and may be significantly modulated by sup-
pression of pineal and/or local melatonin availability [102].
Decreasedmelatonergic pathway availability may therefore
regulate the opioidergic system to modulate diverse aspects
of symptomatology in ASD and BPD. This may have rele-
vance to wider bodies of data showing increased amygdala
κ-opioid receptor to correlate with poor self-reported so-
cial status [103], indicating that the amygdala µ/κ-opioid
receptor ratio may regulate our perceived connectedness to
others more widely, implicating roles for pineal and/or lo-
cal melatonergic pathway regulation in the modulation of
wider affective aspects of social connectedness. Current
classification of ASD, in the absence of any physiological
indices, highlights the importance of social interaction and
connectedness, suggesting a significant role for alterations
in the opioidergic system and its regulation in the defining
characteristics of ASD.

Alterations in the opioidergic system in ASD and
BPD may be partly mediated by increased gut permeabil-

ity and gut dysbiosis in ASD [104] as well as in BPD
[105]. Gut permeability/dysbiosis are typically associ-
ated with decreases in the short-chain fatty acid, butyrate.
Butyrate is a histone deacetylase inhibitor (HDACi) and
epigenetic regulator that is also used as a metabolic sub-
strate to increase the melatonergic pathway, as shown
in intestinal epithelial cells [106]. Butyrate also epige-
netically regulates the µ- and κ-opioid receptors [107,
108]. Some of the consequences of stress/cortisol in-
duced gut permeability/dysbiosis on the opioidergic sys-
tem may therefore be mediated via decreased butyrate and
its regulation of the melatonergic pathway and/or opioider-
gic system. Factors influencing the availability of tryp-
tophan for the initiation of the tryptophan-serotonin-N-
acetylserotonin-melatonin pathway will also have conse-
quences for butyrate’s effects. As well as increasing gut
dysbiosis/permeability, chronic stress increases κ-opioid
receptor levels, which are major contributors to sleep dis-
ruption, indicating that suppressed pineal and local mela-
tonin production in ASD will alter the consequences of
chronic stress, including decreasing the µ-/κ-opioid recep-
tor ratio that will negatively regulate sleep to further con-
tribute to circadian and pineal melatonin dysregulation [94].

Suppressed pineal and local melatonin in ASD may
therefore be intimately linked to alterations in the opioi-
dergic system, with significant consequences for develop-
ment of interarea brain connectivity, affective regulation,
perceived social rejection and non-suicidal self-injury, with
significant overlaps to BPD symptomatology and patho-
physiology.

This begs the question as to how the opioidergic sys-
tem interacts with canonical and non-canonical pSTAT3
and NF-κB dimer composition in the modulation of the mi-
tochondrial melatonergic pathway.

Opioidergic System Interactions With STAT3, NF-κB and
miRNAs

Activation of the κ-opioid receptor increases STAT3,
with diverse effects across different body cells and or-
gans [109], including upregulating mitochondrial func-
tion in challenged cardiomyocytes [110]. In other cell
types, κ-opioid receptor decreases pSTAT3 by sequester-
ing pSTAT3 to the plasma membrane, as shown in chon-
drocytes [111]. It is unknown as to how κ-opioid re-
ceptor activation modulates amygdala pSTAT3, including
whether it differentially impacts on the canonical, nuclear
translocating STAT3Tyr705 and/or non-canonical, mitochon-
dria translocating STAT3Ser727. Canonical, nuclear translo-
cating pSTAT3 is mediated by Tyrosine705 phosphoryla-
tion of STAT3, whilst non-canonical, mitochondria translo-
cating STAT3 is mediated by Serine727 phosphorylation.
How these different sites of STAT3 phosphorylation inter-
act with NF-κB dimer composition in regulating the mela-
tonergic pathway and how this then acts to modulate the
opioidergic system requires investigation, see Fig. 4 (Ref.
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[22,112]). This will be important to clarify in future re-
search, especially as κ-opioid receptor activation in the ba-
solateral amygdala drives dysphoria that is commonly ev-
ident in ASD [75]. The capacity of melatonin to increase
the µ-opioid receptor ligand, beta endorphin, indicates that
pineal and/or local melatonin will increase the µ-/κ-opioid
receptor ratio, thereby paralleling the beneficial effects of
buprenorphine on social processes in ASD preclinical mod-
els [85–91].

Activation of the µ-opioid receptor typically increases
pSTAT3 [113] and has differential effects on NF-κB that
seem dependent upon cell type and phenotypic state [114].
NF-κB activation also increases the µ-opioid receptor
[115]. Both µ- and κ-opioid receptor interact with the chap-
erone protein, 14-3-3ζ, [116], with 14-3-3ζ significantly in-
teracting with mitochondrial STAT3Ser727 to regulate 14-3-
3ζ availability [62,117]. This may be important given the
role of 14-3-3ζ in the stabilization of AANAT in the ini-
tiation of the melatonergic pathway [5,6]. As indicated,
ASD may be associated with an increase in microRNA
(miR)-451 [5], which, like miR-375 and miR-7 can atten-
uate the initiation of the melatonergic pathway by AANAT
by decreasing 14-3-3ζ availability [118]. The regulation
of 14-3-3ζ may therefore be of importance in the coordi-
nation of the opioidergic system and mitochondrial mela-
tonergic pathway, including as arising from mitochondrial,
non-canonical STAT3Ser727 binding and regulating 14-3-3ζ
availability [62]. This is supported by data showing miR-
451 to regulate STAT3 [119,120] and NF-κB [121,122], as
does miR-375 [123,124] and miR-7 [125,126]. Whether
the regulation of 14-3-3ζ by STAT3Ser727 is coordinated by
these miRNAs with consequences for opioidergic system
regulation will be important to determine. The interactions
of canonical and non-canonical pSTAT3 with NF-κB dimer
composition in the modulation of the melatonergic pathway
are shown in Fig. 4.

Overall, the data linking canonical and non-canonical
pSTAT3 interactions with NF-κB dimer composition in the
modulation of the melatonergic pathway requires extensive
further investigation to determine whether this is intimately
linked to alterations in the opioidergic system and opioid
receptors at key sites, as well as the regulation of oxytocin,
vagal nerve and gut microbiome.

4. Aryl Hydrocarbon Receptor, STAT3,
NF-κB, Opioidergic System and
Melatonergic Pathway

The aryl hydrocarbon receptor (AhR) significantly
modulates ASD pathophysiology [127,128]. The AhR has
a number of complex effects that are dependent upon spe-
cific ligands and cell types as well as its site of expression,
namely within the cytoplasm and/or on the mitochondrial
membrane [129]. The AhR can be activated by many lig-
ands including endogenous (FICZ) and induced (kynure-
nine) as well as environmental toxins, such as air pollutants

and cigarette smoke products [130]. TheAhR also regulates
the melatonergic pathway via AhR activation induction of
cytochrome P450 (CYP)1B1 and CYP1A2, which can hy-
droxylate melatonin as well as O-demethylate melatonin
‘backwards’ to its immediate precursor, N-acetylserotonin
(NAS) [131]. The association of the AhR with ASD may
therefore be via direct suppression of melatonin availabil-
ity, whilst the complexity of AhR effects may arise from
cell conditions that determine whether the melatonergic
pathway is available or not. Consequently, AhR effects
may be dependent upon STAT3 interactions with NF-κB
dimer composition [22].

This is further complicated by the AhR also regulat-
ing STAT3 across diverse cell types andmedical conditions,
including cancer [132] and cardiovascular diseases [133].
The raised levels of pro-inflammatory cytokines (IFN-γ,
IL-1β, IL-6, and TNF-α) in ASD [134] induce indoleamine
2,3-dioxygenase (IDO) that converts tryptophan to kynure-
nine to reduce tryptophan availability for the tryptophan-
melatonin pathway, with kynurenine activating the AhR, to
further reduce melatonin availability [135]. Raised kynure-
nine and kynurenic acid levels are evident in ASD children,
vs controls, with both of these kynurenine pathway products
activating the AhR [136], Such data indicates an enhanced
ligand availability for AhR activation in ASD that con-
currently decreases tryptophan-melatonin pathway avail-
ability. Diabetes linked hyperglycemia increases glucose
glycation thereby increasing methylglyoxal levels, which
dramatically suppress tryptophan availability via protein-
protein interactions [137]. This not only decreases tryp-
tophan availability for the tryptophan-melatonin pathway,
thereby limiting tryptophan availability for conversion to
kynurenine and AhR activation. This is likely to contribute
to variations in kynurenine pathway products and therefore
AhR activation in ASD [138]. This requires further inves-
tigation as it indicates that AhR complexity and contrast-
ing effects may arise from an uninvestigated tryptophan-
melatonin pathway availability, including as arising from
raised methylglyoxal in prediabetes, type 1 dianbetes mel-
litus (T1DM) and T2DM suppressing tryptophan availabil-
ity. Such interactions highlight the interconnected nature
of ASD with diabetic pathophysiology and how this may
contribute to contrasting results across studies.

As pro-inflammatory cytokine-induced IDO drives
the kynurenine activation of the AhR, the AhR is inti-
mately associated with a pro-inflammatory NF-κB dimer
composition. The AhR and NF-κB are classically thought
to have negative reciprocal interactions [139], with the
AhR able to bind the pro-inflammatory component of NF-
κB, p65, both in the cytoplasm and nucleus [139]. The
AhR can therefore modulate mitochondrial pSTAT3Ser727
effects, given that the mitochondrial translocation of
pSTAT3Ser727 also drives NF-κB, p65 and the NLRP3 in-
flammasome to mitochondria [140] (see Fig. 4), Mito-
chondrial NF-κB and p65 directly modulate mitochondrial
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Fig. 4. STAT3 interaction with NF-κB dimers modulates melatonergic and opioidergic pathways. Canonical pSTAT3Tyr705 inter-
acts with NF-κB dimer composition in the nucleus to modulate the cellular melatonergic pathway, which may be present in the nucleus
although more likely in mitochondria. Nuclear (green shade) translocated STAT3Tyr705 interacts with NF-κB dimer components (such as
p65/50 and p50/p50) to stimulate or inhibit the melatonergic pathway, with specific effects partly dependent upon cell type [22]. Nuclear
STAT3Tyr705 interactions with NF-κB dimer components may also modulate non-canonical, mitochondria translocating pSTAT3Ser727,
including from alterations in specific kinases that phosphorylate and activate pSTAT3Ser727. At mitochondria, pSTAT3Ser727 can regulate
many core aspects of mitochondrial function, including: (1) regulates mitochondria-associated membranes (MAMs), thereby modulating
endoplasmic reticulum Ca2+ mitochondrial influx, a key driver of alterations in mitochondrial function; (2) pSTAT3Ser727 can bind and
regulate mitochondrial 14-3-3 availability. As 14-3-3 is required to stabilize AANAT stabilization to initiate the melatonergic pathway
any suppression of 14-3-3 availability, including by miR-7, miR-375 and miR-451, will attenuate melatonergic pathway availability;
(3) In some cells, mitochondrial pSTAT3Ser727 can form a positive reciprocal feedback loop with LETM1 domain-containing protein
1 (LETMD1), thereby regulating mitochondrial Ca2+ and K+ flux; and (4) Mitochondrial translocation of pSTAT3Ser727 enhances the
mitochondrial translocation of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, NF-κB and p65
with consequences for patterned gene expression in both the nucleus and mitochondria, as shown in different cell types. Interestingly,
LETM1/LETMD1 has a 14-3-3 like matrix motif [112] that may bind AANAT and/or form a ‘dimer’ with 14-3-3, indicating a possi-
bly wider complexity to mitochondrial melatonergic pathway regulation. Importantly, pro-inflammatory processes (IL-6, NF-κB p65,
NLRP3) in a given cell will have consequences for adjacent cells of the local microenvironment, via increased IL-6 and NLRP3 inflam-
masome induced IL-1β and IL-18 release driving inflammatory processes in neighboring cells, including via released IL-6 activating
JAK/pSTAT3/NF-κB to stimulate or suppress the melatonergic pathway in cells of the local microenvironment. The suppressed capacity
to induce the melatonergic pathway in a given cell therefore has implication for the regulation of the melatonergic pathway in neigh-
boring cells and inflammatory responses within its local microenvironment. The suppression of pineal and/or local melatonin will have
consequences for µ-/κ-opioid receptor ratio and therefore the role of the opioidergic system in ASD, including in the regulation of affect,
cognition and motivation, as highlighted in Fig. 3. The specifics of pSTAT3 interactions with NF-κB dimer composition in ASD cells
over the course of development will be important to determine. Abbreviations: AANAT, aralkylamine N-acetyltransferase; JAK, Janus
kinase; LETM1, Leucine Zipper EF-hand containing Transmembrane protein 1; MAMs, mitochondria-associated membranes; miR, mi-
croRNA; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; NLRP3: NACHT, LRR and PYD domains-containing
protein 3; STAT3, signal transducer and activator of transcription 3; LETMD1: LETM1 domain-containing protein 1; IL, interleukin.

transcription and function, whilst the NLRP3 inflamma-
some locates adjacent to the outer mitochondrial mem-
brane, thereby increasing access to mitochondrial caspases

that cleave pro-IL-1β and pro-IL-18 into their active forms.
By suppressing NF-κB and p65 the AhR may therefore
change pSTAT3Ser727 regulation of mitochondrial function.
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Fig. 5. A diversity of factors can modulate the tryptophan-melatonin pathway. The mitochondrial melatonergic pathway of the
tryptophan-melatonin pathway (green shade) is evident in all cells where it has been investigated. Methylglyoxal, via protein-protein
interactions with tryptophan, not only suppresses tryptophan but also tryptophan derived kynurenine pathway products that can activate
the AhR, thereby changing the consequence of AhR activation as well as GR-induced TDO and cytokine induced IDO by limiting tryp-
tophan availability. As the AhR can modulate STAT3 and inhibit NF-κB p65, the suppression of tryptophan conversion to kynurenine
can change the influence of the AhR on the regulation of the melatonergic pathway. The AhR induction of CYP1B1 and CYP1A2 leads
to the hydroxylation and/or ‘O-demethylation’ of melatonin, with both processes decreasing melatonin availability and effects. As IL-6
not only induces the JAK/pSTAT3 pathway but also IDO, IL-6 may therefore initiate the IDO/kynurenine/AhR/CYP1B1/CYP1A2 to
suppress the tryptophan-melatonin pathway, although this would be dependent upon tryptophan availability for conversion to kynure-
nine, and therefore subject to suppression by methylglyoxal. Alterations in T2DM/hyperglycemia/methylglyoxal and AhR activation
may therefore act on core aspects of ASD pathophysiology by modulating mitochondrial function, including the mitochondrial mela-
tonergic pathway, with consequences for cellular function and homeostatic intercellular interactions. Abbreviations: 5-HT, serotonin;
5-HTP, 5-hydroxytryptophan; AADC, aromatic-L-amino acid decarboxylase; AANAT, aralkylamine N-acetyltransferase; AhR, aryl hy-
drocarbon receptor; ASMT, acetylserotonin methyltransferase; CYP, cytochrome P450; GR, glucocorticoid receptor; IDO, indoleamine
2,3-dioxygenase; JAK, Janus kinase; LAT-1, large amino acid transporter 1; NAS, N-acetylserotonin; NF-κB, nuclear factor kappa-light-
chain-enhancer of activated B cells; PDC, pyruvate dehydrogenase complex; ROS, reactive oxygen species; STAT3, signal transducer
and activator of transcription 3; TDO, tryptophan 2,3-dioxygenase; TPH, tryptophan hydroxylase.

Heightened NLRP3 inflammasome and IL-1β are evident
in ASD, as shown in ASD fibroblasts [141], with mi-
tochondrial ROS driving NLRP3 inflammasome activa-
tion. This suggests that the suppression of the mitochon-
drial melatonergic pathway in ASD may be a significant
determinant of NLRP3 activation, which may be modu-
lated by AhR suppression of NF-κB and p65 to there-
fore shape the consequences of pSTAT3Ser727 mitochon-
drial translocation [142]. As methylglyoxal suppresses
tryptophan to decrease kynurenine availability for AhR
activation, diabetes/hyperglycemia/methylglyoxal and the
AhR may therefore interact with STAT3/NF-κB to modu-
late core aspects of mitochondrial dysfunction, including

the mitochondrial melatonergic pathway, in ASD. Whether
the suppression of the AhR by methylglyoxal decreasing
tryptophan availability for conversion to kynurenine upreg-
ulates NF-κB p65 induced pro-inflammatory cytokines will
be important to determine. Overall, factors that modulate
STAT3 interactions with NF-κB in the modulation of mito-
chondrial function and the melatonergic pathway, including
genetic, epigenetic and early developmental stressors, as
well asmethylglyoxal and theAhR,may be intimate aspects
of mitochondrial dysfunction in ASD. The interactions of
the AhR and methylglyoxal with the tryptophan-melatonin
pathway are shown in Fig. 5.
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Overall, the AhR has complex effects on many aspects
of ASD pathophysiology, including interactions of STAT3
and NF-κB, with consequences for mitochondrial function
and NLRP3 inflammasome activation. These effects are in-
timately intertwined with modulation of the mitochondrial
melatonergic pathway, as shown in Figs. 4,5.

5. Autism Pathoetiology Implications
As indicated above the relative suppression of the

melatonergic pathway across CNS and systemic cells may
be an important aspect of ASD pathophysiology in all its
manifestations [5], which include a range of severe learning
difficulties to high-functioning ASD. Melatonergic path-
way suppression is intimately associated with STAT3 and
its interactions with NF-κB dimer composition, as well as
other regulatory factors such as diabetes/methylglyoxal, the
AhR and miRNAs, as indicated above. As ASD is clas-
sically conceptualized as a neurodevelopmental disorder
[143], when and how does suchmitochondrial melatonergic
pathway dysregulation occur?

Early developmental risk factors for ASD include
preeclampsia [144], which is associated with a decrease in
placental melatonin production [145] and may exemplify
the importance of prenatal melatonergic pathway modu-
lation in ASD pathoetiology. Many of the melatonergic
pathway regulatory factors highlighted above are also im-
portant to placental regulation, including miRNAs [146–
148], STAT3 [149] and NF-κB [150]. Preeclampsia in-
creases cortisol transfer over the placenta via 11β-HSD2
suppression [151]. This suggests parallels to the alterations
in night-time dampening and resetting arising from sup-
pressed pineal melatonin and associated disinhibition of the
wider cortisol system, as indicated in Fig. 1. Do such pla-
cental alterations establish an early developmental pattern
of microenvironment interactions in the developing fetus
leading to a subtle change in optimal homeostatic interac-
tions occurring, with consequences for differential stress
responses, arising from a decreased melatonin/cortisol ra-
tio prenatally? Another prenatal conditions, intrauterine
growth restriction (IUGR), is also associated with increased
cortisol transfer over the placenta [152] and enhanced ASD
risk in the offspring [153]. It should be noted that this does
not necessarily indicate that placental melatonin replicates
circadian, pineal melatonin suppression in ASD as the pla-
cental release of melatonin is not circadian [154]. How-
ever, a decrease in the placental melatonin/cortisol ratio
may change the nature of cellular and intercellular home-
ostasis in the developing fetus within a crucial temporal
window.

The AhR is highly expressed in the placenta and
modulates many aspects of placental function, including
trophoblast cell proliferation, migration and apoptosis, as
well as energy metabolism [155]. As noted, the AhR
via CYP1B1 and CYP1A2 can hydroxylate melatonin and
‘backward’ convert melatonin to N-acetylserotonin (NAS)

via O-demethylation [131], with NAS being a brain-derived
neurotrophic factor (BDNF) mimic via its activation of the
BDNF receptor, tyrosine receptor kinase (Trk)B [156]. This
may suggest an increase in placental and fetal NAS that not
only suppresses melatonin availability but increases TrkB
activation, which in ASD models is associated with ASD
pathophysiology via alterations in α-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid (AMPA) receptor activa-
tion [157]. As NAS can also increase hippocampal BDNF
[158], alterations in the placental NAS/melatonin pathway
may contribute to the diverse effects of BDNF and TrkB in
ASD pathoetiology, as shown in diverse preclinical mod-
els [159,160], with relevance to brain overgrowth (macro-
cephaly) that is evident in a subset of people with ASD
[161].

At least 8 isoforms of the GR-α are evident in the
placenta and can vary by fetal sex and birthweight [162],
being proposed as an important interface with the mater-
nal environment and fetal growth [163]. GR-α isoforms
also influence nutrient regulation [164]. Preclinical data
indicates that prenatal stress leads to hypermethylation of
glucocorticoid-related genes that disrupts the placental glu-
cocorticoid barrier, with significant consequences for fe-
tal development [165]. The GR-β is present in the human
placenta and is classically modelled as a dominant nega-
tive regulator of GR-α, although recent work shows the
GR-β to have transcriptional consequences that are inde-
pendent of its inhibition of GR-α [166]. The raised pro-
inflammatory cytokines evident in ASD increase the GR-
β/GR-α ratio to suppress the capacity of cortisol and corti-
costeroids to dampen inflammatory activity [167], includ-
ing by GR-β attenuating the capacity of GR-α to suppress
NF-κB [166]. How the GR-β/GR-α ratio modulates NF-
κB dimer components and their interactions with pSTAT3
in the regulation of the placental, fetal and post-natal mela-
tonergic pathway will be important to determine, including
as to the consequences that this has for night-time damp-
ening and resetting mediated by the interactions of pineal
melatonin and cortisol following the establishment of the
circadian rhythm in the developing infant. As melatonin
attenuates GR-α nuclear translocation, the suppression of
melatonin will decrease the threshold for GR-β induction
and alterations in NF-κB regulation and therefore in the
regulation of the melatonergic pathway. This is one route
whereby alterations in the placenta may shift the influence
of melatonin and cortisol in the developing fetus and infant.

The plasma membrane GR is also evident in the pla-
centa, perhaps especially in syncytiotrophoblasts [168].
However, the presence and regulation of the mitochondrial
membrane GR and mitochondrial matrix GR in the pla-
centa awaits investigation and the role of placental bcl2-
associaited athanogene (BAG)-1 [169] in the transport of
GR to the mitochondrial matrix, as in other cell types [170],
requires further investigation. Asmelatonin, like gutmicro-
biome derived butyrate, suppresses GR-α nuclear translo-
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cation, presumably the suppression of placental melatonin
in ASD prenatal risk conditions (e.g., preeclampsia and
IUGR) will have consequences for wider cortisol receptors
and their effects in both the placenta and developing fetus,
with later developmental consequences.

As in any cell the increased glycolysis in
preeclamptic trophoblasts leads to glycation induced
methylglyoxal [171]. These authors showed that
preeclamptic trophoblasts increase methylglyoxal
and methylglyoxal induced advanced glycation end
products (N(6)-(carboxymethyl)lysine [CML], and
Nε-(carboxyethyl)lysine [CEL], as well as methylglyoxal-
derived hydroimidazolone [MG-H]), coupled to a decrease
in glyoxalase (Glo)1 that metabolizes methylglyoxal
[171]. Maternal plasma concentrations of methylglyoxal,
CML and MG-H1 increase as early as the 12th week of
gestation indicating that these products may be potential
early biomarkers of preeclampsia [171]. Notably, mi-
toQ (a mitochondrial oxidant quencher) prevented these
preeclamptic methylglyoxal driven changes when the data
was replicated in a trophoblast cell line. This data readily
links to the decreased placental melatonin in preeclampsia
and how its loss in mitochondria can prevent melatonin
from offsetting the consequences of suboptimal mitochon-
drial function as indicated by raised mitochondria oxidant
production and its influence on patterned gene expression
via ROS-dependent miRNAs. This also has implications
for intercellular fluxes and therefore for alterations in the
homeostatic interactions of the local microenvironment.

Melatonin increases mitochondria located sirtuin-3
[172] which suppresses oxidant production at three points
of the electron transport chain [173]. Consequently, the
detrimental effects of suppressed placental melatonin may,
at least partly, arise from a decrease in melatonin induc-
tion of trophoblast sirtuin-3. Decreased trophoblast sirtuin-
3 and associated increase in the acetylation, and inhibi-
tion, of the antioxidant enzyme, manganese superoxide dis-
mutase (MnSOD), are evident in preeclampsia and con-
tribute to increased mitochondrial ROS driven alterations
in patterned gene expression [174]. The suppression of the
placental melatonergic pathway therefore modulates mito-
chondrial function, at least partly via a decrease in mito-
chondrial sirtuin-3 and endogenous antioxidants.

As noted above, methylglyoxal can directly downreg-
ulate tryptophan availability by protein-protein interactions
[137], indicating that the necessity to upregulate methylgly-
oxal in the course of glycolysis may be intimately linked
across diverse cell types to the suppression of the melaton-
ergic pathway. In many circumstances, this would seem to
arise from the increased glycolysis and methylglyoxal sup-
pression of the tryptophan-melatonin pathway as an indi-
cant of the need for chemoattracted immune cells to deal
with the changes/challenges occurring, a situation where
the local production of melatonin would suppress immune
cell efficacy. Whether this is pertinent in preeclampsia and

how it associates with ASD pathoetiology will be impor-
tant to determine. As the glucocorticoid receptor (GR) can
be glycated by methylglyoxal to alter its function [174], the
raised levels ofmethylglyoxal in preeclampsiamay not only
suppressmelatonin but also alter the nature of the wider cor-
tisol system response, including GR subtypes and sites of
localization. This requires future investigation.

The above would indicate that the understanding of
ASD etiology may require a fuller investigation of pro-
cesses and conditions, such as preeclampsia, and how they
may contribute to the alterations in the mitochondrial mela-
tonergic pathway that are proposed to be a core factor in
ASD pathophysiology. Given the importance of melatonin
and cortisol (and their interactions) in the night-time damp-
ening and resetting of body cells, microenvironments and
systems across the life-span, it would not seem incongru-
ous that factors influencing melatonin and cortisol levels
and effects as well as their interactions will be important in
determining the consequences of environmental sampling
that occurs over the course of pregnancy. This also pro-
vides a framework for understanding ASD genetic suscep-
tibility factors and the processes on which they act in ASD
etiology. See Fig. 6.

6. Future Research Implications
(1) Does suppressed pineal melatonin in ASD initially

disinhibit GR-α activation with consequent alterations in
the wider cortisol ‘system’, including the levels of GR-
β and the GR localization site (cytoplasm, plasma mem-
brane, mitochondrial membrane and mitochondrial matrix),
as well as 11β-HSD1 induction [65,66]. Would such dys-
regulation of melatonin and cortisol at night modulate oxy-
tocin levels as well as the interactions of cortisol with oxy-
tocin, such as cortisol’s rapid negative feedback on the oxy-
tocin induction of adrenocorticotropic hormone (ACTH)
and the HPA axis [67]? Does suppressed pineal and/or lo-
cal (PVN) melatonin decrease oxytocin and therefore vagal
nerve stimulation that dampens local inflammatory activ-
ity?

(2) As early life stressors epigenetically regulate the
methylation of the GR and oxytocin receptors to alter the
nature of social interactions in preclinical models [69],
would the suppressed capacity to induce pineal and local
melatonin in ASD modulate the impact of early life stres-
sors via melatonin’s capacity to induce oxytocin and sup-
press GR-α nuclear translocation? Is this alsomodulated by
the loss of pineal melatonin’s suppression of gut permeabil-
ity/dysbiosis and potentiation of butyrate production, given
that butyrate also suppresses GR-α nuclear translocation?

(3) Does µ-, vs κ-, opioid receptor activation differen-
tially modulate amygdala, especially basolateral amygdala
(BLA), pSTAT3 either via canonical STAT3Tyr705 and/or
non-canonical STAT3Ser727, thereby impacting on the reg-
ulation of the local melatonergic pathway in BLA neurons
and/or astrocytes?
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Fig. 6. Preeclampsia and IUGR suppress placental melatonin to change cortisol fetal effects. Suppressed placental melatonin may
disinhibit the GR-α, which increases GR-β, thereby enhancing NF-κB p65 activation to dysregulate stress responses. These changes in
the placenta drive alterations in the developing fetus in a crucial temporal window that shapes homeostatic interactions in local microen-
vironments and later postnatal development. Abbreviations: GR, glucocorticoid receptor; IUGR, intrauterine growth restriction; NF-κB,
nuclear factor kappa-light-chain-enhancer of activated B cells.

(4) Are the interactions of the opioidergic system and
receptors with the melatonergic pathway dependent upon
14-3-3 regulation and availability, including as a conse-
quence of mitochondria located STAT3Ser727 interacting
with, and regulating, 14-3-3ζ availability? Is the availabil-
ity of 14-3-3ζ also determined by the miRNAs, miR-451,
miR-375 and miR-7 [5]?

(5) Is 14-3-3ζ regulation by STAT3Ser727 coordinated
with miR-451, miR-375 and/or miR-7 levels and their reg-
ulation, with consequences for opioidergic system/receptor
levels?

(6) Does the increase in methylglyoxal levels in ASD,
by decreasing tryptophan availability [137], contribute to
the variability of increased serotonin and kynurenine path-
way products in ASD.Would methylglyoxal, by decreasing
tryptophan availability for conversion to kynurenine, there-
fore attenuate AhR activation, including in the modulation
of the melatonergic pathway as well as the AhR suppres-
sion of NF-κB? This would indicate specific consequences
for AhR activation in the presence or suppression of the
tryptophan-melatonin pathway? Is this an unrecognized as-
pect of the complexity and mixed results linked to AhR ac-
tivation?

(7) Are the complexity of AhR effects determined by
whether the melatonergic pathway is present or not in a
given cell, with consequences not only for a given cell but
for its interactions with other cells in its local microenvi-
ronment?

(8) Does the association of preeclampsia and IUGR
with ASD risk arise from a decrease in placental mela-
tonin/cortisol ratio to alter cellular, microenvironment and
systemic melatonergic pathway availability across body
cells? Does this arise from an early developmental ‘cru-
cial window’? Is this ‘crucial window’ determined by alter-
ations in the homeostatic interactions of cells in their given
microenvironment?

(9) How do variations in the GR-β/GR-α ratio mod-
ulate placental NF-κB dimer composition and therefore
the regulation of the melatonergic pathway via interactions
with STAT3? Does this have consequences for subsequent
post-natal night-time dampening and resetting mediated by
the interactions of pineal melatonin and cortisol, suggesting
that non-circadian variations in placental/fetal melatonin
and cortisol modulate their subsequent post-natal levels and
effects? How does an increased GR-β/GR-α ratio and de-
creased 11β-HSD2 in the placenta and post-natal cells mod-
ulate pSTAT3Tyr705 and pSTAT3Ser727? Does an increase in
the GR-β/GR-α ratio, via increased NF-κB, drive a main-
tained inflammation that enhances immune cell chemoat-
traction to resolve inflammation and therefore coupled to
suppression of the melatonergic pathway? This could in-
dicate that ‘glucocorticoid resistance’ acts to signal the ne-
cessity of immune system chemoattraction and activation
by minimizing the effects of cortisol and melatonin.

(10) As the glucocorticoid receptor (GR) can be gly-
cated by methylglyoxal to alter its function [175], the raised
levels of methylglyoxal in preeclampsia may not only sup-
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press melatonin via protein-protein interactions [137] but
also alter the nature of the wider cortisol system response,
including GR subtypes, GR-β/GR-α ratio and sites of GR
localization. This requires future investigation.

(11) Do alterations in the regulation of the melaton-
ergic pathway and its interactions with cortisol occur prior
to placenta formation? The melatonergic pathway is evi-
dent in oocytes and the granulosa immune cells that reg-
ulate oocyte selection and development. Would this have
relevance to intercellular interactions in blastocysts and the
subsequent interface with the endometrial wall and mater-
nal immune cells in the course of shallow placentation?

(12) Hyperserotonemia in ASD is associated with
learning difficulties [176]. It requires investigation whether
this arises from decreased conversion of hippocampal sero-
tonin to melatonin given the importance of melatonin in
long-term potentiation (LTP) regulation [177,178]. Does
the wide range of cognitive capacity in people classed with
ASD arise from factors regulating mitochondrial melaton-
ergic pathway availability in the hippocampus?

(13) ASD is associated with an increased risk of can-
cer and COVID-19 fatality [179,180]. This may be espe-
cially evident in people with ASD and learning difficul-
ties, with ASD linked to a decreased cytotoxicity of nat-
ural killer (NK) cells [181,182]. Is the suppressed capacity
to induce the melatonergic pathway in ASD across diverse
cell types [5] also evident in NK cells? Exogenous mela-
tonin increases NK cell cytotoxicity, which is also pow-
erfully regulated by melatonin over the circadian rhythm
[183], suggesting that the suppression of endogenous NK
cell tryptophan-melatonin pathway by canonical and non-
canonical STAT3 interactions with NF-κB dimer composi-
tion may modulate the NK cell melatonergic pathway and
associated cytotoxicity. This will be important to determine
in ASD, given the capacity of melatonin to increase NK cell
elimination of tumor cells and viral infected cells. Alterna-
tively, is the increased risk of cancer and COVID-19 fatal-
ity in ASD linked to increased concurrent T2DM and raised
methylglyoxal levels that bind tryptophan to attenuate the
initiation of the tryptophan-melatonin pathway [137]?

7. Treatment Implications
(1) Although the above clearly provides future re-

search that should shape prevention and treatment, it is clear
that the utilization of melatonin in ASD will provide some
circadian and systemic benefits to decrease symptomatol-
ogy.

(2) Given the overlapping pathophysiology of ASD
with Borderline personality, there may be some utility of
ultra-low dose buprenorphine, with possible particular rel-
evance to stress-induced by social rejection and associated
emotional dysregulation [184]. It is also important to note
that low dose buprenorphine has also shown clinical utility
in single case studies of people with ASD, with improve-
ment in social interaction processes [185].

(3) As hyperglycemia driven methylglyoxal modu-
lates tryptophan availability for the tryptophan-melatonin
pathway, quercetin may have some utility in ASD due to
its quenching of methylglyoxal [186]. Preclinical models
would indicate that quercetin and its derivatives have util-
ity in ASD [187].

(4) Other dietary factors/nutriceuticals, such as the
polyphenol, epigallocatechin gallate (EGCG), have some
clinical utility in ASD, which is typically modelled as be-
ing mediated via sealing the gut barrier, decreasing dysbio-
sis and increasing butyrate [188]. However, EGCG is also
a monoamine oxidase inhibitor and therefore may increase
serotonin availability for the melatonergic pathway in peo-
ple with ASDwithout hyperserotonemia [189]. EGCG also
inhibits the AhR [190], which as indicated above may be
intimately linked to the regulation of core ASD pathophys-
iology.

(5) Another nutriceutical, resveratrol, which inhibits
the AhR and increases sirtuins [191], is also proposed
to have benefits in offsetting the effects of prenatal
stress/valproate induction of ASD-like characteristics in
preclinical models [192]. Whether resveratrol regulates the
STAT3 interaction with NF-κB in the modulation of the
melatonergic pathway will be important to determine in re-
gard to its potential clinical efficacy.

(6) Recent work has highlighted the potential of repet-
itive transcranial magnetic stimulation (rTMS) in the treat-
ment of neurodevelopmental disorders, including ASD
[193]. Interestingly, rTMS decreases systemic cortisol
[194] and increases pineal melatonin [195] indicating that
rTMS will have significant impacts on how CNS and sys-
temic processes are dampened and reset at night. Whether
the rTMS upregulation of pineal melatonin increases oxy-
tocin and oxytocin activation of the vagal nerve, as indi-
cated above in Fig. 3, will be important to determine in clin-
ical investigations. It will be important to clarify whether
rTMS effects, both at the site of direct application and sys-
temically, involve alterations in canonical and noncanoni-
cal STAT3 and its interactions with NF-κB dimer compo-
sition, as some data may suggest [196,197]. The associ-
ation of rTMS with the regulation of fear processing and
post-traumatic stress disorder (PTSD) [198,199] may un-
derpin and reshape the conceptualization of an altered stress
response in ASD, as previously indicated for another neu-
rodevelopmental disorder [200]. The extent to which the
effects of rTMS are mediated via pineal melatonin, includ-
ing in the regulation of the gut barrier/permeability [201]
and/or oxytocin stimulation of the vagal nerve having effi-
cacy as consequence of melatonin availability in gut cells
will be interesting to determine.

8. Conclusions
The above highlights the potential relevance of alter-

ations in the melatonergic pathway in ASD with pathoeti-
ological and ongoing pathophysiological implications. It
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is proposed that the interactions of canonical and non-
canonical STAT3withNF-κBdimer compositionmay be an
important, under-explored aspect of ASD biological under-
pinnings. This provides a perspective of core processes on
to which many previously disparate bodies of data on ASD
can be incorporated and integrated. The understanding of
the role of the mitochondrial melatonergic pathway in early
developmental processes, as exemplified by preeclampsia,
should provide a body of knowledge that will allow the
monitoring and targeting of early developmental processes
in the pathoetiology of ASD.
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