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Abstract

Background: N6-methyladenosine (m6A) RNAmethylation is a crucial epigenetic modification that plays an essential role in regulating
diverse biological processes. Accurate identification of m6A sites is therefore fundamental to understanding its regulatory mechanisms.
In this study, we proposed DT-m6A, a novel deep learning framework that integrates DenseNet and Transformer architectures for accurate
m6A site identification across diverse cell lines and tissues. Methods: RNA sequences are first encoded using nucleotide chemical prop-
erties (NCP) for initial features extraction, after which DenseNet captures and reuses local sequence features through dense connections.
The Transformer module then models long-range dependencies and extracts nonlinear representations, in which Batch Normalization re-
places the conventional Layer Normalization in both sublayers to enhance training stability. Finally, a fully connected layer predicts m6A
modification sites. Results: Evaluated on 11 independent test sets spanning eight cell lines and three tissue types, DT-m6A demonstrated
robust performance, achieving average accuracy (ACC) of 76.97%, Matthews correlation coefficient (MCC) of 54.27%, precision (PRE)
of 75.18%, recall (REC) of 79.76%, and F1 score of 77.26%. Conclusions: DT-m6A surpassed the state-of-the-art methodMST-m6A by
0.63% in average accuracy (p = 0.0023) and 1.4% in mean MCC (p = 0.0012) across 11 independent test sets. Although its performance
on the CD8T and MOLM13 cell lines was comparable to MST-m6A, DT-m6A consistently achieved superior results across all other
cell lines and tissues. Overall, DT-m6A effectively captures both local patterns and global dependencies in RNA sequences, improving
prediction performance across diverse biological contexts.
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1.Introduction

Transcription gives rise to RNAmolecules that are ex-
tensively regulated by more than 170 chemically distinct
modifications, collectively referred to as the epitranscrip-
tome [1]. These modifications modulate RNA metabolism
and gene expression and are widely distributed across
diverse RNA species, including rRNA, tRNA, snRNA,
mRNA, and long non-coding RNAs, in organisms ranging
from viruses and yeast to plants and animals [2]. Although
RNA nucleotide modifications have been recognized for
decades, recent advances in high-throughput sequencing
and analytical technologies have revealed their dynamic
regulatory mechanisms and biological significance, driv-
ing rapid growth in epitranscriptome research [3]. Among
these modifications, N6-methyladenosine (m6A) is the
most prevalent, abundant, and evolutionarily conserved in-
ternal modification in eukaryotic messenger RNAs. It is
especially enriched in mammalian mRNAs, where it oc-
curs at tens of thousands of sites and accounts for ap-
proximately 0.15%–0.6% of total adenosines [4,5]. As the
most abundant internal mRNA modification, m6A prefer-
entially appears within consensus motifs such as DRACH
and RRACH (D=A/G/U; R=A/G; H=A/C/U), while ex-

hibiting considerable site-specific variability in methyla-
tion levels [6]. In addition to sequence motifs, m6A is en-
riched in long exons, near stop codons, and within 3′ un-
translated regions (3′ UTRs) [7,8], suggesting its strategic
role in regulating mRNA metabolism and function [9,10].
Importantly, m6A is a dynamic and reversible epitranscrip-
tomic modification whose deposition, recognition, and re-
moval are orchestrated by writer, reader, and eraser pro-
teins [11,12]. Through this coordinated regulatory network,
m6A participates in diverse biological processes, including
gene transcription [13], cell signal transduction [14], and
DNA damage response [15]. As many of these functions
depend on the precise positioning and dynamic modula-
tion of m6A, accurate identification of m6A sites across the
transcriptome is essential for elucidating RNA regulatory
mechanisms.

Before 2012, transcriptome-wide m6A distribution
was poorly understood. High-throughput methods such as
MeRIP-seq [16] and m6A-seq [6] enabled transcriptome-
wide profiling but suffered from low resolution. Higher-
resolution techniques, including miCLIP [17] (integrat-
ing CLIP [18] with m6A-specific antibodies), m6A-REF-
seq [19] and DART-seq [20], improved site-level map-
ping and reduced antibody dependence. Despite these
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advances, experimental approaches remain time- and
resource-intensive.

With advances in artificial intelligence and the
increasing availability of experimentally validated
m6A datasets, computational prediction of RNA N⁶-
methyladenosine (m6A) sites has become an active
research area. Existing methods can generally be clas-
sified into three categories: (i) machine learning–based
methods, such as iRNAMethy [21], iRNA-PseColl
[22], iRNA(m6A)-PseDNC [23], M6AMRFS [24], and
WHISTLE [25]; (ii) deep learning–based methods, in-
cluding DL-m6A [26], DeepM6ASeq [27], MASS [28],
TS-m6A-DL [29], MultiRM [30], iMethyl-Deep [31],
and MTDeepM6A-2S [32]; and (iii) ensemble learning
methods that integrate machine learning or deep learning
models, such as SRAMP [33], M6APred-EL [34], EMDLP
[35], and DeepM6ASeq-EL [36].

The recently developed MST-m6A [37] leverages the
transfer learning framework DNA-BERT [38] to extract se-
quence features, followed by a three-layer convolutional
neural network and a multilayer perceptron for prediction.
Although this strategy achieves competitive performance,
the large number of parameters in DNA-BERT leads to
substantial computational overhead, making inference and
fine-tuning memory- and time-intensive, particularly for
long sequences or large-scale datasets.

To address these limitations, we propose DT-m6A,
a computationally efficient DenseNet–Transformer hybrid
architecture specifically designed for m6A site prediction.
Unlike prior CNN–Transformer or CNN–attention hybrid
methods that primarily rely on shallow convolutional fea-
ture extraction, DT-m6A introduces a DenseNet-inspired
convolutional module that promotes dense feature propa-
gation and enables the reuse of hierarchical local represen-
tations across layers. This design provides the Transformer
with richer and more discriminative convolutional features,
improving sequence modeling while avoiding excessive
parameter growth. In addition, we design a lightweight
Transformer tailored to short RNA sequences with rela-
tively fixed lengths by replacing standard layer normaliza-
tion with batch normalization, which improves optimiza-
tion stability under small-batch training conditions. Pa-
rameter sharing and hierarchical processing are further in-
corporated to reduce redundancy and computational cost.
Combined with NCP encoding, which provides biochemi-
cally meaningful nucleotide representations, these compo-
nents form a task-driven and efficient hybrid architecture
that balances predictive accuracy and computational effi-
ciency. Based on this design, DT-m6A enables accurate
identification of m6A sites across multiple cell lines and
tissues.

2. Materials and Methods
2.1 Benchmark Dataset

The dataset used in this study was derived from the
MST-m6A method, with raw data originally generated by
CLSM6A [39]. CLSM6A integrates m6A RNA modifi-
cation sites from the same cell lines and tissues in Homo
sapiens, drawing from m6A-Atlas [40]—a comprehensive,
high-confidence knowledgebase of experimentally vali-
dated m6A sites identified by base-resolution analysis—
and maps these sites to the reference genome. Importantly,
the resulting RNA sequences are represented in DNA cod-
ing format, where uracil (U) is replaced by thymine (T),
since all sites are anchored to genomic DNA coordinates.
The DRACH motif was then applied to filter candidate se-
quences. To construct a balanced dataset, the authors gen-
erated reliable negative samples for each cell line and tissue
according to the following criteria: (i) no negative sample
contained any known m6A site; (ii) each negative site was
located at least 200 nucleotides away from all positive sites;
and (iii) negative sequences did not contain DRACH mo-
tifs. Each positive or negative site was represented by a
201-nucleotide sequence centered on adenine (A). Redun-
dant sequences with >80% similarity were removed using
CD-HIT [41]. In total, 11 datasets were established, com-
prising 8 cell lines (A549, CD8T, HCT116, HeLa, HEK293,
HEK293T, HepG2, and MOLM13) and 3 tissues (brain,
kidney, and liver). Each dataset was randomly split at a
9:1 ratio, with the larger portion used for training and the
smaller portion reserved for evaluation. A detailed break-
down of these datasets is provided in Table 1. The ta-
ble summarizes all 11 datasets, each of which is balanced
with an equal number of positive and negative samples.
Model training follows a five-fold cross-validation strategy,
in which one-fifth of the training portion is used as the val-
idation set in each fold. All sequences are fixed at 201 nu-
cleotides in length; accordingly, a window size of 201 is
used during preprocessing and encoding to ensure consis-
tent input representation.

2.2 Construction of DT-m6A Framework

This study proposes a novel deep learning-based
model, DT-m6A, designed to accurately predict RNA m6A
modification sites across specific cell lines and tissues. As
illustrated in Fig. 1, DT-m6A adopts an integrated multi-
module architecture consisting of four components: (i) a se-
quence encoding and initial convolutional module that ex-
tracts local features from raw sequences; (ii) a densely con-
nected network (DenseNet) module that enhances feature
representation through dense skip connections, enabling ef-
ficient feature reuse; (iii) a lightweight Transformer module
that captures long-range dependencies; and (iv) a classifica-
tion module that generates the final predictions. The model
combines local and global feature extraction in a compu-
tationally efficient manner and leverages conserved motif
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Fig. 1. Overview of the DT-m6A model. (A) RNA sequences are encoded using NCP and fed into the model’s initial convolutional
layer. (B) DenseNet module: composed of four DenseBlocks and three Transition Layers, responsible for local feature extraction. (C)
Transformer module: composed of multi-head self-attention, a feed-forward network, and batch normalization layers. (D) Classification
layer: a fully connected layer that outputs the final prediction results. Created using draw.io (https://app.diagrams.net/). NCP, nucleotide
chemical property; m6A, N6-methyladenosine.

Table 1. Distribution of the benchmark data set.

Dataset
Train Independent

Total
Positive Negative Positive Negative

A549 8418 8400 926 944 18,688
Brain 3521 3532 398 387 7838
CD8T 11,147 11,086 1205 1266 24,704
HCT116 3650 3673 419 396 8138
HEK293 7402 7395 819 826 16,442
HEK293T 39,845 39,925 4472 4392 88,634
HeLa 12,894 12,877 1424 1441 28,636
HepG2 6366 6345 696 717 14,124
Kidney 3044 3079 358 323 6804
Liver 1411 1421 163 153 3148
MOLM13 13,746 13,723 1515 1538 30,522

structures to enable effective transfer of learned features
across datasets.

2.2.1 Sequence Encoding and Initial Feature Extraction
Module

The input length is fixed at 201 nt because all samples
share the same length; this ensures precise alignment and

avoids artificial padding or truncation that may introduce
noise. To convert RNA sequences into numerical feature
vectors, we employ the nucleotide chemical property (NCP)
encoding proposed by Bari et al. [42]. Each nucleotide
is represented by a three-dimensional vector capturing in-
trinsic chemical properties: ring structure, hydrogen bond
strength, and functional group type. RNA sequences are
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expressed using DNA symbols (A, T, C, G), with T replac-
ing U without altering chemical properties. Specifically,
pyrimidines (C, T) are encoded as 0 and purines (A, G) as
1 for ring structure; strong (C, G) and weak (A, T) hydro-
gen bonds are encoded as 0 and 1, respectively; keto (G,
T) and amino (A, C) groups are encoded as 0 and 1. These
encoding rules can be expressed as:

R (B)

{
0, ifB ∈ {C, T}
1, ifB ∈ {A,G}

H (B)

{
0, ifB ∈ {C,G}
1, ifB ∈ {A, T}

F (B)

{
0, ifB ∈ {G,T}
1, ifB ∈ {A,C}

(1)

In this way, each nucleotide is mapped to a three-
dimensional feature vector, denoted as:

V (B) = [R(B) H(B) F (B)] (2)

where the three dimensions correspond to the nucleotide’s
ring structure, hydrogen bond strength, and functional
group, respectively. Accordingly, the four bases can be rep-
resented as: 

V (A) =
[
1 1 1

]
V (G) =

[
1 0 0

]
V (T ) =

[
0 1 0

]
V (C) =

[
0 0 1

] (3)

The NCP encoding represents nucleotides A, G, T, and
C as dense three-dimensional vectors (A = [1, 1, 1], G = [1,
0, 0], T = [0, 1, 0], and C = [0, 0, 1]). Compared with one-
hot encoding (A = [1, 0, 0, 0], G = [0, 1, 0, 0], T = [0, 0,
1, 0], and C = [0, 0, 0, 1]), NCP provides a more compact
and less sparse representation while preserving chemically
meaningful similarities between nucleotides. This dense
encoding facilitates the learning of sequence motifs rele-
vant to m6Amodification and improves feature interactions
in downstream models.

Given that each sequence contains 201 nucleotides
and each nucleotide is encoded as a three-dimensional vec-
tor, an RNA sequence is represented as a 3 × 201 feature
matrix. The dimension “3” corresponds to the three chemi-
cal property features and is therefore used as the input chan-
nel number of the initial convolutional layer. This feature
matrix is then passed through the initial convolutional layer,
which employs 32 convolution kernels of size 1 × 3 to
extract preliminary local sequence features, providing the
foundation for subsequent deep feature learning.

2.2.2 DenseNet Model

DenseNet (Densely Connected Convolutional Net-
works) [43] is a deep convolutional architecture with dense
connectivity, promoting feature reuse and efficient feature

extraction. In lysine succinylation site prediction, Wang et
al. [44] proposedMDCAN-Lys, which combines DenseNet
with CBAMmodules to capture local sequence patterns and
emphasize key regions. Similarly, Jia et al. [45] devel-
oped i5mC-DCGA, integrating an improved DenseNet, Bi-
GRU, and self-attention to progressively extract local fea-
tures, model sequence dependencies, and focus on key sites.

The classical Residual Network (ResNet) [46] miti-
gates the vanishing gradient problem through skip connec-
tions implemented via element-wise addition, where the
output of a residual block is defined as:

y = F (x) + x (4)

However, such additive skip connections may lead to
the gradual attenuation of shallow features in deeper layers.
To enable more effective feature reuse, DenseNet extends
this concept by introducing dense connections, in which the
input to the i-th layer is the concatenation of feature maps
from all preceding layers:

xi = Hi(x0, x1, · · ·xi−1) (5)

whereHi denotes a composite transformation consisting of
convolution, normalization, and nonlinear activation.

Architecturally, DenseNet comprises DenseBlocks
and Transition Layers. DenseBlocks facilitate extensive
feature reuse through dense connections, while Transi-
tion Layers, placed between adjacent DenseBlocks, reduce
feature-map dimensionality and compress channel num-
bers. The detailed structures of DenseBlocks and Transition
Layers are illustrated in Figs. 2,3.

Fig. 2. The structure of DenseBlock. The input to each convolu-
tional layer is constructed by concatenating all feature maps from
the previous layers. Created using draw.io (https://app.diagrams
.net/).
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Fig. 3. The structure of Transition Layer. The feature map
is compressed in both channel number and spatial dimensions
through 1 × 1 convolution followed by pooling. Created using
draw.io (https://app.diagrams.net/).

Five-fold cross-validation experiments across all
datasets showed a consistent performance improvement
(ACC and MCC) when increasing the number of Dense-
Block from 1 to 4. This trend suggests that deeper dense
feature propagation enhances the model’s ability to capture
motif-related patterns, and thus we selected four Dense-
Blocks as the default configuration. The hyperparameter
settings of theDenseBlock are summarized in Table 2. Each
dense block comprises 3 convolutional layers and each con-
volutional layer applied a kernel size of 1 × 3 to capture
local motif patterns and growth rate is 32, while each tran-
sition layer consists of a 1 × 1 convolutional layer (com-
pression rate θ = 0.5) followed by a 1 × 2 max-pooling
layer with a stride of 2 which can compress channel dimen-
sions and reduce redundancy while maintaining computa-
tional efficiency.

Table 2. Description of the hyperparameters of the
DenseBlock.

Parameters Number

Dense block 4
Convolution layer number of a dense block 3
Convolution kernel size 3
Growth rate 32
Dropout ratio 0.2

2.2.3 Transformer Module

The Transformer model [47], based on self-attention,
efficiently captures long-range dependencies and has been
applied in nucleotide modification prediction. In epigenetic
research, Fu et al. [48] introduced it for m5C site recog-
nition in the trans-m5C framework, using multi-head self-
attention and feedforward networks to model complex po-
sitional interactions. Building on this, our study incorpo-
rates a Transformer module—comprising multi-head self-

attention and a feedforward network (Fig. 1C)—to enhance
feature extraction for m6A site prediction.

The multi-head self-attention mechanism, illustrated
in Fig. 4, is formulated as:

MultiHead (M) = Concatenate (Head1, Head2,…Headi)

W o, i = 1, 2…h

(6)

whereM ∈ Rdlen×dmodel denotes the input feature map, is
the number of attention heads, andW o ∈ Rdmodel×dmodel is
a learnable projection matrix. Each attention head is com-
puted as:

Headi = AttentioniVi = softmax((
QiK

T
i√

dk
), dim = −1)Vi

(7)

where dk = dmodel/h, and

Qi = MW q
i ,Ki = MWK

i , Vi = MW v
i (8)

withW q
i ,W

k
i ,W

v
i ∈ Rdmodel×dk .

Following the attention module, a feedforward neural
network (FFN) is applied to further transform the attention-
weighted features:

FFN (x) = ReLU (xW1 + b1)W2 + b2 (9)

whereW1 ∈ Rdmodel×dff ,W2 ∈ Rdff×dmodel .
Each sublayer is wrapped with a residual connection

followed by normalization to improve training stability and
preserve original feature information:

BatchNorm(x + Sublayer(x)) (10)

where Sublayer(·) represents either the multi-head self-
attention or the FFN module. The detailed hyperparameter
settings of the Transformer are summarized in Table 3.

Table 3. Description of the hyperparameters of the
Transformer.

Parameters Number

Encoder layer 1
Attention heads 5
Dimensions of input 25
Hidden Dimensions of Feedforward Networks 184

2.2.4 Classification Module
The classification module consists of a three-layer

multilayer perceptron (MLP), as illustrated in Fig. 1D. Fea-
tures extracted by the DenseNet and Transformer modules
are flattened into a one-dimensional vector, which serves as
the input to the first layer of the MLP. The first, second, and
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Fig. 4. Multi-head self-attention mechanism. The feature map is first split into multiple sub-feature maps of equal size, which are pro-
cessed in parallel through self-attention. The outputs are then concatenated to reconstruct a new feature map, which is finally transformed
linearly before being output. Created using draw.io (https://app.diagrams.net/).

third layers contain 4600, 184, and 2 neurons, respectively.
The 4600-dimensional feature vector results from flatten-
ing the DenseNet-Trans output tensor of size [batch_size,
184, 25], where 25 is obtained after three pooling opera-
tions applied to the 201-nt input (201→ 100→ 50→ 25).
The MLP first reduces this representation and then projects
it back to the 184-channel latent space before outputting
class probabilities, ensuring efficient compression without
losing dense feature interactions encoded by the CNN [49].
To mitigate overfitting, a dropout layer is applied between
the first and second layers. Model training is performed
using the AdamW optimizer in conjunction with the cross-
entropy loss function, which quantifies the discrepancy be-
tween the predicted class probabilities and the ground truth
labels. The cross-entropy loss is defined as:

Loss = − 1

N

∑N

i

∑M

j
yij log (pij) (11)

where N is the number of sequence samples; M is the num-
ber of classes; yij ∈ {0, 1} denotes whether the sample i
belongs to class j (with yij = 1 if the sample i belongs to
category j, otherwise yij = 0); pij ∈ (0, 1) represents the
predicted probability of sample i being assigned to class j,
and log(.) is the natural logarithm.

2.3 Performance Evaluation Metrics

To evaluate the performance of the proposed model,
several metrics were employed, including accuracy (ACC)
[50], precision (PRE), recall (REC), F1 score (F1), and
Matthews correlation coefficient (MCC) [51]. These met-
rics are formally defined as follows:

ACC =
TP + TN

TP + TN + FP + FN
(12)

PRE =
TP

TP + FP
(13)

REC =
TP

TP + FN
(14)

F1 = 2× PRE ×REC

PRE +REC
(15)

MCC =
TP× TN− FP× FN√

(TP+ FP)× (TP+ FN)× (TN+ FP)× (TN+ FN)
(16)

where TP denotes true positives (the number of m6A sites
correctly predicted as positive), TN true negatives (the
number of non-m6A sites correctly predicted as negative),
FP false positives (the number of non-m6A sites incor-
rectly predicted as positive), and FN false negatives (the
number of m6A sites incorrectly predicted as negative).
In addition, for the 5-fold cross-validation experiments,
the performance of each fold was further assessed using
the area under the receiver operating characteristic curve
(AUC), which serves as a standard metric for quantifying
the model’s classification ability across different folds.

2.4 Training Details

All models were implemented in PyTorch
2.0.0+cu11.8 (Meta AI, Menlo Park, CA, USA) and
trained on a single NVIDIA RTX 4080 GPU. The AdamW
optimizer was used for all experiments. In five-fold
cross-validation, the random seed was fixed to 42. Hyper-
parameters were selected via randomized grid search, with
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Fig. 5. Five-fold cross-validation analysis of different sequence encoding schemes across diverse datasets. Each panel presents the
mean performance and corresponding standard deviation for a specific cell line or tissue, including Liver, Brain, Kidney, HEK293, HeLa,
CD8T, A549, MOLM13, HEK293T, HCT116, and HepG2. Blue, orange, and green bars represent NCP + one-hot, one-hot, and NCP
encoding schemes, respectively. Generated using Python 3.10 (Python Software Foundation, Wilmington, DE, USA).

batch size ∈ [16, 32, 64], learning rate ∈ [0.0001, 0.0002,
0.0003], and weight decay ∈ [0.01, 0.001, 0.0001]. The
hyperparameter combination yielding the best validation
performance was selected. No learning rate scheduler was
applied. Training was conducted for up to 50 epochs with
early stopping based on validation performance (patience
= 10). A dropout rate of 0.2 was applied throughout the
network.

3. Results and Discussion
3.1 Analysis of Model Structure

Before being fed into a neural network, nucleotide se-
quences must be transformed into a computable numerical
representation. To identify a suitable encoding scheme, we
compared three commonly used representations—one-hot,
NCP, and combined NCP + one-hot encoding. Each strat-
egy was evaluated using five-fold cross-validation to as-
sess its impact on model performance (Fig. 5). The results
show that NCP encoding achieves slightly higher ACC and

MCC scores across most datasets compared with one-hot
and combined NCP + one-hot encoding. Therefore, NCP
was adopted in this study as an empirically effective and
computationally efficient representation.

In addition, NCP encoding provides a more compact
and dense representation than one-hot encoding, enabling
the model to capture intrinsic physicochemical properties
of nucleotides while reducing input sparsity.

To systematically evaluate the impact of the number
of Dense Blocks in the DenseNet architecture on model
performance, we conducted a series of comparative exper-
iments by constructing networks with 1, 2, 3, and 4 Dense
Blocks. For each configuration, we performed five-fold
cross-validation on every cell line or tissue and computed
the mean and standard deviation of the performance metrics
across all folds. As shown in Fig. 6, the model achieves su-
perior performance across multiple datasets when the num-
ber of Dense Blocks is set to 4, with both accuracy (ACC)
and Matthews correlation coefficient (MCC) reaching op-
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Fig. 6. Five-fold cross-validation analysis of DenseNet architectures with varying numbers of Dense Blocks across diverse cell
lines and tissues. Each panel presents the mean performance and corresponding standard deviation for a specific cell line or tissue,
including Liver, Brain, Kidney, HEK293, HeLa, CD8T, A549, MOLM13, HEK293T, HCT116, and HepG2. Blue, orange, green, and
red bars represent architectures with 1, 2, 3, and 4 Dense Blocks, respectively. Generated using Python.

timal values. Notably, the model exhibits a monotonic im-
provement in overall performance as the number of Dense
Blocks increases from 1 to 4. This trend is reflected in con-
sistent gains in both accuracy (ACC) and the Matthews cor-
relation coefficient (MCC), with particularly pronounced
enhancements observed in specific datasets such as liver,
HeLa, CD8T, A549, MOLM13, HCT116T, HCT116, and
HepG2. Although the improvement in ACC is relatively
modest for a few datasets (e.g., brain, kidney and HEK293)
when the number of Dense Blocks is set to four, the model
overall maintains strong robustness. These results demon-
strate that deeper DenseNet architectures with four Dense
Blocks are more effective in capturing complex feature rep-
resentations, thereby enabling more robust and reliable pre-
dictions across diverse datasets. However, model complex-
ity must also be considered: as the number of Dense Blocks
increases, the parameter size expands substantially, lead-
ing not only to higher computational costs but also to a
greater risk of overfitting. In addition, an excessive num-

ber of dense blocks will lead to more transition layers, caus-
ing the feature maps to be progressively compressed from
the initial sequence length of 201 to a single-digit dimen-
sion, thereby limiting the amount of information the model
can learn. To address this, we set the maximum num-
ber of Dense Blocks to four. This configuration preserves
strong feature extraction capabilities while mitigating po-
tential drawbacks such as overfitting caused by excessive
complexity.

In addition, we compared two commonly used nor-
malization strategies within the Transformer module—
LayerNorm and BatchNorm—to assess their suitability for
m6A site prediction. As shown in Fig. 7, BatchNorm con-
sistently outperformed LayerNorm across all 11 datasets,
with average improvements of 1.9% in ACC and 3.9% in
MCC. In our ablation experiments, models using Batch-
Norm exhibit better performance, providing empirical sup-
port for its suitability in this task-specific Transformer de-
sign.
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Fig. 7. Five-fold cross-validation analysis of Transformer architectures with different normalization strategies across diverse cell
lines and tissues. Each panel reports the distribution of performance metrics for models employing different normalization strategies in
a specific cell line or tissue, including Liver, Brain, Kidney, HEK293, HeLa, CD8T, A549, MOLM13, HEK293T, HCT116, and HepG2.
Green and orange violins represent LayerNorm and BatchNorm, respectively. Generated using Python.

Our decision to replace LayerNorm with BatchNorm
is primarily motivated by the specific characteristics of the
m6A prediction task and the overall design of our model.
First, all input sequences have a fixed and relatively short
length (201 nucleotides). Compared with variable-length
natural language inputs, this leads to more consistent fea-
ture distributions across samples. Second, our Transformer
module is intentionally designed to be lightweight, con-
sisting of only a single encoder layer, which reduces the
depth-related instabilities that typically require LayerNorm
in deeper Transformer models. Third, the convolutional
backbone produces relatively stable intermediate represen-
tations, allowing BatchNorm to effectively improve gradi-
ent flow and enhance training stability under this setting.

To ensure robustness, five-fold cross-validation was
conducted with randomized grid search for hyperparameter
tuning, resulting in different batch sizes across folds. Mul-
tiple random seeds were used, and training samples were
randomly shuffled in each run. Despite these variations in

batch-related settings, the BatchNorm-based Transformer
consistently outperformed its LayerNorm-based counter-
part across all folds, indicating that the observed improve-
ment is not an artifact of batch effects or sample ordering.

These findings suggest that, under fixed-length and
balanced datasets, BatchNorm is a robust and effective nor-
malization strategy for shallow Transformer modules in
m6A prediction tasks.

Finally, we also added different attention mechanisms
after DenseNet to compare the performance of different at-
tention mechanisms for m6a site prediction. Experimental
results (Fig. 8) reveal that Transformer-based attention con-
sistently outperforms both self-attention and CBAM across
the majority of datasets, particularly in terms of Recall and
F1 score, indicating a stronger capability in capturing the
complex contextual dependencies of m6A sequence pat-
terns. While self-attention achieves competitive perfor-
mance in some datasets (e.g., CD8T and HCT116), its over-
all stability is inferior to that of Transformer. In contrast,
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Fig. 8. Five-fold cross-validation analysis of different attention mechanisms integrated with DenseNet across diverse cell lines
and tissues. Each panel shows the distribution of performance metrics for models incorporating different attention mechanisms in a
specific cell line or tissue, including Liver, Brain, Kidney, HEK293, HeLa, CD8T, A549, MOLM13, HEK293T, HCT116, and HepG2.
Green, orange, and blue boxes represent CBAM, self-attention, and Transformer-based attention, respectively. Generated using Python.
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Fig. 9. Five-fold cross-validation was performed on the training datasets across diverse cell lines and tissues, with receiver oper-
ating characteristic (ROC) curves evaluated on the validation set of each fold. Each panel displays the ROC curves from the five
folds together with the mean ROC curve for a specific cell line or tissue: (A) Liver, (B) Brain, (C) Kidney, (D) HEK293, (E) HeLa, (F)
CD8T, (G) A549, (H) MOLM13, (I) HEK293T, (J) HCT116, and (K) HepG2. Generated using Python.

CBAM yields the weakest results, especially in MCC, sug-
gesting its limited ability to discriminate positive and neg-
ative sites. These findings highlight that advanced multi-
head Transformer attention provides a more suitable induc-
tive bias for biological sequence modeling, as it can better
represent long-range dependencies and heterogeneous se-
quence contexts inherent in m6A modification prediction.

The DenseNet–Transformer combination provides
complementary advantages for m6A site prediction.
Specifically, the DenseNet module facilitates dense
feature reuse and progressive enrichment of local motif
representations across layers, enabling the extraction of
more informative and hierarchically refined local sequence
patterns. In contrast, the Transformer excels at modeling
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Fig. 10. Comparison of average performance metrics (ACC, MCC, PRE, REC, and F1) with corresponding standard deviations
obtained from five-fold cross-validation of the DT-m6A model across eleven datasets. Each colored bar represents a specific tissue
or cell line, and the error bars denote the standard deviation across folds. Generated using Python.

long-range dependencies and global contextual interac-
tions that influence methylation outcomes. By providing
the Transformer with these deeply fused convolutional
representations rather than shallow low-level features,
DT-m6A effectively integrates both fine-grained local
motif information and broader sequence context. This
complementary interaction helps capture the distributed
regulatory signals underlying m6A modification.

3.2 Performance of DT-m6A on 5-Fold Cross Validation

To comprehensively evaluate the prediction perfor-
mance of theDT-m6Amodel, we conducted five-fold cross-

validation on each dataset. Specifically, each dataset was
randomly partitioned into five equal, mutually exclusive
subsets (F1–F5). In each iteration, one subset was used as
the validation set, while the remaining four subsets were
used for training, ensuring that every sample was included
in both training and validation at least once. During this
process, we recorded the prediction results for each val-
idation subset and plotted the corresponding ROC curves
(Fig. 9). The mean and standard deviation of the area un-
der the ROC curve (AUC) across all folds were then calcu-
lated to quantify the model’s stability and consistency under
different data splits. Experimental results demonstrate that
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Fig. 11. Performance of DT-m6A across diverse cell lines and tissues, as evaluated using independent datasets. Each panel presents
the performance metrics of DT-m6A on a specific cell line or tissue: Liver, Brain, Kidney, HEK293, HeLa, CD8T, A549, MOLM13,
HEK293T, HCT116, and HepG2. Generated using Python.

DT-m6A exhibits significant performance variability across
different cell types and tissues. Based on AUC values, its
performance can be categorized into three tiers: high (AUC
>85%, encompassing Liver, Brain, Kidney, MOLM13),
moderate (70% < AUC < 85%, encompassing HEK293,
HeLa, CD8T, A549, HEK293T), and low (AUC<70%, en-
compassing HCT116, HepG2). Notably, DT-m6A demon-
strates strong performance on tissue-specific datasets, par-
ticularly excelling on the Liver datasets, with the highest
AUC among tissue datasets (0.91 ± 0.02). Among all
cell lines, the model achieved its best performance on the
MOLM13 dataset, with an AUC of 0.86 ± 0.00. Further-
more, we calculated the mean and standard deviation of
ACC, MCC, PRE, ROC and F1 indicators for each data set
under five-fold cross validation (Fig. 10). These results col-
lectively indicate that the performance of m6A prediction
models is strongly tissue- and cell-type-specific.

3.3 Performance of DT-m6A on the Independent Test
Datasets

To rigorously evaluate the robustness capability of the
DT-m6A framework, we assessed its performance across
multiple independent datasets (Fig. 11). Using a five-fold
cross-validation strategy, the model trained in each fold
was treated as an individual base learner. Feature repre-
sentations extracted by each base learner were projected
using UMAP (Supplementary Figs. 1–5). In addition,
we applied K-means clustering to the UMAP-reduced fea-
tures and computed the corresponding Silhouette scores
(Supplementary Table 1). Comparatively higher Silhou-
ette values were observed for the liver, brain, and kid-
ney datasets, indicating better feature separability in these
tissues, whereas lower Silhouette values were found for
cell line datasets, suggesting reduced separability in these
cases. Subsequently, a hard-voting ensemble of the five
base learners’ predictions was employed to produce the fi-
nal outputs on the independent test sets, followed by a com-
prehensive performance analysis. The experimental results
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Fig. 12. Performance comparison between the average performance of the five base learners and the ensemble hard-voting results
across diverse cell lines and tissues. Each panel presents the performance metrics of the DT-m6Amodel for a specific cell line or tissue,
including Liver, Brain, Kidney, HEK293, HeLa, CD8T, A549, MOLM13, HEK293T, HCT116, and HepG2. Generated using Python.

demonstrate that the model’s performance on the indepen-
dent test set is highly consistent with that observed dur-
ing cross-validation. In particular, models achieving higher
AUC values on validation sets also maintained strong over-
all performance on independent datasets across multiple
metrics, including ACC, MCC, Precision, Recall, and F1-
score. Based on classification accuracy (ACC) on the
independent test sets, the performance of DT-m6A can
be categorized into three tiers: high (ACC >85%, en-
compassing Liver, Brain, and Kidney tissues), moderate
(70% < ACC < 85%, encompassing HEK293, CD8T,
A549, MOLM13, and HEK293T cell lines), and low (ACC
<70%, encompassing HeLa, HCT116, and HepG2 cell
lines). DT-m6A achieves higher performance on tissue-
specific datasets (Liver, Brain, and Kidney), moderate per-
formance on several cell-line datasets (HEK293, CD8T,
A549, MOLM13, and HEK293T), and relatively lower ac-
curacy on HeLa, HCT116, and HepG2. This performance
gap reflects dataset-dependent variability and highlights
that prediction difficulty differs across cell lines and tissues.

Interestingly, DT-m6A also demonstrated strong per-
formance on tissue-specific datasets, showing particularly
high accuracy on the kidney dataset, where it achieved
ACC, MCC, and F1-score values of 0.8884, 0.7845, and
0.9013, respectively. Among all evaluated cell lines, DT-
m6A again achieved the best performance on theMOLM13
dataset, with ACC, MCC, and F1 scores of 0.8126, 0.6270,
and 0.8176, respectively. Consistent with the validation re-
sults observed during training, DT-m6A exhibited distinct
performance between HEK293 and HEK293T, despite both
being derived from the same parental cell line, achieving
ACC values of 0.756 and 0.724, respectively. This strong
alignment between validation and independent test perfor-
mance further underscores the stability and reliability of the
DT-m6A framework.

Although the liver, brain, and kidney datasets are sub-
stantially smaller than the cell-line datasets, they neverthe-
less exhibit higher predictive accuracy. To ensure that this
observation was not attributable to data leakage or overfit-
ting, we performed additional quality checks. Sequence-
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Fig. 13. Performance of DT-m6A on independent test datasets compared with state-of-the-art methods in terms of accuracy
(ACC) and Matthews correlation coefficient (MCC). Each panel presents the comparative performance of DT-m6A and state-of-
the-art approaches on a specific independent test dataset, including Liver, Brain, Kidney, HEK293, HeLa, CD8T, A549, MOLM13,
HEK293T, HCT116, and HepG2. Generated using Python.

Fig. 14. Tissue and Cell-specific models, which are trained on their respective datasets (columns) and tested on both their own
and other independent cell/tissue datasets (rows), have their performance assessed usingMatthews correlation coefficient (MCC)
and accuracy (ACC). Generated using Python.

15

https://www.imrpress.com


Table 4. Performance comparison between DT-m6A and state-of-the-art methods.
Dataset Method ACC MCC PRE REC F1

Liver
CLSM6A 0.8544 0.7099 0.8343 0.8957 0.8639
MST-m6A 0.8639 0.7342 0.8225 0.9386 0.8767
DT-m6A 0.8766 0.7614 0.8298 0.9571 0.8889

Brain
CLSM6A 0.8548 0.7197 0.8047 0.9422 0.8681
MST-m6A 0.8713 0.7476 0.8337 0.9321 0.8801
DT-m6A 0.8752 0.7657 0.8138 0.9774 0.8881

Kidney
CLSM6A 0.8708 0.7484 0.8277 0.9525 0.8857
MST-m6A 0.8855 0.7717 0.8645 0.9273 0.8948
DT-m6A 0.8884 0.7845 0.8422 0.9693 0.9013

HEK293
CLSM6A 0.7301 0.4639 0.7040 0.7900 0.7445
MST-m6A 0.7502 0.5012 0.7361 0.7765 0.7557
DT-m6A 0.7562 0.5126 0.7500 0.7656 0.7577

HeLa
CLSM6A 0.6716 0.3435 0.6804 0.6397 0.6594
MST-m6A 0.6789 0.3588 0.6941 0.6327 0.6620
DT-m6A 0.6848 0.3696 0.6823 0.6847 0.6835

CD8T
CLSM6A 0.7633 0.5279 0.7422 0.7884 0.7646
MST-m6A 0.7746 0.5490 0.7664 0.7734 0.7699
DT-m6A 0.7750 0.5498 0.7666 0.7743 0.7704

A549
CLSM6A 0.7636 0.5274 0.7701 0.7451 0.7574
MST-m6A 0.7834 0.5692 0.7592 0.8239 0.7902
DT-m6A 0.7898 0.5817 0.7668 0.8272 0.7958

MOLM13
CLSM6A 0.7894 0.5790 0.7813 0.7993 0.7902
MST-m6A 0.8140 0.6280 0.8080 0.8198 0.8138
DT-m6A 0.8126 0.6270 0.7909 0.8462 0.8176

HEK293T
CLSM6A 0.6929 0.3885 0.7183 0.6438 0.6790
MST-m6A 0.7201 0.4405 0.7121 0.7473 0.7292
DT-m6A 0.7248 0.4502 0.7138 0.7589 0.7357

HCT116
CLSM6A 0.5853 0.1695 0.5948 0.6062 0.6005
MST-m6A 0.6098 0.2231 0.6361 0.5632 0.5974
DT-m6A 0.6294 0.2585 0.6410 0.6348 0.6379

HepG2
CLSM6A 0.6136 0.2267 0.6116 0.5905 0.6009
MST-m6A 0.6461 0.2919 0.6454 0.6250 0.6350
DT-m6A 0.6539 0.3092 0.6728 0.5790 0.6224

Average
CLSM6A 0.7445 0.4913 0.7335 0.7630 0.7467
MST-m6A 0.7634 0.5287 0.7525 0.7782 0.7641
DT-m6A 0.7697 0.5427 0.7518 0.7976 0.7726

p-value 0.0023 0.0012 0.8778 0.0780 0.0099
Performance comparison between DT-m6A and state-of-the-art methods on in-
dependent test datasets, as measured by ACC, precision (PRE), recall (REC), F1
score (F1), and MCC. Bold values indicate the best performance for each metric
across diverse cell lines and tissues. The p-values represent the statistical sig-
nificance of performance differences between DT-m6A and MST-m6A across all
evaluation metrics.

level deduplication confirmed that there are no overlapping
sequences between the training and testing sets. Moreover,
themodel demonstrated consistently strong and comparable
performance on both sets, suggesting that the high accuracy
is not caused by overfitting. Motif analysis further revealed
that the tissue datasets share highly similar RRACH-like

motif structures, resulting in lower sequence diversity com-
pared with that of themore heterogeneous cell-line datasets.
This motif redundancy likely simplifies the prediction task,
which plausibly explains the relatively higher accuracy ob-
served on these smaller datasets.
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Fig. 15. Visualization of k-mer sequence logos for positive samples across three tissues and eight cell lines (Liver, Brain, Kidney,
HEK293, HeLa, CD8T, A549, MOLM13, HEK293T, HCT116, and HepG2) generated by kpLogo. Created using the web tool
available at http://kplogo.wi.mit.edu/manual.html.

To further examine the effectiveness of our ensemble
strategy, we compared the performance obtained by aver-
aging the prediction performance of the five base learners
with that produced by the hard-voting ensemble (Fig. 12).
The hard-voting approach consistently delivered superior
results, indicating that integrating discrete model deci-
sions can better exploit the complementary characteristics
learned by different models and enhance overall predictive
robustness.

3.4 Performance Comparison Between DT-m6A and the
State-of-the-Art Predictors on the Same Independent
Datasets

We systematically compared DT-m6A with four state-
of-the-art m6A modification site predictors, namely MST-
m6A, CLSM6A, im6A-TS-CNN, and TS-m6A-DL. The
performance results of these predictors were derived from
previous studies [34]. As shown in Table 4, we focused on

comparing the prediction performance of three predictors
(DT-m6A, MST-m6A, and CLSM6A) based on five core
metrics: accuracy (ACC), Matthews correlation coefficient
(MCC), precision (PRE), recall (REC), and F1 score. Ad-
ditionally, Fig. 13 further presents the comprehensive com-
parison results between DT-m6A and all four comparative
methods regarding the two key metrics of ACC and MCC.

DT-m6A exhibited excellent predictive performance
across multiple independent datasets. In tissue-specific
datasets (including those of liver, brain, and kidney), the ac-
curacy (ACC) and Matthews correlation coefficient (MCC)
of DT-m6A were significantly superior to those of the
CLSM6A and MST-m6A methods. Specifically, compared
withMST-m6A,DT-m6A improvedACC by 0.29%–1.27%
andMCC by 1.28%–2.72%. In comparison with CLSM6A,
it enhanced ACC by 1.76%–2.22%, while the improvement
in MCC was more significant, reaching 3.61%–5.15%.
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Fig. 16. Distinct m6A sequence motifs identified from the positive samples predicted by the model on tissue and cell line test sets
(Liver, Brain, Kidney, HEK293, HeLa, CD8T, A549, MOLM13, HEK293T, HCT116, and HepG2). The motif window was set to 7
bp, and the prediction threshold for positive samples was 0.5. Generated using Python.

DT-m6A also exhibited strong performance in cell line
dataset analyses. In the six cell lines (HEK293, HeLa,
A549, HEK293T, HCT116, and HepG2), DT-m6A outper-
formed the other two methods: compared with MST-m6A,
its ACC improved by 0.47%–1.96% and MCC by 0.97%–
3.54%; relative to CLSM6A, ACC increased by 1.32%–
4.41% and MCC by 2.61%–8.9%.

Although DT-m6A achieves consistent improvements
on most independent datasets, its performance on the CD8T
and MOLM13 datasets is comparable to that of MST-m6A.
The comparable performance of DT-m6A and MST-m6A
on CD8T and MOLM13 reflects the dataset-dependent ef-
fectiveness of sequence-based m6A prediction. DT-m6A

relies exclusively on nucleotide chemical property (NCP)
encoding, and sequence-only features may be less discrim-
inative in cell types with higher regulatory complexity.
Moreover, the model does not incorporate RNA secondary
structure or epigenomic context, which may play a more
prominent role in m6A regulation in certain datasets. Po-
tential dataset biases, including differences in sample size,
class balance, and experimental noise, may further influ-
ence performance comparisons. Finally, although Batch
Normalization improves training stability, its reliance on
batch-level statistics may limit effectiveness under het-
erogeneous sequence distributions, partially explaining the
comparable performance observed for these datasets.
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Fig. 17. A web interface for m6A site prediction is available at https://precious-robust-lynx.ngrok-free.app.

To ensure a more comprehensive and fair compari-
son, we re-trained MST-m6A and implemented three ad-
ditional baseline models, including a CNN-based model, a
DenseNet–LSTM hybrid model, and a CNN–Transformer
model. All baseline methods were evaluated using the same
five-fold cross-validation and ensemble strategy as DT-
m6A. As shown in Supplementary Table 2, DT-m6A con-
sistently achieves superior performance in terms of ACC
and MCC across all datasets compared with the baseline
models.

3.5 Cross-Model Evaluation

In this study, we employed an independent training
and testing strategy. For each tissue and cell line, a ded-
icated model was trained on its corresponding dataset to
ensure it captured the patterns present in that dataset. To
rigorously evaluate the generalization capability of these

models, we performed comprehensive independent tests.
Specifically, each trained model was assessed not only on
the test set of its source tissue or cell line but also on the test
sets of all other tissues and cell lines. This design estab-
lished a systematic framework for evaluating cross-tissue
and cross-cell-line prediction performance.

During model evaluation, we focused on two key per-
formance metrics: accuracy (ACC) and Matthews correla-
tion coefficient (MCC). All ACC and MCC values were
compiled into a confusion matrix, as shown in Fig. 14,
providing an intuitive visualization of model performance
across datasets. Consistently, the highest performance for
each test set was achieved by the model trained on the cor-
responding tissue or cell line. Combined with the motif
analysis in Fig. 15, these results indicate that the models
exhibit pronounced cross-datesets transferability primarily
due to shared sequence motif patterns. In particular, liver,
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brain, and kidney sequences contain highly similar motifs,
and models trained on these tissues achieve strong cross-
tissue predictive performance, with ACC values ranging
from 84.97% to 88.84%. Positive sequences from differ-
ent tissues exhibit highly consistent motif patterns, enabling
the model to learn robust and transferable motif representa-
tions. Similarly, models trained on five cell lines (HEK293,
HeLa, CD8T, A549, and MOLM13) demonstrate reason-
ably good cross-cell-line transferability, although the ACC
of the HeLa test set drops below 60% when evaluated us-
ing the CD8T and MOLM13 models. In contrast, the re-
maining three cell line models show limited transferability
to other datasets. Overall, these findings mainly reflect the
similarity and differences between datasets: the observed
transferability of certain tissue- or cell line-trained models
is largely driven by shared sequence motifs rather than un-
derlying biological mechanisms.

3.6 Sequence Analysis of m6A Sites

To further investigate the sequence characteristics un-
derlying m6A site prediction, we employed the kplogo tool
[52] to systematically analyze m6A-positive sequence data
derived from test sets across multiple tissues and cell lines.
The corresponding visualization results are presented in
Fig. 15. In the experimental setup, adenine (A) was posi-
tioned at the center of each RNA sequence fragment, with
100 nucleotides upstream and downstream.

At the tissue level, the liver, brain, and kidney exhib-
ited highly consistent motif characteristics. Significant en-
richment of specific k-mers was observed at positions 99–
104, with the enriched k-mer types being largely identical—
mainly GG, G, C, and A—while C was markedly depleted
at position 104. These findings indicate that the three tis-
sues share a conserved motif composition at m6A sites.
Such conservation likely reflects similar methylation recog-
nition mechanisms and may explain the strong cross-tissue
transferability of their respective models, which achieved
accuracies ranging from 84.97% to 88.84%.

In contrast, at the cell line level, the k-mer enrichment
patterns displayed both complexity and regularity across
different cell lines. Specifically, HEK293, HeLa, CD8T,
A549, and MOLM13 all showed pronounced enrichment
of specific k-mers at positions 98–103. At position 98,
HEK293, CD8T, and MOLM13 were enriched for AGG,
whereas HeLa andMOLM13 showed enrichment for TGG,
revealing distinct cell line–specific variations at this site. In
contrast, positions 99–103 demonstrated clear commonali-
ties across all five cell lines, with consistent enrichment of
k-mers such as GG, G, C, and T, indicating a high degree of
motif pattern similarity within this region. This conserved
enrichment pattern may underlie the moderate cross-cell-
line transferability observed among the correspondingmod-
els.

Additionally, the HEK293T, HCT116, and HepG2
cell lines exhibited notable k-mer enrichment signals.

HEK293T displayed pronounced enrichment of GG, G, and
C at positions 99–102. Both HCT116 and HepG2 showed
enrichment at positions 99–103, though with distinct k-mer
preferences: HCT116 was primarily enriched for GA, G, C,
and A, whereas HepG2 was enriched for AA, G, C, and A.
Moreover, all three cell lines exhibited varying degrees of
C depletion at position 103. These variations in motif com-
position likely contribute to the lower cross-cell-line trans-
ferability observed for their respective models.

Building upon these observations, we further exam-
ined the sequence motifs learned by the model itself to de-
terminewhether they alignwith experimentally derived pat-
terns. Motif analysis was performed on high-confidence
positive samples from the test set (predicted as positive by
at least three out of five models). For each predicted site,
a short window centered on the candidate position was ex-
tracted to characterize its local sequence context. The nu-
cleotide frequencies within this window were summarized
into a position frequency matrix and visualized as sequence
logos using Logomaker (Fig. 16).

Interestingly, the identified motifs exhibited distinct
tissue- and cell line–specific patterns. In liver, brain, and
kidney tissues, the identified motifs shared a common se-
quence containing the ACAmotif. This observation is con-
sistent with the results shown in Fig. 14, further demon-
strating the strong transferability of the model across these
three tissues. Similarly, in the other eight cell lines, consis-
tent common sequences were observed, all of which con-
tained the ACmotif—a finding that also aligns with Fig. 14.
The main difference between tissue and cell line motifs
was observed at position 5, where tissue motifs predom-
inantly featured an A, whereas cell line motifs exhibited
greater variability with A, T, or C. Furthermore, over 70%
of the predicted positive sequences were consistent with
the canonical RRACH motif (R = A/G, H = A/C/T), which
is widely recognized as a hallmark of m6A modification.
The strong concordance between the motifs enriched in DT-
m6A–predicted positive sites and established RRACH pat-
terns supports the biological relevance of the learned se-
quence features. Notably, a substantial proportion of pre-
dicted positives do not strictly conform to the canonical mo-
tif, suggesting that DT-m6A does not rely solely on deter-
ministic motif matching but captures broader contextual se-
quence patterns associated with m6A modification.

3.7 An Available Web Server for DT-m6A

We have developed an online tool (Fig. 17) dedicated
to m6A modification site prediction, providing researchers
with a convenient and accurate platform for sequence analy-
sis. The website supports prediction for three tissues (liver,
brain, kidney) and eight cell lines (HEK293, HeLa, CD8T,
A549, MOLM13, HEK293T, HCT116, and HepG2), com-
prehensively covering a wide range of common biological
samples and accommodating diverse experimental scenar-
ios.
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In terms of user workflow, the website is designed
with both convenience and flexibility in mind. Users first
select the relevant tissue type or cell line corresponding to
their research material, ensuring accurate background pa-
rameter settings for the prediction algorithm. Next, they
can flexibly choose an input method based on the data scale:
for single or small numbers of RNA sequences, users may
directly input sequences of any length via a text box, of-
fering an intuitive and unrestricted experience; for large-
scale analyses (such as those involving high-throughput se-
quencing data), the platform supports FASTA file uploads,
enabling efficient batch processing and greatly enhancing
analytical throughput.

Once the sequence information is submitted, the sys-
tem rapidly initiates the analysis and returns results within
a short time. Specifically, it automatically calculates and
displays the sequence length, providing users with basic se-
quence feature information, while simultaneously identify-
ing potential m6A modification sites and delivering predic-
tion outcomes with high precision.

4. Conclusion
M6A modification is a form of post-transcriptional

modification that plays a vital role in gene expression reg-
ulation and metabolism processes. Given its biological im-
portance, we proposed a deep learning model that com-
bines the feature extraction capabilities of DenseNet and the
multi-head attention mechanism of Transformer to develop
a high-precision m6A prediction tool, aiming to more accu-
rately identify m6A sites and promote epigenetic research.
DT-m6A has the following advantages: (1) DT-m6A uses
a simple and efficient nucleotide chemical property-based
coding scheme (NCP), which consists of discrete 0-1, is in-
tuitive and easy to use, and does not require complex fea-
ture engineering. In addition, NCP has more advantages
in terms of computational overhead, which helps to im-
prove the training efficiency and prediction performance of
the model. (2) DT-m6A utilizes a lightweight DenseNet–
Transformer architecture, where DenseNet achieves feature
reuse and the Transformer module models long-range de-
pendencies. Innovatively, BatchNorm is used instead of
the traditional LayerNorm in the normalization layer of the
Transformer, which significantly improves the convergence
speed and performance of the model. This hybrid design
significantly reduces computational overhead and memory
consumption, leading to improved efficiency and scalabil-
ity in large-scale m6A site prediction tasks. We have also
developed an online m6A prediction website. This plat-
form enables real-time access to and application of the DT-
m6A model and automatically predicts the corresponding
RNA sequence uploaded by the users. Users only need to
upload the sequence and click submit to obtain the m6A
site prediction results. Our analyses show that the observed
cross-datesets generalization is largely driven by the simi-
larity of m6A-associated sequence motifs across tissues and

cell-lines. These findings also imply that future work may
explicitly leverage motif-consistent datasets or incorporate
motif-aware learning strategies to further enhance the ro-
bustness and generalization capacity of m6A site prediction
models.

Although DT-m6A exhibits excellent prediction per-
formance, it also has some potential limitations. Specif-
ically, a limitation of this study is that all datasets were
derived from the CLSM6A resource. Although CLSM6A
includes diverse tissues and cell lines, at present there is
no publicly available high-quality m6A dataset with the
same sequence-resolution and label format as CLSM6A
that would allow a fully consistent evaluation. Therefore,
the generalization observed in this study should be viewed
as empirical within-dataset portability rather than verified
real-world generalization. Future work will incorporate ex-
ternal datasets comparable, once high-quality m6A annota-
tions become available. Its performance on the CD8T and
MOLM13 cell lines is comparable to that of the state-of-
the-art method MST-m6A, indicating that the model gen-
eralization ability across specific cellular contexts still re-
quires improvement. Subsequent research can be expanded
in the following directions: First, cutting-edge methods
such as self-supervised learning can be used to improve
the generalization performance and anti-interference abil-
ity of the model by incorporating more comprehensive and
diverse datasets. Secondly, we can focus on studying the
fusion strategy of RNA secondary structure characteristics
and other multimodal data, and use deep learning archi-
tectures such as graph neural networks or two-dimensional
convolution to systematically explore the intrinsic relation-
ship between nucleic acid sequences, spatial conformations
and biological functions, so as to achieve accurate analysis
of the spatial localization characteristics of m6A modifica-
tion sites and their dynamic regulatory networks.
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