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Abstract

Introduction: Epithelial-mesenchymal transition (EMT) is a fundamental biological process. During EMT, epithelial cells transition
to a mesenchymal phenotype, thereby contributing to embryonic development, tissue renewal, and cancer progression. EMT is a well-
recognized key driver of tumor invasion and metastasis. However, the transcriptional differences between the physiological and cancer-
associated EMT remain incompletely understood. Methods: In the present study, we applied an integrative framework that combined
transcriptomic profiling, functional enrichment analysis, and machine learning. The analysis was performed on 89 RNA-sequencing
datasets derived from mouse cell lines and tissues, encompassing both normal and malignant contexts. This approach aimed to identify
and prioritize genes systematically and signaling pathways associated with EMT. Results: Differential gene expression and pathway en-
richment analyses revealed an over-representation of shared core biological processes related to cell adhesion, cytoskeletal remodeling,
and morphogenesis, in both normal and cancer-associated EMT. Nonetheless, cancer-associated EMT exhibited additional enrichment
for developmental and neural-related programs, including neurogenesis and gliogenesis. Machine learning models consistently priori-
tized candidate EMT biomarkers, with greater transcriptional heterogeneity observed in cancer samples. Conclusion: Collectively, this
integrative analysis delineates distinct transcriptional profiles between malignant and physiological EMT. The enrichment of neural-
related programs in cancer-associated EMT highlights potential mechanisms that contribute to malignant cellular plasticity. In addition,
the analysis identifies candidate biomarkers for future investigation of EMT heterogeneity.

Keywords: epithelial–mesenchymal transition; gene expression profiling; neurogenesis; gliogenesis; axonogenesis; cell plasticity; can-
cer; machine learning; biomarker discovery

1. Introduction

Epithelial-mesenchymal transition (EMT) is a re-
versible cellular process in which epithelial cells lose po-
larity, tight junctions, and epithelial morphology. Dur-
ing this process, cells acquire mesenchymal traits that
promote motility and invasion [1]. The reverse process,
mesenchymal-epithelial transition (MET), reinstates ep-
ithelial characteristics such as polarity and cell-cell adhe-
sion. Together, EMT and MET are governed by intercon-
nected signaling pathways and gene regulatory networks.
These networks orchestrate the suppression of epithelial
markers like E-cadherin and upregulation of mesenchymal
markers such as vimentin and fibronectin. EMT is classi-
cally categorized in three major biological contexts: devel-
opment (Type 1), tissue repair and fibrosis (Type 2), and
cancer progression (Type 3) [1,2].

In cancer, EMT promotes tumor cell invasion, dissem-
ination, and therapeutic resistance. This occurs through the
activation of canonical signaling pathways, including TGF-

β, Wnt/β-catenin, Notch, ERK/MAPK, as well as hypoxia-
related factors, pro-inflammatory cytokines, and growth
factors. These signals collectively converge on core EMT-
associated transcription factors such as Snail, Slug, Twist,
Fra1, and ZEB1/2 [3]. Notably, multiple, often partial or
hybrid epithelial-mesenchymal states may coexist within
tumors, highlighting the dynamic and reversible nature of
EMT rather than a strict binary transition [4,5]. On the other
hand, MET contributes to the colonization of distant sites
by restoring epithelial traits that support proliferation, tis-
sue integration, and outgrowth at distant sites [6–8].

Despite its importance, the regulatory mechanisms of
EMT remain highly complex and not yet fully delineated.
Several key inquiries remain unresolved, including how the
tumor microenvironment, extracellular vesicles, and epi-
genetic modifications influence EMT. Another unresolved
question concerns how baseline epithelial and mesenchy-
mal gene expression programs differ between normal and
malignant tissues. Large gaps remain in defining themolec-
ular networks that regulate EMT in cancer [6,9].
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Fig. 1. Flowchart of the transcriptomic study selection process. GEO, Gene Expression Omnibus; EMT, epithelial-mesenchymal
transition; MET, mesenchymal-epithelial transition.

Recent studies point to significant similarities between
EMT programs and neural developmental processes such as
neural crest migration and neurogenesis [2,10]. Key EMT-
associated transcription factors, including Snail and Slug,
can activate neural-like gene expression and stemness path-
ways, especially in gliomas. High-grade gliomas often ex-
press both developmental and pluripotency markers, sug-
gesting that cancer cells may activate neural stemness pro-
grams that mimic or overlap with EMT [2]. However, it re-
mains unclear whether tumor cells transition fully into mes-
enchymal states or instead adopt intermediate hybrid phe-
notypes influenced by neural developmental signals.

Machine learning (ML) approaches have become es-
sential for biomarker discovery in EMT research due to
their ability to analyze complex, high-dimensional datasets
[11]. Widely used models include Random Forest (RF),
Support Vector Machine (SVM), and Artificial Neural
Networks (ANNs) [12]. RF is particularly useful for
both classification and feature selection, providing feature-
importance scores that help identify candidate biomarkers
from transcriptomic data [13]. SVM performs well in clas-
sifying categorical data [14], while ANNs can recognize
complex patterns within large datasets. Collectively, these
ML approaches offer strong potential for uncovering key
regulators of EMT and improving diagnostic and therapeu-
tic strategies.

The objective of this study was to systematically char-
acterize transcriptional programs associated with EMT and
MET across diverse mouse cell line and tissue models.
To this end, we integrated large-scale transcriptome data
with differential gene expression and functional enrichment
analyses to identify genes and biological pathways linked
to EMT-related transcriptional dynamics. Additionally, we
utilized machine learning models to prioritize candidate
genes in both non-malignant and cancerous contexts. By
stratifying the datasets into cancer and normal groups, we
also sought to explore potential molecular relationships be-
tween EMT, cancer progression, and neural-related path-
ways. Altogether, this integrative approach provides a com-
prehensive framework for discovering candidate genes and
regulatory networks for further investigation in tumor biol-
ogy and neuronal development.

2. Materials and Methods
2.1 Literature Mining and Data Collection

A comprehensive literature mining of PubMed was
conducted up to January 24, 2025, to identify transcrip-
tomic studies relevant to epithelial–mesenchymal transi-
tion (EMT) and mesenchymal–epithelial transition (MET).
Searches were performed using combinations of the fol-
lowing keywords: (“epithelial–mesenchymal transition” or
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“EMT”), (“mesenchymal–epithelial transition” or “MET”),
(“RNA-Seq” or “RNA sequencing”), (“transcriptome”
or “gene expression”), (“E-cadherin” or “CDH1”), and
(“ZEB1 knockdown” or “ZEB1 suppression”), follow-
ing the PRISMA (Preferred Reporting Items for System-
atic Reviews and Meta-Analyses) guidelines [15] (Fig. 1).
In parallel, the NCBI Gene Expression Omnibus (GEO)
DataSets repository (https://www.ncbi.nlm.nih.gov/gds/)
was searched in order to retrieve relevant RNA sequenc-
ing (RNA-Seq) datasets. This strategy yielded 179 mouse
RNA-Seq datasets associated with EMT and 286 datasets
associated with MET across public repositories. Follow-
ing manual screening of study descriptions, model sys-
tems, and experimental relevance, 190 datasets meeting the
predefined inclusion criteria were selected (Fig. 1). Af-
ter transcriptomic processing - including quality control,
read alignment, and differential expression analysis - each
dataset was evaluated based on the expression patterns of
key EMT/MET markers, including CDH1, SNAI1 (Snail),
ZEB1, and CDH2. Datasets that did not exhibit significant
changes in at least two marker genes, or contained fewer
than two biological replicates per condition were excluded
from further analysis. Comprehensive metadata were com-
piled to ensure consistency across datasets. These included
organism, cell line or tissue of origin, sample type, can-
cer status, experimental group, library layout, sequencing
platform, and treatment conditions. In total, 89 RNA-
Seq datasets were deemed eligible for further investigation
(Supplementary Table 1).

2.2 Gene Expression Data Analysis

The curated RNA-Seq datasets were categorized into
four groups based on biological origin: cancer cell lines (n
= 21), cancer tissues (n = 12), normal cell lines (n = 39), and
normal tissues (n = 17). This grouping was guided by ex-
perimental and biological metadata to minimize treatment-
related effects and emphasize intrinsic differences in EMT
programs across malignant and normal contexts. Raw
RNA-Seq data were downloaded from NCBI GEO via the
Sequence Read Archive (SRA) Toolkit v.3.0.0 (available
at https://github.com/ncbi/sra-tools) using the fasterq-dump
utility. The raw RNA-Seq reads underwent quality as-
sessment and preprocessing, including adapter trimming,
and filtering out low-quality reads and contaminants using
FastQC and Trimmomatic [16]. High-quality reads were
aligned to theMus musculus reference genome (GRCm39)
using HISAT v2.2.1 [17]. Datasets exhibiting poor align-
ment (<80% mapped reads) were excluded from further
analysis. Based on the alignment-quality summaries, ap-
proximately 88% of the datasets failed to meet this crite-
rion and were excluded, while the remaining ∼12% were
retained for downstream analyses. Gene-level quantifi-
cation was performed with featureCounts [18] to gener-
ate raw count and FPKM (fragments per kilobase of tran-
script per million mapped reads) matrices. Expression val-

ues were further normalized to TPM (transcripts per mil-
lion) and FPKM to account for gene length and sequencing
depth, thereby ensuring comparability across samples and
datasets.

2.3 Differential Gene Expression Analysis

Gene annotation was performed using a customized
GTF file (gencode.vM23) in which version numbers were
removed and duplicate entries were filtered out by retain-
ing only unique gene IDs. FPKM values were merged with
gene annotations to generate a unified expression matrix.
Raw count data were formatted for downstream analysis us-
ing the edgeR package v3.40.0 within the R computation
environment v4.4.1 (https://www.r-project.org). Counts
were normalized using the TMM (trimmed mean of M-
values) approach implemented in the edgeR package, and
gene-wise dispersions were estimated with the estimate-
Disp function. Differential expression analysis between
EMT and MET conditions was performed separately for
each dataset using the exactTest function. Those genes with
an absolute log2-fold change (|log2FC|) ≥1.5 and an FDR
(false discovery rate)-adjusted p-value < 0.05 were con-
sidered significantly differentially regulated. The differen-
tially expressed genes (DEGs) were subsequently ranked
according to their FPKM values, and the highest ranking
DEGs were merged with the annotated expression matrices
to produce a comprehensive output including gene identi-
fiers, expression levels, log2FC, and statistical significance.
Heatmaps of the top 100 genes - selected based on the low-
est FDR values across datasets - were generated for each
group using pheatmap v1.0.13 with row-wise scaling, Eu-
clidean distance, and complete linkage clustering (Fig. 2).
All scripts used for data preprocessing, alignment, differ-
ential expression analysis, and machine learning were im-
plemented in a fully reproducible workflow and are publicly
available on GitHub (https://github.com/IBGBio/EMT-Bio
marker-Discovery).

2.4 Data Selection Based on EMT Marker Expression

To ensure that the selected datasets represented bona
fide EMT and MET states, a marker-based validation strat-
egy was applied. Specifically, the expression patterns of
canonical epithelial and mesenchymal markers, including
CDH1 (E-cadherin), CDH2 (N-cadherin), VIM (Vimentin),
and SNAI2 (Slug), were evaluated. Datasets were retained
only if they displayed decreased expression of epithelial
markers (e.g., CDH1) alongside increased expression of es-
tablishedmesenchymalmarkers (e.g.,CDH2, VIM, SNAI2).
A threshold of |log2 fold change| ≥1.0 for at least one
epithelial and one mesenchymal marker was required for
dataset inclusion, resulting in 89 datasets retained at this
stage. Bulk RNA-Seq cannot reliably resolve intermediate
or hybrid E/M states due to signal averaging across hetero-
geneous cell populations. Therefore, only datasets display-
ing clear epithelial or clear mesenchymal signatures were
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Fig. 2. Heatmaps of the top 100 differentially expressed genes between mesenchymal and epithelial states. (A) normal cells (n =
39), (B) normal tissues (n = 17), (C) cancer cells (n = 21), and (D) cancer tissues (n = 12). Each row represents a gene, and each column
corresponds to a sample. Up- and downregulated genes are shown in red and blue, respectively. A dendrogram depicting hierarchical
gene clustering based on Euclidean distance is shown on the left.

retained. Datasets lacking these characteristic marker shifts
were excluded from further analyses. This filtering step en-
sured that only datasets exhibiting robust EMT-associated
transcriptional changes were included, thereby minimizing
noise from unrelated experimental conditions.

2.5 Functional Enrichment Analysis

To elucidate the biological relevance of DEGs, gene
set enrichment analysis was performed using the clusterPro-
filer v4.8.1 in R. Over-representation analysis was applied
to identify significantly enriched Gene Ontology (GO) Bi-

ological Process (BP) terms within each gene list. GO BP
terms describe coordinated, multi-step biological programs
(e.g., EMT, cell cycle progression, apoptosis), making them
particularly suitable for the interpretation of transcriptomic
data. In addition, GOBP annotations are organism-agnostic
and provide interpretable, biologically meaningful insights
across experimental contexts [19,20]. The reference gene
set was defined based on gencode.vM23 annotations. The
raw p-values were corrected for multiple testing using the
Benjamini-Hochberg method; GO terms with adjusted p-
values < 0.05 were considered significantly enriched. A
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weighted set cover-based filtering approach was applied to
reduce redundancy among enriched terms and to retain a
minimal subset of terms with stronger statistical support
that together explain the enrichment patterns.

2.6 EMT Scoring Analysis

EMT enrichment scores were calculated using
the GSVA package in R (v4.4.1) (https://www.bioc
onductor.org/packages/release/bioc/html/GSVA.html)
Log-transformed TPM matrices were used as input,
and EMT gene sets were evaluated using the gsva-
Param() function with a Gaussian kernel. The EMT
gene set was based on the 76-gene EMT-signature score
[21], obtained from a publicly available repository
(https://github.com/sushimndl/EMT_Scoring_RNASeq/
tree/master/Gene_signatures/76GS). GSVA enrichment
scores were subsequently averaged across samples to
generate a single EMT score for each dataset.

2.7 Application of Machine Learning to Identify EMT
Gene Signatures

For the machine learning analysis, DEGs were com-
piled from the 89 RNA-Seq datasets, capturing epithelial-
to-mesenchymal cell transitions across diverse biological
contexts in both normal and cancer cells and tissues. This
comprehensive dataset facilitated a systematic investigation
of EMT-associated transcriptional dynamics.

The DEG sets were converted into differential expres-
sion (DE)matrices that served as feature spaces for machine
learning analysis. RNA-Seq data were imported using pan-
das, and the sample_id field was parsed to extract pheno-
type information. To maintain a consistent binary classifi-
cation scheme, only samples representing epithelial or mes-
enchymal states were included. The resulting gene expres-
sion values formed the feature matrix and the correspond-
ing phenotype labels constituted the target vector. This
standardized pipeline generated harmonized inputs suitable
for downstream computational modeling and cross-dataset
comparisons.

All analyses were conducted in Python v3.9.19
(https://www.python.org/) within a Jupyter Notebook
v7.3.2 (https://jupyter-notebook.readthedocs.io/en/v7.3.2/
index.html) environment. The machine learning models
were implemented to classify EMT states and to priori-
tize candidate biomarkers. The SVM and RF models were
trained and evaluated using scikit-learn. The SVM was
configured with a radial basis function (RBF) kernel to
capture non-linear complex decision boundaries between
EMT states, and ANNs were constructed and optimized us-
ing TensorFlow/Keras. Auxiliary libraries such as NumPy
facilitated efficient numerical computations, whereas mat-
plotlib and seaborn were used to visualize classification re-
sults, feature importance, and overall model performance.

Feature selection was performed independently for
each model based on its inherent importance-estimation

strategy. For RF models, features were ranked using
impurity-based importance scores. For SVM (linear ker-
nel), coefficients of the decision function were used to de-
rive feature weights. For ANNs, feature contributions were
estimated via permutation importance. For each model and
dataset, the top 50 ranked genes were retained. Although
there was partial overlap among the selected genes, each
model also identified distinct feature sets, reflecting differ-
ences in their learning mechanisms. For each dataset, the
top 50 genes were selected according to their computed im-
portance scores.

Model performance was evaluated on the test datasets,
which comprised 30% of the original dataset. Standard
classification metrics included Support, Precision, Recall
(Sensitivity), F1 Score, and AUC (Area Under the Receiver
Operating Characteristic Curve), where the maximum pos-
sible value for each metric is 1 (except Support). To miti-
gate overfitting in the 89-sample cohort, standardized pre-
processingwas applied. The 1000most variable genes were
retained, and a stratified 70/30 train–test split was imple-
mented. Model training and hyperparameter optimization
were restricted to the training subset, with performance as-
sessed exclusively on an unseen hold-out test set.

All scripts used for preprocessing, model training,
evaluation, and reproducibility instructions have beenmade
publicly available on GitHub at: https://github.com/IBGBi
o/EMT-Biomarker-Discovery.

2.8 Protein-Protein Interaction Network

The functional and physical associations among the
protein products of the cancer tissue-associated signature
genes were investigated and visualized using STRING
v12.0 (https://string-db.org/) [22], a database of experimen-
tally supported and predicted protein-protein interactions.
A high-confidence interaction score threshold (>0.7) was
applied. To minimize false-positive associations, only in-
teractions supported by experimental evidence, text mining
of the scientific literature, and curated knowledge bases of
protein complexes and pathways were considered. In ad-
dition, proteins not included in the initial input set were
identified through iterative searches to determine the mini-
mal number of additional nodes interactingwith the existing
network.

3. Results
Functional enrichment analysis of the DEGs across

all datasets revealed that normal and cancer-associated
EMT share core biological processes, yet exhibit distinct,
context-specific regulatory features (Fig. 3 and Supple-
mentary Table 2). In cancer tissues, EMT was predom-
inantly related to the developmental and neural-associated
pathways, including neurogenesis and regulation of cell ad-
hesion. This pattern suggests a reactivation of embryonic
programs that may facilitate tissue remodeling, invasion,
andmetastatic potential [23,24]. Additional enriched terms,
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Fig. 3. Functional enrichment analysis. Overrepresented biological processes in the genes differentially expressed among the four
EMT dataset groups, i.e., normal cell lines (green), normal tissue (pink) cancer cell lines (orange) and cancer tissue (blue), are displayed
on the y-axis. The x-axis indicates the enrichment ratio, i.e., the ratio between the observed number of genes in each process and the
number of expected genes.

such as epithelial tube morphogenesis, regulation of apop-
totic signaling, muscle tissue development, and response to
peptide hormones. Together, these findings further high-
light the convergence of developmental plasticity and tumor
progression [25,26].

Cancer cell models displayed a broadly similar enrich-
ment profile. Over-represented pathways were related to
calcium ion transport, cytoskeletal remodeling, and trans-
membrane receptor signaling. These pathways are con-
sistent with enhanced motility, intracellular communica-
tion, and metabolic adaptation during EMT [27–29]. In
contrast, normal epithelial tissues undergoing EMT were
enriched for pathways related to physiological regulation
and differentiation. These included axonogenesis, immune
response-regulating signaling, lipid transport, autophagy,
and myeloid cell differentiation, reflecting tightly regulated
developmental and homeostatic programs [30,31] (Fig. 3).
Enrichment of epithelial tube morphogenesis, chemical
synaptic transmission, cell-substrate adhesion, muscle sys-
tem processes, and regulation of catalytic activity in nor-
mal epithelial cells. These patterns indicate a coordinated

Table 1. ML models performance metrics for normal cell.
ML model Support Precision Recall F1 score AUC score

RF 47.000000 0.894426 0.893617 0.893617 0.955
SVM 47.000000 0.735202 0.723404 0.720882 0.822
ANN 47.000000 0.779555 0.765957 0.763823 0.810
ML, Machine learning; RF, Random Forest; SVM, Support
Vector Machine; ANN, Artificial Neural Network; AUC, Area
Under the Receiver Operating Characteristic Curve.

remodeling of cellular architecture and communication dur-
ing physiological EMT [24] (Fig. 3).

Overall, these findings indicate that while EMT in
both normal and cancer contexts engages conserved bio-
logical programs related to adhesion, morphogenesis, and
cytoskeletal dynamics. However, cancer-associated EMT
shows a relative enrichment of neural and developmental
signaling pathways, suggesting a potential functional link
between neurogenesis, cellular plasticity, and malignant
transformation.
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Table 2. ML models performance metrics for normal tissue.
ML model Support Precision Recall F1 score AUC score

RF 20.0 0.708333 0.7 0.696970 0.880
SVM 20.0 0.566667 0.55 0.52 0.780
ANN 20.0 0.708333 0.7 0.696970 0.720

Table 3. ML models performance metrics for cancer cell.
ML model Support Precision Recall F1 score AUC score

RF 28.000000 0.857143 0.857143 0.857143 0.923
SVM 28.000000 0.762500 0.714286 0.700535 0.500
ANN 28.000000 0.857143 0.857143 0.857143 0.969

Supervised machine learning models were employed
to identify potential biomarker genes across transcriptomic
datasets representing four distinct groups. Three supervised
learning algorithms - random forest [13], SVM [14], and
ANN [32] - were employed, and each group was analyzed
independently. To derive an informative cancer-associated
EMT gene signature, models were trained on each group’s
datasets. The top 50 predictive genes from eachmodel were
compared to assess concordance among algorithms. In gen-
eral, the ML models could accurately prioritize the most
significant genes, as evidenced by the performance metrics
shown in Tables 1,2,3,4.

Of note, the SVMmodel exhibits comparatively mod-
est performance across the evaluation metrics relative to
the other ML approaches. This is likely attributed to the
fact that SVM is primarily a supervised classification algo-
rithm optimized for sample-level discrimination rather than
a statistical framework for gene-level differential expres-
sion testing. Therefore, SVM is not ideally suited as a stan-
dalone method for DEG prioritization [33,34].

In addition, the comparatively lower performance ob-
served in Table 4 relative to that obtained for normal
cells/tissues and cancer cell lines (Tables 1,2,3) likely re-
flects the inherent complexity of bulk tumor transcriptomes
rather than a limitation of the algorithm itself. Unlike cell
lines or relatively homogeneous normal tissues, bulk can-
cer tissues consist of a heterogeneous mixture of malig-
nant cells, stromal fibroblasts, endothelial cells, and di-
verse immune cell populations [35]. Signals arising from
stromal contamination and immune infiltration can dom-
inate transcriptional profiles. These signals may obscure
EMT-associated expression patterns intrinsic to cancer cells
[36,37], challenging in this way sample-level classification.
Under these conditions, SVM decision boundaries may be
driven primarily by variation in cellular composition rather
than by biologically meaningful EMT-related differences,
ultimately resulting in reduced discriminatory power.

Several strategies could help mitigate these limita-
tions. Tumor purity adjustment or cell-type deconvolu-
tion prior to model training could reduce conflicting sig-
nals from non-malignant cells [38]. Incorporating feature
selection or pathway-level aggregation [39,40], instead of

Table 4. ML models performance metrics for cancer tissue.
ML model Support Precision Recall F1 score AUC score

RF 14.000000 0.645833 0.642857 0.641026 0.714
SVM 14.000000 0.791667 0.642857 0.590643 0.776
ANN 14.000000 0.577778 0.571429 0.562500 0.531

individual gene expression values, may further improve
model robustness by reducing dimensionality and attenuat-
ing noise and biological heterogeneity. Finally, integrating
single-cell and/or spatial transcriptomic data [41,42] could
yield more accurate representations of tumor-intrinsic EMT
programs. Such integration may also support the develop-
ment of improved tissue-level classifiers.

The 50 highest-ranked predictive genes derived from
RF, SVM and ANN models across cancer cell datasets
are shown in Fig. 4. Intersection analysis across the
three supervised learning models revealed a core set of
15 genes consistently identified by all methods. These
included CTSL, S100A9, BC1, HBA-A1, HBA-A2, KRT8,
KRT18, LGALS1, and several mitochondrial genes, i.e.,
MT-CO3, MT-CYTB, MT-ND3, and MT-RNR1. These mi-
tochondrial genes encode components of the mitochondrial
respiratory chain (MT-CO3, MT-CYTB, MT-ND3) or mi-
tochondrial rRNA (MT-RNR1) and are central to oxida-
tive phosphorylation and mitochondrial translation. Al-
tered expression or mutation of mitochondrial genes has
been associated with metabolic reprogramming, ROS pro-
duction, and hypoxia-related signaling, processes that may
influence EMT-associated transcriptional programs. Pair-
wise overlap analysis (Fig. 4) showed substantial agree-
ment between models. Eleven genes shared between RF
and SVM, fourteen between RF and ANN, and seventeen
between SVM and ANN, indicating complementary pre-
dictive performance. Within these intersections, several
key EMT- and metastasis-related genes - such as S100A8,
KRT5, KRT14, CTSK, LGALS3, and EEF1A1- were recur-
rently identified. In contrast, S100A4 and MT-ND4 were
uniquely detected by the RF model, suggesting potential
model-specific sensitivity in capturing cytoskeletal and mi-
tochondrial features associated with EMT progression.

To identify biomarkers associated with cancer-related
EMT in vivo, the top 50 predictive genes from the three
supervised ML models were compared (Fig. 5). This anal-
ysis revealed a core set of 15 genes detected by all three
models, representing candidates for EMT-related biomark-
ers. Additionally, each algorithm identified model-specific
genes: RF contributed 15 unique genes, SVM 5, and ANN
5. Pairwise overlaps were also observed, highlighting genes
shared between twomodels but not the third, reflecting both
shared and distinct predictive features captured by each ap-
proach (Fig. 5).

Furthermore, the potential functional synergy among
the individual signature genes within a protein-protein in-
teraction network was explored (Fig. 6). The protein prod-
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Fig. 4. Venn diagram illustrating the overlap of the top 50 predictive genes fromRF, SVM, and ANNmodels across distinct cancer
cell transcriptomic datasets. Each model was trained independently to capture genes contributing to EMT-associated signatures. Genes
shared among multiple models represent candidates for potential biomarker discovery.

ucts of these genes form a functionally interconnected net-
work, either through direct interactions or indirectly via
five putative connector proteins, namely VIM (Vimentin),
CD44, GYPC (Glycophorin C), RRAGC (Ras Related GTP
Binding C), and LGALS9C (Galectin 9C).

Gene sets from RF, SVM and ANNmodels were com-
pared to explore candidate biomarkers of normal cellular
states (Fig. 7). Ten genes were shared across all models, in-
dicating a subset of consistently selected features. Pairwise
overlaps were substantial (RF-SVM: 10 genes; RF-ANN:
11 genes; SVM-ANN: 24 genes), including members of the
CRY gene family and MT-ND genes. In addition, model-
specific signatures were detected (RF: 19; SVM: 6; ANN:
5 genes). These findings highlight both core biomarkers
and complementary model-specific candidates.

Comparison of gene sets from all three models (Fig. 8)
identified nineteen core biomarkers of normal tissue. Pair-
wise overlaps revealed additional shared genes (RF-SVM:
4, RF-ANN: 5, and SVM-ANN: 25), while each model
also yielded unique genes (RF: 22, SVM: 2, and ANN: 1).
These findings highlight both shared and algorithm-specific
biomarkers, reflecting the complementary strengths of dif-
ferent machine learning approaches.

4. Discussion
In this study, we implemented an integrative frame-

work to systematically compare EMT-associated transcrip-
tional programs across normal and cancer datasets. By
combining differential gene expression and functional en-
richment analyses with machine learning-based classifica-
tion, this approach enabled the identification of candidate
EMTbiomarkers and the delineation of regulatory networks
and molecular patterns. Notably, our integrated analyses
revealed recurrent enrichment of gene sets associated with
neural-related processes in EMT, particularly neurogene-
sis, gliogenesis, and axonogenesis. Neurogenesis and glio-
genesis proceed sequentially from common neural progen-
itors to ensure proper lineage specification and cell fate de-
termination [43,44], whereas axonogenesis facilitates the
functional integration of newly generated neurons into pre-
existing circuits [45–47].

The consistent enrichment of neural-related path-
ways observed across cancer datasets suggests that EMT-
associated transcriptional reprogramming may extend be-
yond canonical epithelial and mesenchymal states. Rather,
EMT appears to encompass neural-like characteristics that
facilitate tumor-nerve interactions. Increasing evidence
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Fig. 5. Comparative analysis of candidate biomarker genes identified by RF, SVM, and ANNmodels in cancer tissue. The diagram
highlights both genes shared across all models and those unique to each, highlighting core and model-specific candidate biomarkers.

indicates that cancer cells undergoing EMT can engage
molecular programs resembling those of neural progenitors
or differentiated neural cells. Through this process, tumor
cells acquire the capacity to sense, respond to, and reshape
the neural microenvironment. This phenomenon is often re-
ferred to as “neuronal mimicry” [48]. Such neural-like plas-
ticity may provide selective advantages during tumor pro-
gression by increasing cellular motility, enabling directed
invasion along nerve fibers, and enhancing survival within
neural-rich niches [49,50].

In this context, the enrichment of pathways linked
to neurogenesis and gliogenesis may reflect the reactiva-
tion of evolutionarily conserved developmental signaling
cascades, including Notch, Wnt/β-catenin, and Hedgehog
pathways. These pathways are known to promote cellu-
lar adaptability, lineage plasticity, and stemness - key at-
tributes of EMT [51,52].

A clinically significant consequence of tumor-nerve
interaction is perineural invasion (PNI), in which EMT pro-
grams facilitate tumor cell infiltration and spread along neu-
ral structures [53,54]. EMT has been closely associated
with PNI in multiple cancer types, including pancreatic,
prostate, colorectal, and head and neck cancers. In these
contexts, neurotrophic signaling axes such as NGF-Trk,
BDNF-TrkB, and GDNF-RET contribute to directional tu-
mor cell migration and invasive behavior [53,55,56].

More broadly, these observations are consistent with
the rapidly emerging field of cancer neuroscience, which
focuses on the bidirectional interactions between the ner-
vous system and tumor biology [57]. Within this frame-
work, neural activity plays an active role in tumor pro-
gression. Neurotransmitters (e.g., acetylcholine, nore-
pinephrine, and glutamate), as well as neurotrophic factors
are gaining recognition as key components of the tumor mi-
croenvironment that influence tumor growth, immunemod-
ulation, angiogenesis, and metastatic dissemination [58–
60].

Collectively, the consistent enrichment of neural-
related pathways across cancer EMT datasets supports
a framework in which EMT-associated plasticity inter-
sects with neural developmental and signaling programs.
This convergence promotes tumor-nerve crosstalk and con-
tributes to malignant progression. Future studies integrat-
ing single-cell and spatial transcriptomics with functional
assays will be essential to elucidate the causal roles of these
pathways and to explore their therapeutic potential in EMT-
driven malignancies.

Focusing on pathological EMT, machine learning
analyses identified a set of genes associated with neu-
rodevelopmental processes that appeared recurrently across
EMT-related cancer datasets [61]. Among these, BCYRN1
(the human ortholog of mouse Bc1), a neuronal long non-
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Fig. 6. Network illustrating the associations among proteins corresponding to the signature genes. Nodes represent proteins, and
interactions are indicated by connecting lines. Protein products of the original input signature genes are shown in red, whereas connector
proteins are shown in yellow.

coding RNA involved in translational regulation and synap-
tic plasticity, was consistently detected across all cancer cell
and tissue EMT datasets but was absent from normal EMT
profiles [62]. This selective enrichment suggests poten-
tial reactivation of neurodevelopment-associated programs
during cancer-associated EMT. Such reactivation may be
linked to increased cellular plasticity and stem-like charac-
teristics observed during cancer progression [2]. Clinically,
elevated BCYRN1 expression correlates with both overall
and disease-free survival [63].

In parallel, the identification of immune- and
microenvironment-associated factors, including B2M,
points to an immunomodulatory dimension of EMT in
cancer [64]. B2M is frequently upregulated across multiple
malignancies and has been reported to promote cancer
cell survival, invasion, and metastasis through PI3K/AKT,
MAPK, and PKA/CREB signaling; these findings suggest
a context-dependent role in modulating EMT-related
states and tumor-microenvironment interactions [65].
Consistently, elevated B2M expression has been associated
with poor prognosis, including reduced progression-free
survival [66,67].

Additional mediators, S100A8 and S100A9 showed
context-dependent patterns, with S100A8 detected only in

cancer-associated EMT datasets and S100A9 only in nor-
mal EMT profiles; this divergence suggests differential in-
volvement of inflammatory signaling in malignant versus
physiological EMT [68,69]. Notably, high expression of
S100A8/A9 is generally associated with poor prognosis,
metastasis, and advanced disease stage across several tu-
mor types, including colorectal, breast, and gastric cancers
[70].

SRGN (serglycin)was consistently detected in cancer-
associated EMT datasets but not in normal EMT. Prior stud-
ies have linked SRGN to EMT-like transcriptional states, in-
vasiveness, and microenvironmental responsiveness; these
findings indicate that cancer-associated EMT may prefer-
entially engage extracellular matrix- and developmental-
related regulatory programs [71,72]. Elevated SRGN ex-
pression is also associated with adverse clinical outcomes
across multiple cancers [71,73,74]. In breast cancer,
SRGN contributes to chemoresistance by sustaining stem-
ness through crosstalk with YAP-dependent transcriptional
programs [75].

LGALS1 was detected in cancer-associated EMT
datasets and has been linked to tumor progression, an-
giogenesis, immune modulation, and therapy resistance.
While its role in EMT may be indirect, elevated LGALS1

10

https://www.imrpress.com


Fig. 7. Overlap of potential biomarker genes identified by RF, SVM, and ANNmodels in normal cells. The overlap diagram reveals
both common and model-specific candidates, emphasizing potential biomarkers in normal cellular contexts.

expression consistently correlates with increased recur-
rence risk and poorer survival in multiple cancers, includ-
ing colorectal cancer, often through EMT-linked signaling
pathways and immune regulatory mechanisms [76–78].

Finally, LARS2, primarily studied in neuronal con-
texts, has been associated with mitochondrial dysfunction
and neurodegenerative disease; however, its relevance to
cancer or EMT remains unclear [79–81]. CST3 has been
associated with tumor invasion and poor prognosis in sev-
eral cancers and may be influenced by hormonal regulation,
although its specific role in EMT requires further investiga-
tion. Although no direct association has yet been reported
betweenMIR6236 and EMT or TME regulation, limited ev-
idence suggests a potential tumor-suppressive role in en-
dometrial cancer.

Overall, these findings suggest that cancer cells may
preferentially engage neural developmental programs and
context-specific gene regulators to promote EMT and ma-
lignant phenotypes. In contrast, normal EMT processes
appear more reversible and tightly regulated. The ML-
identified genes in cancer tissues - particularly B2M,
CST3, LARS2, SRGN, S100A8/A9, LGALS1, BCYRN1, and
MIR6235 - were prioritized as candidate markers. Genes
involved in functionally related disease processes tend to

be interconnected within biological networks and are fre-
quently co-regulated. Hence, it is plausible that these EMT-
related genes participate in shared co-expression networks
and are governed by common epigenetic regulatory pro-
grams [82–84].

Furthermore, the protein products of the identified
signature genes form an interconnected interaction net-
work, linked either directly or through intermediate pu-
tative nodes. This suggests coordinated physical and/or
functional associations that collectively modulate EMT and
TME dynamics. One of the key connector nodes is Vi-
mentin, a canonical mesenchymal marker and structural ef-
fector of EMT. Another prominent connector node, CD44,
functions as a central regulator of EMT and cancer stemness
by suppressing epithelial markers (such as E-cadherin) and
inducing mesenchymal markers (e.g., N-cadherin and vi-
mentin), thereby enhancing invasion; CD44 silencing pre-
vents or reverses EMT, supporting its causal role in EMT
regulation [85,86]. LGALS9C, another connector node
within the network, belongs to the Galectin-9 family of
β-galactoside-binding lectins. Galectin-9 family members
modulate EMT-relevant processes by regulating cell-cell
and cell-matrix adhesion, immune-tumor crosstalk, and mi-
gratory signaling pathways [87].
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Fig. 8. Intersection of candidate biomarker genes identified by RF, SVM, and ANN models in normal tissue.

The coordinated activity of these genes/proteins sug-
gests convergence of interconnected programs governing
EMT dynamics and tumor microenvironment remodeling.
In particular, inflammatory mediators (S100A8/S100A9,
SRGN, LGALS1, LGALS9C) [88,89] and immune in-
terface components (B2M, CD44) [90,91] can establish
cytokine- and chemokine- dependent signaling. This sig-
naling promotes EMT-associated transcriptional plasticity
and may sensitize tumor cells to neural-derived signals. At
the same time, factors involved in cell-extracellular ma-
trix interactions and cytoskeletal organization (including
CD44, VIM, and CST3) [92–94] are likely to promote di-
rected migration and invasion along nerve-associated struc-
tures. These factors may also facilitate tumor cell engage-
ment with the surrounding stroma. In parallel, metabolic
and stress-adaptation pathways (RRAGC, LARS2) [95,96]
may support the energetic demands of EMT, including
tumor cell survival within nerve-rich microenvironments.
Together, these coordinated programs provide a plausible
mechanistic link between EMT, extracellular matrix re-
modeling, and reorganization of the neural niche within
the tumor microenvironment. These interactions may con-
tribute to the stabilization of EMT states and the advance-
ment of tumor progression.

To further delineate the differences between physio-
logical and cancer-associated EMT, we found that SPP1
is the only gene shared between both contexts. In con-
trast, several other recurrently detected genes (BC1, HBA-
A2, HBA-A1, KRT18, GM26035, GM28437,MT-CO3,MT-
CYTB,MT-ND3, KRT8, andMT-RNR1) currently lack clear
evidence linking them to cancer, EMT, or neurogenesis.
Nevertheless, their consistent detection across the analyzed
datasets suggests potential biological relevance and high-
lights the need for targeted in vitro and in vivo experimental
studies to clarify their roles.

This study has several limitations that should be ac-
knowledged: (i) dataset heterogeneity, (ii) the analysis was
restricted to canonical epithelial/mesenchymal states, with
intermediate or hybrid E/M phenotypes excluded due to the
intrinsic limitations of bulk transcriptomic data; this rep-
resents a major limitation, given the established biological
and clinical relevance of hybrid E/M states in cancer, and
underscores the need for future single-cell-based studies to
more comprehensively resolve EMT heterogeneity, (iii) po-
tential tissue contamination, (iv) the sample sizes of the nor-
mal (n = 17) and cancer (n = 12) tissue groups are relatively
small, which may limit statistical power and generalizabil-
ity; therefore, validation in larger, independent cohorts will
be necessary to confirm and strengthen the robustness and

12

https://www.imrpress.com


accuracy of the findings derived from these groups, (v) the
absence of experimental validation.

Nevertheless, despite these limitations, the findings
presented herein may serve as a foundation for the ratio-
nal design of future experimental and translational studies.
The cancer tissue-associated signature genes identified in
the present study could be incorporated into clinical set-
tings to improve diagnostic strategies. These genes may
complement and refine currently established EMT-related
biomarkers, especially in tumors exhibiting pronounced
mesenchymal features. Beyond their diagnostic utility,
these genes could represent promising anti-cancer thera-
peutic targets. This potential arises either from their direct
involvement in EMT-relevant signaling pathways or from
their function as non-coding epigenetic regulators that mod-
ulate EMT-associated protein-coding genes within complex
regulatory networks. This dual contribution highlights the
multifaceted nature of EMT regulation during cancer pro-
gression. Notably, targeting specific components of this
signature, such as SRGN, has been reported to sensitize tu-
mor cells to chemotherapeutic agents, suggesting that EMT-
linked molecular vulnerabilities may be therapeutically ex-
ploitable. Furthermore, the expression profiles of BCYRN1,
B2M, S100A8/A9, SRGN, and LGALS1 are associated with
poor prognostic outcomes in EMT-high tumors, underscor-
ing their potential value as prognostic biomarkers and po-
tential predictors of therapeutic response.

5. Conclusion
Herein, an integrative computational strategy was ap-

plied to explore EMT-associated transcriptional programs
across normal and cancer-related mouse RNA-seq datasets.
While EMT processes - such as cell adhesion, cytoskeletal
remodeling, and tissue morphogenesis - were shared across
contexts, cancer-associated EMT showed additional enrich-
ment of developmental and neural-related pathways. This
pattern suggests that malignant cells may rely on a broader
range of plasticity-associated programs compared to normal
EMT. The application of complementary machine learning
models enabled the prioritization of candidate genes asso-
ciated with EMT across heterogeneous datasets, revealing
both shared and context-specific features. Collectively, the
results of this study provide a comprehensive overview for
understanding the transcriptional differences between phys-
iological and cancer-associated EMT and provide the foun-
dation for future targeted experimental studies.
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