

Original Research

Multi-Scale Adaptive Temporal Network for Parkinson's Motor Symptom Fluctuation Detection Using Coarsened 2D Skeleton Pose Data

Balamurugan Velumani^{1,*}, Sivasankari Krishnakumar²

¹Department of Computer Science and Engineering, Akshaya College of Engineering and Technology, Coimbatore, 642109 Tamil Nadu, India

²Department of Electronics and Communication Engineering, Akshaya College of Engineering and Technology, Coimbatore, 642109 Tamil Nadu, India

*Correspondence: balamurugan@acetbe.edu.in (Balamurugan Velumani)

Academic Editor: Bettina Platt

Submitted: 25 October 2025 Revised: 2 December 2025 Accepted: 23 December 2025 Published: 26 January 2026

Abstract

Background: Parkinson's Disease (PD) is a neurological condition characterized by motor symptoms that fluctuate throughout the day depending on medication. Continuous and objective monitoring is essential, but conventional clinical assessments are episodic and subjective, while wearable and video-based solutions may raise privacy concerns. This study aims to develop a real-time, privacy-preserving deep learning framework that utilizes 2D skeleton pose data to simultaneously classify medication states (ON or OFF) and continuously estimate motor symptom severity. **Methods:** To enable privacy-preserving and real-time monitoring of Parkinson's motor fluctuations, a Multi-Scale Temporal Attention-Transformer Network (MS-TATNet) was developed based on 2D skeleton pose data collected from the REal-world Mobility Activities in Parkinson's disease dataset (REMAP) dataset. The MS-TATNet captures complex, variable, and multi-scale temporal dynamics of PD motor symptoms through a multi-scale temporal convolutional network, scaled dot-product attention mechanism, stacked transformer encoder blocks with a multi-head self-attention mechanism, temporal pooling layer, softmax classifier, and regression layer. **Results:** The experimental results demonstrate that the MS-TATNet achieved 99.63% accuracy, 99.50% recall, 99.33% specificity, and 99.67% F1-score for medication state classification. For continuous severity estimation, the predicted scores showed a Pearson correlation coefficient of 0.97 with clinical assessments. **Conclusion:** Thus, this work highlights the MS-TATNet's potential for scalable, privacy-preserving remote monitoring of PD.

Keywords: motor symptoms; multi-scale temporal convolutional network; Parkinson's disease; skeleton pose data; symptoms severity; transformer encoder blocks

1. Introduction

Parkinson's Disease (PD) is a long-term neurological condition caused by the continuous degeneration of cells that produce dopamine. Dopamine is a neurotransmitter that enhances muscle activation and helps in movement organization [1,2]. The number of persons with PD increased to over 6 million during 1990 and 2015, making it the fastest-growing neurological ailment globally, while Fig. 1a illustrates the number of deaths attributed to PD across different age groups [3]. PD can be identified by a range of motor symptoms, including tremors, muscle weakness, stiffness, or unstable posture, and also non-motor symptoms, such as exhaustion, dysphagia, diminished sense of smell, depressive disorders, and sleep disorders like rapid eye movement (REM) behavioral disorder, might be present decades before being diagnosed [4–8]. People between the ages of 60 and 65 account for the majority of PD cases. The number of people with PD has increased along with the aging population, reaching 8.5 million patients in 2019. Fig. 1b presents prevalence trends of PD per 1,000 population across World Health Organization regions, disaggregated by sex [9]. Accurate monitoring of

symptom variations is crucial for the optimal treatment decisions that can alleviate the disease [10].

Recently, wearable sensors and other emerging technologies have drawn a lot of attention in the treatment of PD [11,12]. Machine Learning (ML) algorithms and commercial off-the-shelf devices based on STM32 have been developed for the early identification and categorization of PD [13]. To classify the PD patient's "ON" and "OFF" states, an interpretable ML model was created using a temperature sensor, a three-axis gyro, and a three-axis magnetometer [14]. A new tool was presented to aid in the identification of PD motor disorders by analyzing data obtained from a wrist-worn sensor [15].

1.1 Problem Statement

PD is a progressive neurodegenerative condition that is characterized by fluctuating motor symptoms like tremor, rigidity, and bradykinesia. Accurate and consistent measurement of the ON and OFF medication states is necessary to optimize treatment and improve the quality of life. However, current approaches are based on episodic and subjective clinical assessments or intrusive wearable and video-based systems that raise usability, scalability, and

Copyright: © 2026 The Author(s). Published by IMR Press.
This is an open access article under the CC BY 4.0 license.

Publisher's Note: IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

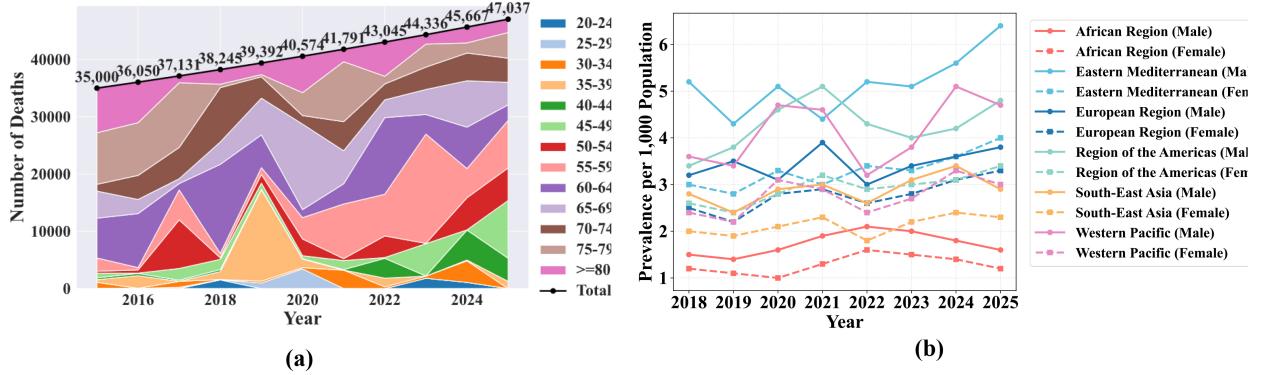


Fig. 1. Parkinson's Disease mortality and prevalence trends. (a) Shows the number of deaths attributed to Parkinson's Disease (PD) across different age groups over recent years. (b) Presents prevalence trends across World Health Organization regions, with data disaggregated by sex.

privacy concerns. These challenges highlight the need for a non-intrusive, objective, and privacy-preserving solution that can provide real-time and fine-grained monitoring of Parkinson's motor symptoms in real-world environments.

1.2 Objective of the Work

The objective of this work is to develop a Multi-Scale Temporal Attention-Transformer Network (MS-TATNet) framework for Parkinson's motor symptom monitoring using 2D skeleton pose data. Specifically, the framework aims to accurately detect when patients are in the ON state (when medication is effective and symptoms are reduced) and the OFF state (when the effect of medication reduces and symptoms reappear or worsen), while simultaneously estimating the continuous severity of motor symptoms.

1.3 Research Contributions

The main contributions of the proposed MS-TATNet Framework are as follows:

- Privacy-Preserving MS-TATNet Framework: The work proposes a Multi-Scale Temporal Attention-Transformer Network (MS-TATNet) framework to monitor PD motor symptoms using 2D skeleton pose data, instead of raw video or wearable sensors. This approach allows for privacy-preserving and non-intrusive analysis appropriate for real-world deployment.
- Dilated Multi-Scale Temporal Convolutional Modeling: The work develops a Multi-Scale Temporal Convolutional Network (MS-TCN) to capture short, medium, and long-term temporal dependencies in motor fluctuations by using a different dilation rate to effectively represent a range of symptom dynamics, such as tremor, rigidity, and bradykinesia.
- Dual-Task Learning for Classification and Regression: The proposed work introduces an integrated end-to-end model that jointly performs ON/OFF medication state classification and continuously estimates symptom severity to provide both discrete and fine-grained assessments within a single framework.

- Attention-Integrated Transformer for Advanced Sequence Representation: The proposed MS-TATNet model incorporates Scaled Dot-Product Attention (SDPA) and stacked transformer encoder blocks to highlight the most informative temporal scales and capture higher-order dependencies, which produce robust and clinically meaningful sequence representations.

The remaining part of this paper is structured as follows. The existing works on PD detection using various approaches are reviewed in Section 2. The suggested MS-TATNet framework is presented in Section 3, the experimental findings are described in Section 4, and the study is concluded in Section 5.

2. Related Work

This section analyzes related works on PD detection using wearable sensor-based approaches and video-based approaches. Each study was analyzed thoroughly based on the objectives, methodologies, advantages, and limitations to identify the key gaps and scope for improvement.

2.1 Wearable Sensor-Based Approaches for PD

Lin *et al.* [16] utilized raw kinematic signals from inertial measurement unit sensors to create a model that uses ML to distinguish early-stage PD from essential tremor based on gait and postural transition parameters. Even though the model was highly stable, it was not appropriate for real-time applications or personal usage at home for monitoring PD patients. Davidashvily *et al.* [17] created a Deep Neural Network (DNN) for PD patients' activity recognition using wearable sensor data. The model demonstrated better activity recognition performance using healthy data. However, there was an inconsistency in the activity-matching procedure with the dataset. This was due to the lack of an activity label that matched those in the dataset used in that work. Johnson *et al.* [18] used a multivariate ML model to remotely screen early-stage PD using a consumer-grade wearable device. This ap-

proach successfully generated high-dimensional information from several sensors. But there were problems with the non-demographically matched research group and the non-clinically proven PD diagnosis due to its diminished control over enrollment screening. Rodriguez *et al.* [19] introduced and applied an ML algorithm to assess the intensity of tremor in free-living PD patients using wearable sensor data with an Inertial Measurement Unit (IMU) securely attached to patient's wrist and ankles. Even though the model enhanced therapeutic relevance in continuously monitoring PD symptoms, the assessments during unrestrained action in free-living situations continue to be challenging. Hammoud *et al.* [20] developed a wrist-worn IMU sensor to identify and monitor the development of PD using ML approaches. With both left and right wrist sensors, the model showed better performance with the left hand. Nevertheless, the model could not account for anatomical and physiological aspects to determine why the left-hand sensor performed better.

2.2 Video-Based Approaches for PD

Brien *et al.* [21] presented a simple, non-invasive PD classification algorithm using video-based eye tracking and ML methods. While the model attained comparable measures of sensitivity and specificity, it was still challenging to evaluate what is sensitive to PD rather than age, particularly cognitive ratings. Sarapata *et al.* [22] created a scalable and autonomous video-based human activity identification system for PD motor dysfunction using Spatio-Temporal Graph Convolutional Network (ST-GCN). The system successfully attained reasonable accuracy in activity categorization and frame-by-frame precise annotation for high resolution. However, the model has difficulties to identify identical body postures and movement patterns. Zeng *et al.* [23] introduced a computerized video-based gait analysis model using a skeleton-silhouette fusion convolution network. The model provides fine-grained extra characteristics for high-resolution gait measurement in addition to accurately predicting the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) gait score. However, the model did not include patients with severity score 3 and 4, which limits its applicability to more severe cases. Liu *et al.* [24] established a global temporal-difference shift network to predict the PD tremors' MDS-UPDRS score from video. The model demonstrated an increased ability for generalization ability for the most severe score prediction of PD tremor. But the model faced challenges in accurately detecting patients with mild and moderate severity of PD. Gao *et al.* [25] developed an DL-based model for eye movement analysis-based PD assessment using regular red, green, and blue (RGB)-video data. The model combined the 1D-Convolutional Neural Network with Attention-based Network exhibited superior performance in PD classification. The model had problems with higher interference cost and generalizability

issues. Most prior studies use raw video or high-resolution images, raising patient privacy concerns and require large storage or bandwidth. No models jointly perform motor state classification and continuous symptom severity regression on pose data. There is a need for non-invasive, objective, and scalable methods to detect motor symptom fluctuations in real-world settings. Thus, this work develops a real-time AI system that monitors PD motor symptoms using skeleton pose data to detect patients' medication and its severity.

3. Proposed Methodology

This work develops an MS-TATNet framework for Parkinson's motor symptom monitoring using 2D skeleton pose data from the REMAP Open dataset. The model begins with a Multi-Scale Temporal Convolutional Network, where parallel dilated 1D convolutions at short, medium, and long temporal windows extract hierarchical motion features. These multi-scale representations are fused through an SDPA mechanism to emphasize the most informative time scales. The fused representation is processed through stacked transformer encoder blocks with Multi-Head Self-Attention (MHSA) for advanced temporal dependency modeling. Finally, temporal pooling generates representations that branch into two prediction heads, a softmax classifier for ON or OFF medication state, and a regression layer for continuous symptom severity estimation. The detailed architecture of the MS-TAT framework is depicted in Fig. 2.

3.1 Dataset Description

This work utilizes 2D skeleton pose data from REMAP [26], a human rater-labelled dataset of real-world mobility behavior in PD including Sit-To-Stand (STS) transitions and turns in gait while living in a home environment. These distinct activities are recorded during clinical evaluation as well as during unstructured and unobserved free-living. It involves 24 subjects, twelve participants (mean age 61.25; seven males, five females) have PD, while the remaining twelve (mean age 59.25, three males, nine females) do not have PD. The dataset was collected using wall-mounted Microsoft Kinect cameras in communal rooms of a fully furnished test-bed house, capturing RGB video at 640×480 resolution and 30 frames per second. From these recordings, episodes of STS and turning in gait were extracted and converted into 2D skeleton sequences using pose estimation methods. A range of other annotations that offer extensive details about the actions are shown in Table 1.

The REMAP dataset includes multiple recording sessions for each participant, and each session contains several linked data files rather than a single sample, resulting in a significantly larger number of usable instances. For the STS task, each participant contributes approximately 5–7 linked recording files, with each

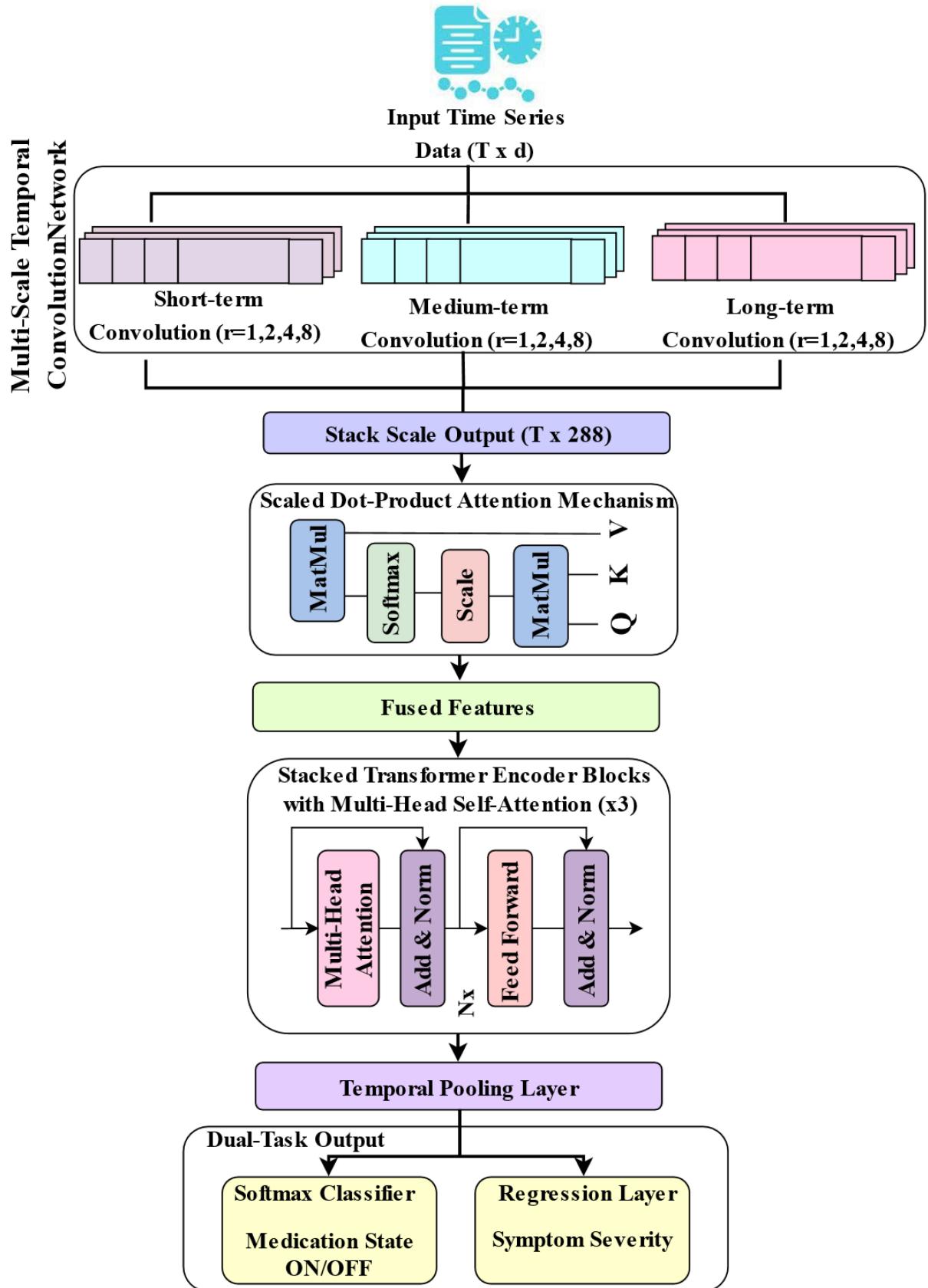


Fig. 2. The proposed multi-scale temporal attention-transformer network for Parkinson's motor symptom monitoring using 2D skeleton pose data.

Table 1. The parameters involved in each activity label of human rater-labelled dataset.

Activity labelled	Parameters
Turning of gait	Turning duration
	Angle of turn to nearest 45 degree
	Number of turning steps
	Type of turn
	PD or control status
	“On” or “off” medication status for PD participants
	“On” or “off” Deep Brain Stimulation (DBS) status for PD participants
Sit-to-stand	Clinical assessment “Yes” or “No”
	Whole episode duration
	Final attempt duration
	Extra detail about STS transition: uses flat surface(s) to push off from arms of chair, >1 attempt, moves forward in chair, carrying something in hand(s)
	MDS-UPDRS question 3.9 rating on 0–4 scale
	PD or control status
	“On” or “off” medication status for PD participants
Non-turning, non-sit-to-stand	“On” or “off” DBS status for PD participants
	Clinical assessment “Yes” or “No”
	Action labelled
	Episode duration
	PD or control status
	“On” or “off” medication status for PD participants
	“On” or “off” DBS status for PD participants
	Clinical assessment “Yes” or “No”

STS, Sit-To-Stand; MDS-UPDRS, Movement Disorder Society-Unified Parkinson’s Disease Rating Scale.

file containing 150–300 sequential frames representing a complete sit-to-stand movement cycle. The STS metadata file includes fields such as Transition ID, Participant ID, PD or Control, sts_whole_episode_duration, sts_final_attempt_duration, on_or_off_medication, Deep Brain Stimulation (DBS)_state, Clinical_assessment, STS_additional_features, and MDS-UPDRS score 3.9 (arising from chair). Each corresponding linked file contains time-series motion data, where each row represents one frame of the movement via the time(s) column, and skeleton joint positions are stored as coordinates labeled x0, y0, x1, y1 ... up to x24, y24, representing all 25 tracked body joints. Most STS clips were 17 seconds long, with 2 seconds/2000 milliseconds included before the transition and a variable amount of data included afterwards to make up the total duration. The skeleton included 25 joints that can be divided into different parts of the body as shown in Fig. 3, in the head (0 nose, 15 and 16 eyes and 17 and 18 ears), trunk (1 neck and 8 mid hip), arms (2 and 5 shoulders, 3 and 6 elbows and 4 and 7 wrists), legs (9 and 12 hips, 10 and 13 knees, 11 and 14 ankles), and feet (19 and 22 big toes, 20 and 23 small toes and 21 and 24 heels).

For turning of gait episodes, the RGB video clips were trimmed to contain the turning action with 6 frames of data/200 milliseconds included both before and after the action itself, comprises 17 body joints. The resulting frame-by-frame skeleton data provided structured represen-

tations of mobility actions suitable for quantitative analysis. Each participant provides multiple turning trials, resulting in several linked key-point files per subject. The Turning metadata file includes Turn ID, Participant ID, PD or Control, number_of_turning_steps, turning_angle, type_of_turn, turning_duration, On_or_Off_medication, DBS_state, and clinical_assessment. Together, the repeated STS and turning recordings across all participants create a rich motion-sequence dataset with thousands of frames and a large number of movement samples, enabling detailed analysis despite the limited number of subjects.

3.2 Data Preprocessing

The dataset first undergoes column normalization using dictionary mapping and string standardization. Categorical and text values were encoded through rule-based normalization, and missing values were handled thorough imputation. After these preprocessing steps, the dataset was split into 64% training, 20% testing, and 16% validation sets. Feature scaling and normalization were then applied using statistics computed from the training set, ensuring no information leakage into the validation or test sets.

3.3 Multi-Scale Temporal Convolution Network to Capture Movement Pattern

To effectively capture the diverse temporal dynamics of Parkinson’s motor symptoms, this work develops an MS-

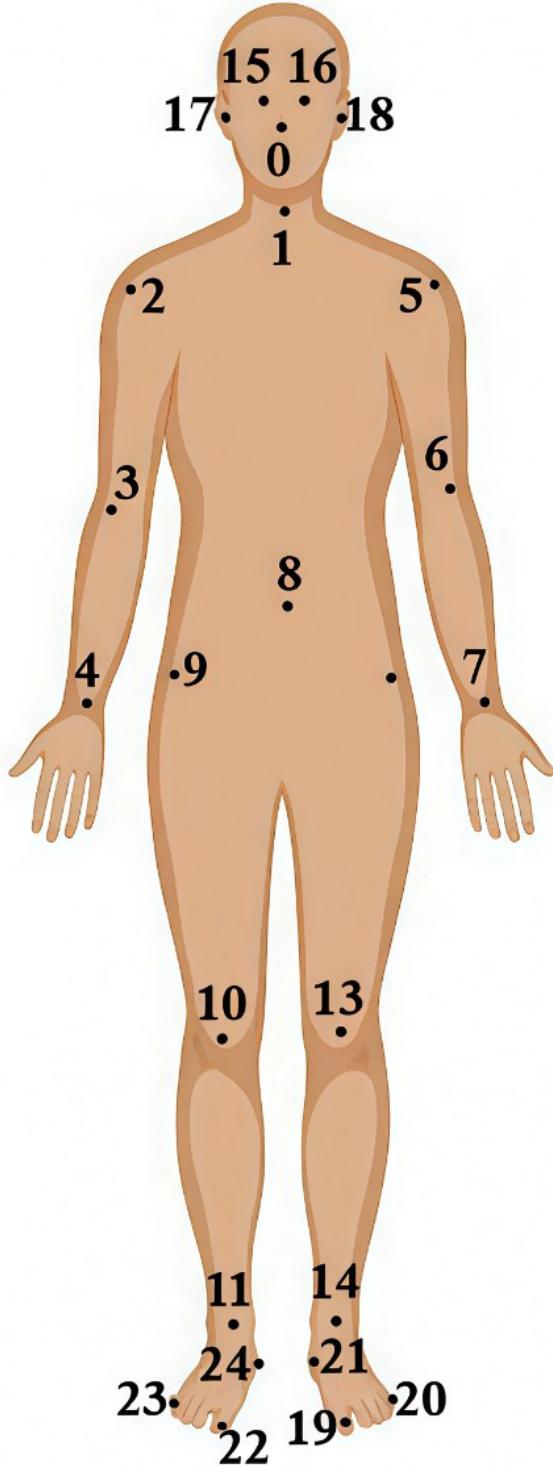


Fig. 3. Layout of 2-dimensional skeleton joints used in sit-to-stand data comprises 25 joints.

TCN [27]. The motor fluctuations of PD occur on various temporal scales, while tremors are captured in rapid oscillatory behavior, rigidity and bradykinesia slowly evolve over time. A single receptive field is not suitable for modelling such variability. Therefore, the model uses parallel tempo-

ral convolutional branches with multiple dilation factors to extract short, medium, and long-term temporal dependencies. Each stage contains four dilated 1D convolution layers with dilation rates of 1, 2, 4, and 8, enabling the network to capture short-, medium-, and long-range dependencies within the movement sequence. The stages use progressively larger kernel sizes and channel capacities, Stage 1 uses a kernel size of 3 with 64 channels, Stage 2 uses a kernel size of 5 with 96 channels, and Stage 3 uses a kernel size of 5 with 128 channels, resulting in a total of 12 convolutional layers.

Formally, given a skeleton pose sequence $U = \{u_1, u_2, \dots, u_T\}$, where $u_t \in \mathbb{R}^d$ signifies the d -dimensional skeletal joint features at t time step, each branch applies a dilated 1D convolution defined in Eqn. 1.

$$y(t) = \sum_{i=0}^{k-1} w(i) \cdot u(t - r \cdot i) \quad (1)$$

where k is the kernel size, $w(i)$ represents the convolutional weights, and r is the dilation rate. Each branch produces a feature representation F_s , F_m , and F_l , corresponding to short-, medium-, and long-term temporal patterns, respectively. These features are concatenated into one multi-scale feature representation as shown in Eqn. 2.

$$F_{concat} = [F_s \parallel F_m \parallel F_l] \in \mathbb{R}^{T \times 288} \quad (2)$$

where \parallel indicates channel-wise concatenation. The multi-scale features obtained through concatenation are passed through SDPA to emphasize significant temporal patterns. The model is trained in a supervised learning framework, where movement patterns of Parkinson's motor symptoms are defined according to established clinical criteria, and labels for each patient are provided by board-certified neurologists based on standardized clinical assessments. These labels serve as ground truth, enabling the network to learn and classify temporal patterns corresponding to diverse motor symptoms.

3.4 Scaled Dot-Product Attention Mechanism to Emphasize Most Informative Time Scales

To dynamically identify and prioritize the most relevant information of the input sequence, the proposed model incorporates the SDPA mechanism. The SDPA mechanism uses the dot product [28], which is scaled by the square root of the key vector's dimension to calculate attention scores between a query vector \mathbb{Q}_q and a collection of key vectors \mathbb{K}_k and value vectors \mathbb{V}_v . Given, query (\mathbb{Q}_q), key (\mathbb{K}_k), and value (\mathbb{V}_v) projections of F_{concat} , we can determine the attention score as follows in Eqn. 3.

$$\text{Attention}(\mathbb{Q}_q, \mathbb{K}_k, \mathbb{V}_v) = \text{softmax} \frac{\mathbb{Q}_q \mathbb{K}_k^T}{\sqrt{d_k}} \mathbb{V}_v \quad (3)$$

where d_k represents the key vectors' dimensionality. The softmax function is used to normalize the attention weights to ensure they sum up to one. This mechanism ensures that the network prioritizes the most informative time scales based on the input sequence. This enhances the quality of the representation before it is processed by the Transformer encoder blocks.

3.5 Stacked Transformer Encoder Blocks With Multi-Head Self-Attention for Advanced Sequence Learning

The model uses a stacked Transformer encoder with Multi-Head Self-Attention (MHSA) to capture higher-level temporal dependencies [29]. The encoder consists of three identical layers connected sequentially. Each layer processes the output of the previous one using MHSA with four attention heads, followed by a feed-forward network with a hidden dimension of 256. The embedding dimension of each token is 128. The input to the Transformer is a temporal sequence reduced to 3–8 tokens depending on the duration of the movement trial. Learnable positional embeddings of size 128 are added to preserve temporal ordering. By stacking multiple encoder layers, the model gradually extracts more complex and long-range temporal relationships. The final contextualized representation is used as the final output, as depicted in Fig. 4.

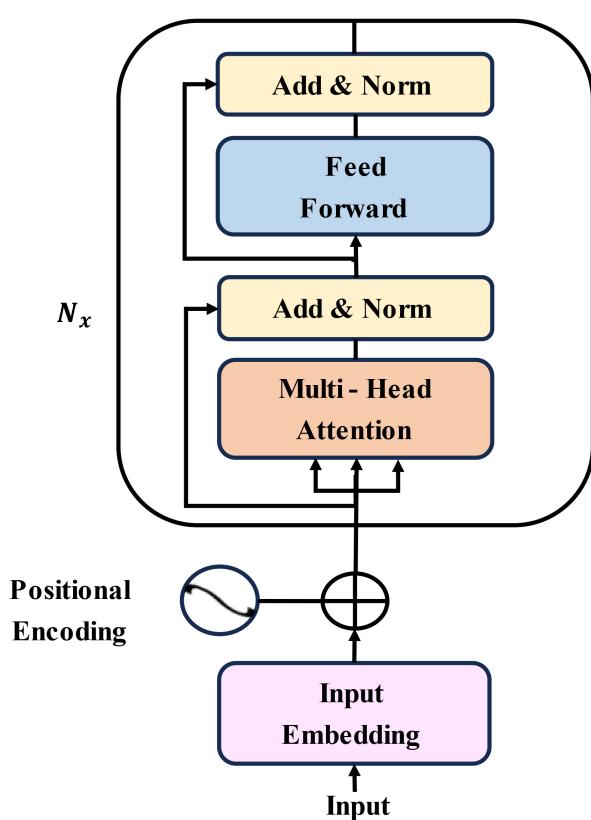


Fig. 4. Architecture of stacked transformer encoder blocks with multi-head self-attention mechanism for advanced temporal dependency modeling.

3.6 Temporal Pooling Layer for Summarizing Information

Temporal pooling is a procedure that is commonly employed in sequence modeling for transforming input sequences of variable-length into smaller fixed size representations. Temporal pooling summarizes information across time, enabling the model to process longer input sequences with fewer computations [30]. In this study, temporal pooling is applied after the transformer encoder blocks to produce compact representations that preserve the most relevant temporal information. This process allows for short-term variability and long-term dependencies, which are encoded by the previous multi-scale and attention mechanisms. The pooled representation provides a stable input for the dual-output prediction heads, the softmax classifier for classifying the medication state of the patients, and a regression layer for measuring the severity of the disease.

3.7 Softmax Classifier

A softmax classifier is a multi-class generalization of logistic regression [31]. It is applied to normalize the raw output scores (logits) of a neural network into probability values, ensuring that the outputs sum to one and are all lie in the range [0, 1]. The function for a softmax classifier function is defined mathematically as shown in Eqn. 4.

$$G_e(v) = \frac{e^{v_e}}{\sum_z e^{v_z}} \quad (4)$$

where $G_e(v)$ is the output from the softmax activation function, v_e is the element of the input vector v . In this framework, the softmax classifier is utilized in the output layer to distinguish between the ON and OFF medication states of patients with PD.

3.8 Regression Layer for Measuring the Severity of the Disease

The MS-TATNet framework incorporates a regression layer to estimate the severity of motor symptoms in patients [32]. Formally, the regression head is implemented as a fully connected layer applied to the pooled temporal representation, is shown in Eqn. 5.

$$\hat{y} = W_r r + b_r \quad (5)$$

where r denotes the pooled input feature vector, W_r and b_r represent the regression layer's weight matrix and bias term, and \hat{y} is the predicted continuous severity score.

4. Results and Discussion

The experimental setting was implemented on Windows 10 (version 1909, Microsoft, Redmond, WA, USA) operating system. The model was developed by Python 3.10 (Python Software Foundation, <https://www.python.org>) with Visual Studio Code 1.96.4 (Microsoft, <https://code.visualstudio.com>). The model inference latency and real-

Table 2. Parameter settings of the MS-TATNet framework.

Category	Parameter	Value
MS-TCN	Batch size	16
	Input size	1
	Hidden size	64
	Kernel sizes	[3, 5, 7]
	Dropout	0.2
Attention & transformer	Activation	ReLU
	Multi-head Attention heads	4
	Transformer layers	2
	Transformer hidden size (d_model)	64
Optimizer & training	Batch first	True
	Optimizer	Adam
	Learning rate	0.001
	Weight decay	0.0001
	Epochs	50
Loss function		Classification: CrossEntropyLoss, Regression: MSELoss

MS-TATNet, Multi-Scale Temporal Attention-Transformer Network; MS-TCN, Multi-Scale Temporal Convolutional Network.

time capability were evaluated on an Intel i7 CPU (Intel Corporation, Santa Clara, CA, USA). The average latency per sequence is 27 ms, corresponding to 35 frames per second (FPS), confirming that the system operates in real-time on CPU hardware. Table 2 displays the parameters used in MS-TATNet framework.

4.1 Evaluation of the MS-TATNet Framework

4.1.1 Hyperparameter Tuning

Table 3 presents the hyperparameter tuning results of the MS-TATNet framework with different learning rates between 0.0001 to 0.01 and training epochs of 10 to 50. The very low learning rates of 0.0001–0.0005 show steady convergence of the model, but require more epochs to approach its best performance. The most balanced performance was obtained with a learning rate of 0.001. The standard deviation (SD) values reported in the table indicate the stability of model performance across multiple runs, with lower SD reflecting more consistent results. In addition, the inclusion of 95% confidence intervals provides a statistical measure of reliability for the observed accuracy values, allowing clearer interpretation of the model's robustness under different learning-rate and epoch combinations. Overall, this provides evidence that the precise tuning of learning rate and epochs significantly increases detection performance and stability in the MS-TATNet framework.

4.1.2 Model Performance Evaluation

The ROC curve evaluating the performance of the model as presented in Fig. 5, which shows TPR against FPR at different decision thresholds. The ROC curve approaches the top-left corner of the plot, with AUC value of 0.9901. The results suggest the model performed extremely well with little amounts of false positives and false negatives.

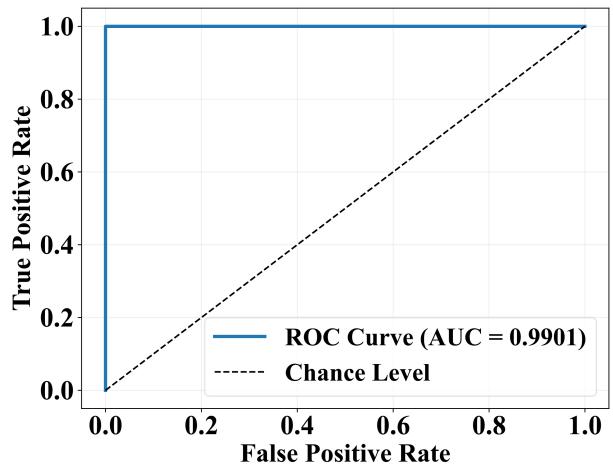


Fig. 5. Receiver operating characteristic (ROC) curve with area under curve (AUC).

Fig. 6 illustrates the performance of the classification model by comparing the predicted labels against the actual labels. The matrix shows that the model correctly predicted 1180 instances as “YES” and 534 instances as “NO”. Misclassifications include 15 false positives and 10 false negatives. This indicates high accuracy with relatively few misclassifications, demonstrating the model's effectiveness in distinguishing between the two classes.

4.1.3 Detection Timing and Session-Based Symptom Monitoring

Fig. 7 presents the differences in time of detection (minutes) and compared between PD and control participants. The PD group has a greater range of variability in detection time with interquartile range distributed around a higher median than controls. Outliers show evidence of

Table 3. Performance evaluation of the MS-TATNet framework during hyperparameter tuning.

Learning rate	Epochs	Accuracy (%)	Precision (%)	Recall (%)	F1-score (%)	R ² Score (%)	Std Dev	95% confidence score (%)
0.0001	10	98.00	97.50	97.59	97.55	94.00	0.39	97.76–98.24
	20	98.53	98.00	98.10	98.05	94.50	0.28	98.35–98.71
	30	98.78	98.25	98.40	98.32	94.80	0.27	98.60–98.96
	40	98.80	98.43	98.50	98.45	95.00	0.21	98.65–98.95
	50	98.00	98.30	98.60	98.55	95.20	0.25	97.83–98.17
0.0005	10	98.54	98.10	98.20	98.15	94.60	0.22	98.38–98.70
	20	98.80	98.41	98.50	98.45	95.00	0.21	98.65–98.95
	30	99.00	98.60	98.70	98.65	95.40	0.21	98.85–99.15
	40	99.12	98.70	98.80	98.75	95.60	0.20	98.98–99.26
	50	99.24	98.81	98.90	98.85	95.80	0.18	99.11–99.37
0.001	10	98.70	98.30	98.40	98.35	95.00	0.21	98.55–98.85
	20	98.90	98.32	98.60	98.55	95.20	0.25	98.73–99.07
	30	99.10	98.70	98.80	98.75	95.60	0.20	98.96–99.24
	40	99.21	98.80	98.80	98.85	95.80	0.18	99.08–99.34
	50	99.63	98.34	99.50	99.67	96.38	0.56	99.28–99.98
0.005	10	98.80	98.40	98.50	98.45	95.00	0.21	98.65–98.95
	20	99.00	98.60	98.70	98.65	95.40	0.21	98.85–99.15
	30	99.15	98.75	98.85	98.80	95.60	0.22	98.99–99.31
	40	99.25	98.85	98.55	98.90	95.80	0.25	99.08–99.42
	50	99.35	98.95	99.05	99.00	96.00	0.21	99.20–99.50
0.01	10	98.30	98.10	98.20	98.15	94.60	0.12	98.21–98.39
	20	98.75	98.35	98.45	98.40	95.20	0.20	98.61–98.89
	30	98.90	98.30	98.60	98.55	95.40	0.25	98.73–99.07
	40	99.05	98.65	98.75	98.70	95.60	0.21	98.90–99.20
	50	99.29	98.82	98.92	98.81	95.80	0.21	99.14–99.44

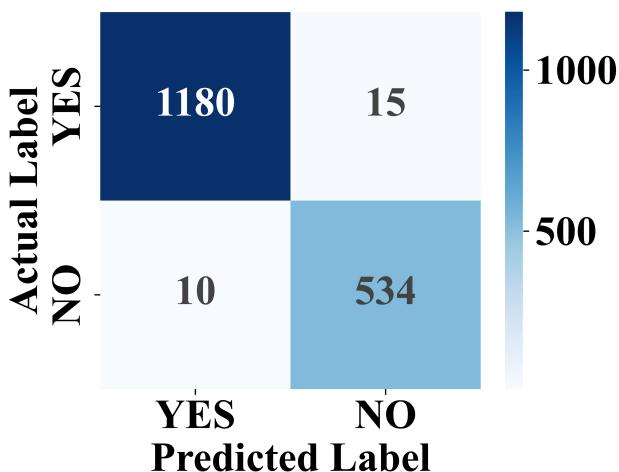


Fig. 6. Confusion matrix of model classification results.

particularly early or late detections for individuals in the PD group. In contrast, the control group's distribution is narrow around zero, indicating a stable time of detection. The red dashed line at zero serves as a reference baseline highlighting the deviation of PD patients from healthy controls. These results show the model's sensitivity to identify variations in motor states in PD subjects, whereas the controls stay relatively stable.



Fig. 7. Detection time difference between Parkinson's Disease and control groups for motor state variations in PD subjects.

Fig. 8 shows longitudinal variations in motor symptom severity detection over four sessions. Each line represents a separate subject (blue lines represent PD patients, green lines represent control subjects). PD patients display higher detected severity scores, reflected in greater variability across sessions, in line with the variable nature of their motor symptoms. Control subjects indicated low severity score near zero across sessions with minimal variation. This clearly shows that the proposed framework can discriminate subjects between Parkinson's and control groups as well

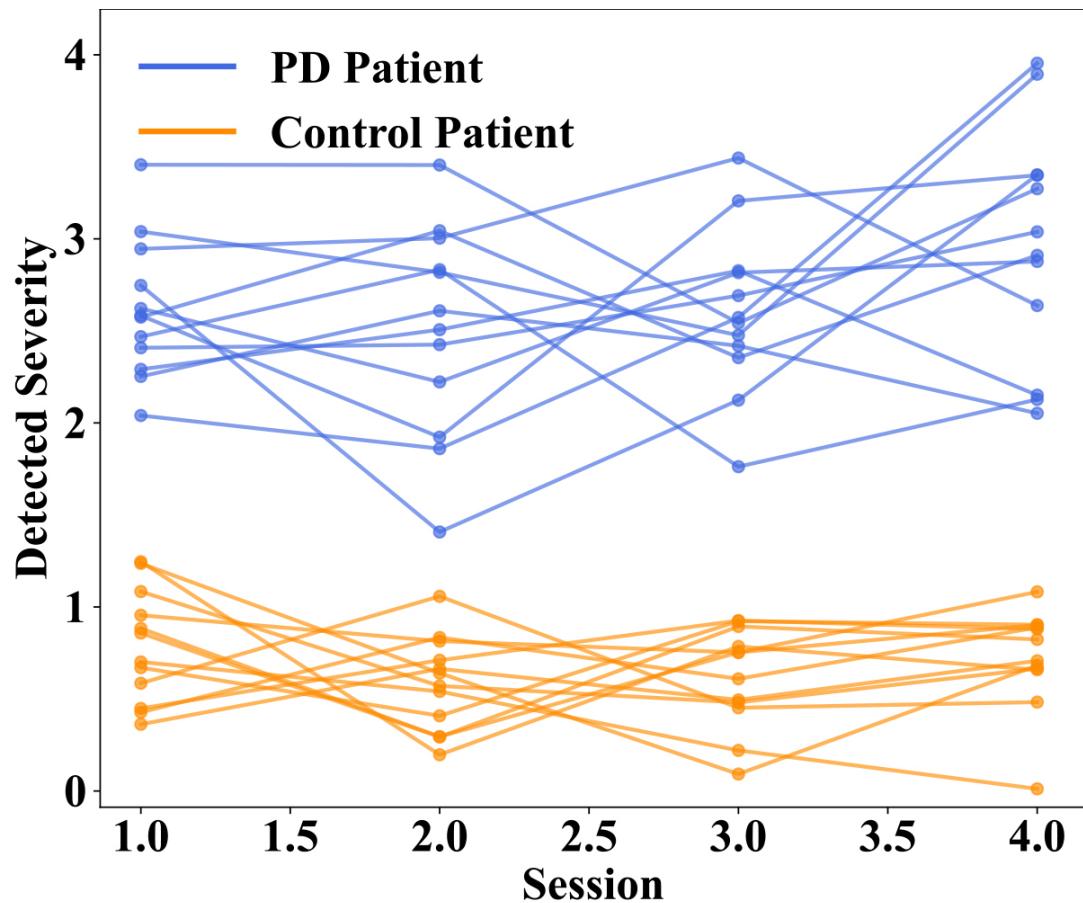


Fig. 8. Longitudinal variation in detected motor symptom severity across multiple sessions between Parkinson's Disease patients and control patients.

as account for session-to-session changes and variation in symptom severity in PD subjects.

4.1.4 Clinical Validity and Model Generalizability Across Patient Subgroups

Fig. 9 illustrates the relationship between the model-predicted severity values and the clinician-rated MDS-UPDRS motor scores. Each blue point represents an individual observation, while the red regression line with its 95% confidence interval highlights the strong linear relationship ($r = 0.94$, 95% CI = [0.88, 0.97], $p = 0.0000032$) between detected and clinically scored severity. The strong positive correlation indicates that the model reliably reflects overall motor symptom severity. Notably, the model captures subtle session-to-session fluctuations in tremor, rigidity, and bradykinesia, which likely correspond to underlying dopaminergic variability within the basal ganglia-thalamocortical loops. These findings suggest that the severity scores not only correlate with clinical ratings but also provide a continuous and sensitive representation of motor dysfunction, offering potential utility for tracking disease progression or monitoring therapeutic response in real-world settings. Fig. 10 displays the variation in severity estimation errors among patient groups, highlighting the

model's generalizability. Fig. 10a indicates the median, quartiles, and outlying errors for each group, while Fig. 10b shows the full error density. The result indicates that early-stage PD patients and healthy controls had the lowest errors, indicating accurate severity estimation when symptoms are minimal or absent.

4.1.5 Model Evaluation With Confidence Intervals

Table 4 presents the key performance metrics of the model including Accuracy, F1-Score, Recall, Specificity, R^2 Score, and Mean Absolute Error (MAE), along with their 95% confidence intervals. The confidence intervals indicate the range within which the true metric values are expected to fall, providing a measure of statistical reliability. High metric values paired with narrow confidence intervals demonstrate that the model performs consistently and reliably across different samples.

4.2 K-fold Cross Validation

Table 5 indicate that the model performs steadily and consistently across several data splits and has a low standard deviation. These results demonstrate the model's durability and dependability while validating its strong and reliable performance. These findings suggest that the model is not

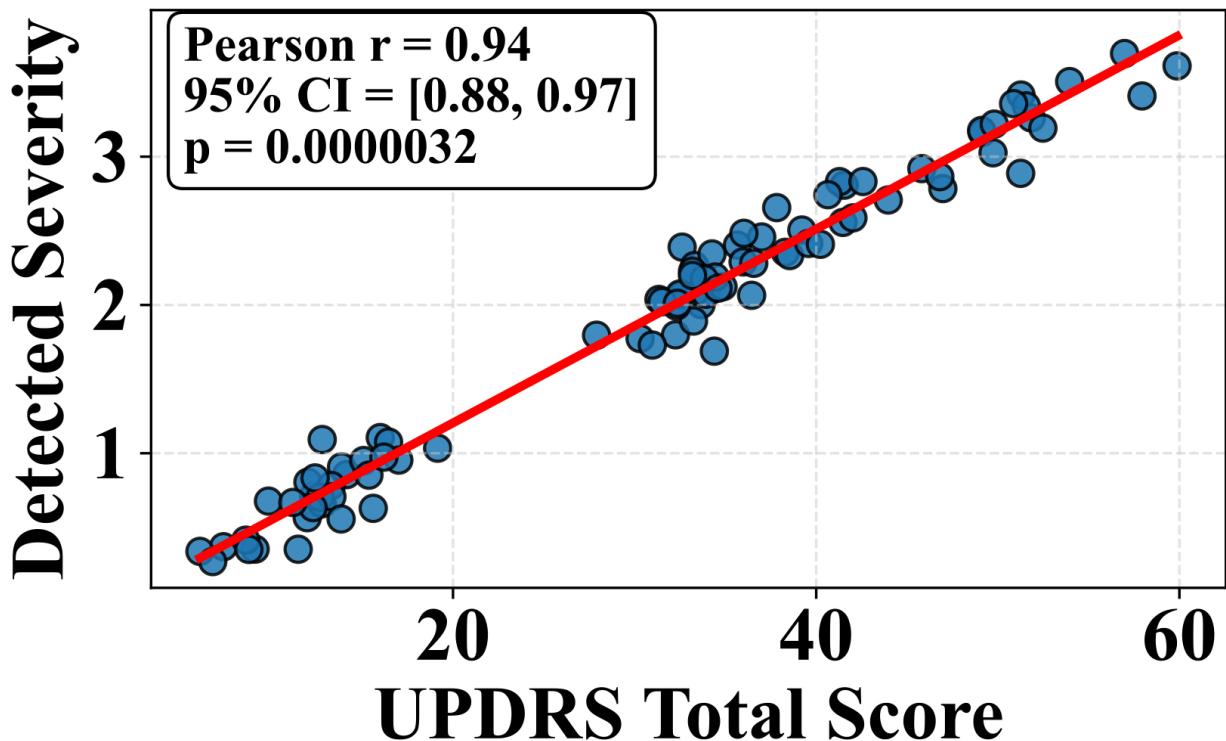


Fig. 9. Correlation between detected severity score from the MS-TATNet model and unified Parkinson’s Disease rating scale total scores clinical ratings. CI, confidence interval.

Table 4. Model performance metrics with 95% confidence intervals.

Metrics	Mean score	95% CI low	95% CI high
Accuracy	0.97	0.95	0.99
F1-Score	0.96	0.93	0.98
Recall	0.94	0.91	0.97
Specificity	0.97	0.94	0.99
R ² Score	0.95	0.93	0.97
MAE	0.15	0.13	0.17

too reliant on any subset of data. This mitigates concerns regarding overfitting and data uniformity.

4.3 Ablation Study

In this section, an ablation analysis is performed to assess the impact of MS-TCN, SDPA mechanism, stack transformer encoder with MHSA, and temporal pooling on MS-TATNet model for classifying PD motor symptoms. We compare the model’s performance with and without these techniques and different combinations of these techniques to analyze the impact of the techniques in the MS-TATNet framework. To validate our findings, we employ several evaluation measures, including accuracy, precision, recall, and F1-score, along with R² Score and SD value. The findings, illustrated in Table 6, validate the efficacy of these techniques, resulting in more reliable classification outcomes.

4.4 Privacy Preserving Analysis

Table 7 summarizes the trade-offs between different input modalities, including RGB video, 3D skeleton, and the 2D skeleton utilized in the MS-TATNet model. It presents identity exposure, data stored, reconstruction risk, hardware requirements, model accuracy, inference latency per sequence, and real-time capability. The result highlights that the 2D skeleton approach achieves the highest accuracy while maintaining very low privacy risk and real-time performance on CPU hardware, whereas RGB video and 3D skeleton modalities which either compromise privacy or require more specialized hardware.

4.5 Comparative Evaluation With Existing Models

This section evaluates the effectiveness of the MS-TATNet model in comparison to various existing methods for classifying PD.

Table 8 (Ref. [14,17,19,21,23,24]) compares the MS-TATNet with existing models, such as Support Vector Machine with Recursive Feature Elimination (SVM-RFE), DNN, Support Vector Machine with Radial Basis Functions (SVM-RBF), ML based approaches, ST-GCN and Global Temporal-difference Shift Network (GTSN). Previous models achieved accuracies ranging from 71–95%, while the MS-TATNet achieved high performance of 99.63% accuracy, 99.50% recall and 99.33% specificity. Overall, this demonstrates the MS-TATNet superior ability

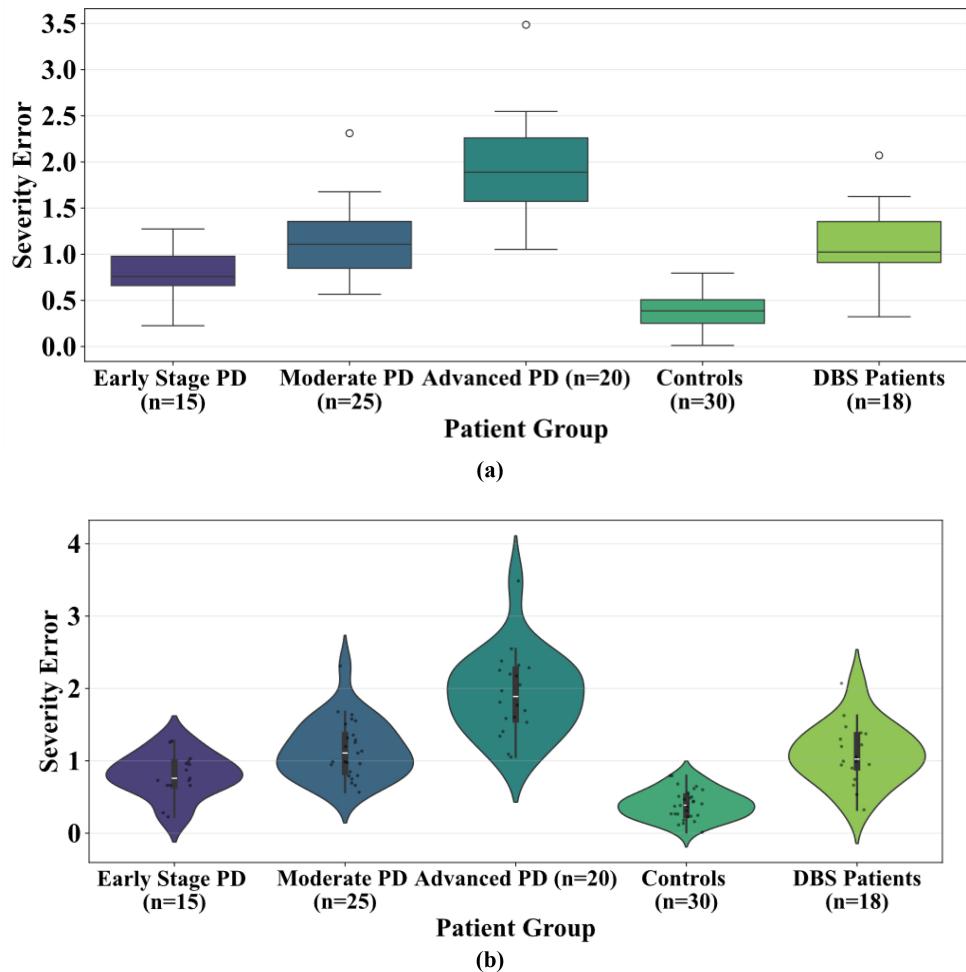


Fig. 10. Severity estimation error. Severity estimation error across individual's patient groups, including early-stage PD, moderate PD, advanced PD, controls, and Deep Brain Stimulation (DBS) patients (a) distribution highlighting median and variance (b) showing density and spread.

Table 5. Performance of the MS-TATNet model during 10-fold cross-validation.

Fold	Accuracy (%)	Precision (%)	Recall (%)	F1-score (%)	R ² -score (%)	Std Dev	95% confidence score (%)
Fold 1	99.61	99.29	99.46	99.00	96.35	1.18	99.46–99.76
Fold 2	99.58	99.31	99.42	99.62	96.32	1.15	99.42–99.73
Fold 3	99.65	99.36	99.50	99.67	96.39	1.18	99.50–99.80
Fold 4	99.69	99.38	99.53	99.68	96.42	1.19	99.54–99.82
Fold 5	99.62	99.27	99.45	99.63	96.34	1.17	99.46–99.77
Fold 6	99.59	99.28	99.40	99.61	96.30	1.16	99.44–99.74
Fold 7	99.66	99.35	99.51	99.66	96.38	1.18	99.51–99.82
Fold 8	99.60	99.30	99.48	99.61	96.33	1.16	99.43–99.75
Fold 9	99.64	99.33	99.48	99.65	96.37	1.17	99.49–99.78
Fold 10	99.67	99.37	99.52	99.68	96.38	1.19	99.52–99.82

to capture motor state fluctuation with both high sensitivity and generalization. This is due to its capability to extract short- and long-range temporal dependencies across skeletal pose data while preserving privacy. This enables robust generalization across patients and relatively more reliable motor state detection of motion-state fluctuations.

4.6 Clinical and Neurophysiological Interpretation of Model Outputs

Parkinson's motor symptoms originate from dopaminergic loss in the substantia nigra and abnormal modulation of the basal ganglia–thalamocortical motor circuits. These pathological changes produce bradykinesia, rigidity, impaired turning, and variability in sit-to-stand transitions pat-

Table 6. Performance of the MS-TATNet model with and without diverse components.

Variant	Accuracy (%)	Precision (%)	Recall (%)	F1-score (%)	R ² score (%)	Std Dev
Without MS-TCN	99.26	99.00	99.10	99.03	96.15	0.98
Without attention	99.05	98.80	98.90	98.85	96.06	0.97
Without transformer encoder with MHSA	99.10	98.90	99.00	98.95	96.08	0.95
Without pooling	98.91	98.70	98.80	98.75	95.98	0.97
Only with MS-TCN	98.50	98.20	98.35	98.27	95.78	1.11
Only with transformer	98.85	98.60	98.75	98.67	95.96	0.99
Only with pooling	95.15	94.07	94.50	94.25	94.03	1.93
With MS-TCN without attention, transformer, pooling	98.20	97.90	98.00	97.95	95.63	1.15
With transformer, without MS-TCN, attention, pooling	97.95	97.60	97.75	97.65	95.50	1.19
With pooling without MS-TCN, attention, transformer	97.70	97.40	97.50	97.45	95.38	1.23
With MS-TCN and pooling without attention and transformer	98.35	98.05	98.15	98.10	95.70	1.10
With transformer and pooling without MS-TCN and attention	98.60	98.30	98.40	98.35	95.83	1.05
With MS-TCN and attention without transformer and pooling	99.12	98.75	98.85	98.78	96.03	0.90
With MS-TCN and transformer without attention and pooling	99.15	98.90	99.00	98.95	96.10	0.84
With MS-TCN, transformer, attention without pooling	99.42	99.18	99.30	99.25	96.23	0.79
Proposed (MS-TCN, attention, transformer, pooling, classifier, regression)	99.63	99.34	99.50	99.67	96.38	0.82

Table 7. Comparison of data modalities for privacy, accuracy, and real-time performance.

Method	Identity exposure	Data stored	Reconstruction risk	Hardware needed	Accuracy (%)	Device latency per sequence (ms)	Real-time capable
RGB video	Very High	Full video	High (face + background)	RGB camera	94.38	81	No
3D skeleton	Medium	XYZ joints	Medium	Depth camera	95.76	48	Partially
2D skeleton (proposed)	Low	2D joints only	Very Low	RGB camera	99.63	27	Yes

RGB, red, green, and blue.

Table 8. Comparison evaluation of the performance metrics of the MS-TATNet model with existing models.

Reference	Method	Accuracy (%)	Recall (%)	Specificity (%)
Wu <i>et al.</i> [14] (2024)	SVM-RFE	84.21	89.47	89.47
Davidashvily <i>et al.</i> [17] (2024)	DNN	84.6	96.20	96.90
Rodriguez <i>et al.</i> [19] (2024)	SVM-RBF	88	90	96
Brien <i>et al.</i> [21] (2023)	ML-based approaches	95	83	78
Zeng <i>et al.</i> [23] (2023)	ST-GCN	71.25	71.10	85.30
Liu <i>et al.</i> [24] (2023)	Global Temporal-difference Shift Network	90.6	85	85
Proposed	MS-TATNet	99.63	99.50	99.33

SVM-RFE, Support Vector Machine with Recursive Feature Elimination; DNN, Deep Neural Network; SVM-RBF, Support Vector Machine with Radial Basis Functions; ML, Machine Learning; ST-GCN, Spatio-Temporal Graph Convolutional Network.

terns that are directly captured in the temporal dynamics of the 2D skeleton pose data. The MS-TATNet identifies reduced joint velocity, decreased movement amplitude, hesitation, and tremor-like oscillations, which are biomechanical correlates of these neural circuit abnormalities.

The continuous severity score generated by the regression module shows strong alignment with clinically evaluated components of the MDS-UPDRS Part III motor subscale, including bradykinesia, tremor intensity, gait, and postural control. Higher predicted severity values correspond to physiologically meaningful impairment and reflect dopaminergic ON/OFF fluctuations rather than only a statistical trend. Thus, the model provides a clinically inter-

pretable, objective, and fine-grained digital biomarker that aligns with established PD motor circuit dysfunction.

In addition, the model's ability to detect continuous fluctuations in severity has direct implications for PD therapy and disease management. Dopaminergic medications such as levodopa produce characteristic pharmacodynamic cycles, including wearing-off, delayed-ON, and dose-failure that manifest as measurable changes in movement amplitude, speed, and tremor patterns. The model captures these transitions, allowing potential real-time monitoring of medication response. Because symptom trajectories vary across early, moderate, and advanced PD, the fine-grained severity output can support longitu-

dinal tracking of neurodegenerative progression. Moreover, such continuous monitoring could aid adaptive therapy strategies, such as optimizing levodopa dosing schedules or informing closed-loop DBS systems with objective, high-frequency motor state information.

5. Conclusion

In this work, we introduce the MS-TATNet, a privacy-preserving and real-time framework that monitor motor symptoms of PD, utilizing 2D skeleton pose data. The framework successfully employs a dilated MS-TCN to capture short, medium, and long-term temporal dependencies, SDPA that emphasizes informative features and stacks transformer encoder blocks with MHSA to provide advanced sequence modeling. The framework used temporal pooling layer to generate compact representations that were fed through two task-specific modules to produce accurate medication ON/OFF state classification of the patient and estimate disease severity. Experiments result on the REMAP dataset show the framework demonstrates excellent performance, achieving an accuracy of 99.63%, specificity of 99.33%, and recall of 99.50%, with a strong correlation to UPDRS scores and robust severity estimation across patients. Overall, this work provides a clinically relevant, scalable, privacy-preserving monitoring motor symptoms of PD, significantly improving upon the state-of-the-art for automated neurological assessment beyond wearable or video-based approaches. This study used only the REMAP dataset because comparable PD skeletal-movement datasets are not publicly available. Future work will validate the model on external datasets when they become accessible.

Availability of Data and Materials

The dataset used in this study is publicly available and was obtained from the referenced source.

Author Contributions

BV and SK contributed to the conception of the problem setting and overall design of the work. BV built the conceptualization and methodology, and SK implemented the work. BV and SK contributed to validation. Both authors contributed to editorial changes in the manuscript. Both authors read and approved the final manuscript. Both authors have participated sufficiently in the work and agreed to be accountable for all aspects of the work.

Ethics Approval and Consent to Participate

Not applicable.

Acknowledgment

Not applicable.

Funding

This research received no external funding.

Conflict of Interest

The authors declare no conflict of interest.

References

- [1] Minervini G, Franco R, Marrapodi MM, Ronsivalle V, Shapira I, Cicciù M. Prevalence of temporomandibular disorders in subjects affected by Parkinson disease: A systematic review and metanalysis. *Journal of Oral Rehabilitation*. 2023; 50: 877–885. <https://doi.org/10.1111/joor.13496>.
- [2] Burtscher J, Moraud EM, Malatesta D, Millet GP, Bally JF, Patoz A. Exercise and gait/movement analyses in treatment and diagnosis of Parkinson's Disease. *Ageing Research Reviews*. 2024; 93: 102147. <https://doi.org/10.1016/j.arr.2023.102147>.
- [3] Stocchi F, Bravi D, Emmi A, Antonini A. Parkinson disease therapy: current strategies and future research priorities. *Nature Reviews. Neurology*. 2024; 20: 695–707. <https://doi.org/10.1038/s41582-024-01034-x>.
- [4] Balamurugan V, Sivasankari K. Segment anything model-based segmentation with inception-ResNet-v2 classifier for Parkinson's disease diagnosis and metaverse visualization. *Computers in Biology and Medicine*. 2025; 187: 109732. <https://doi.org/10.1016/j.combiomed.2025.109732>.
- [5] Meng D, Jin Z, Wang Y, Fang B. Longitudinal cognitive changes in patients with early Parkinson's disease and neuropsychiatric symptoms. *CNS Neuroscience & Therapeutics*. 2023; 29: 2259–2266. <https://doi.org/10.1111/cns.14173>.
- [6] Leite Silva ABR, Gonçalves de Oliveira RW, Diógenes GP, de Castro Aguiar MF, Sallem CC, Lima MPP, *et al.* Premotor, non-motor and motor symptoms of Parkinson's Disease: A new clinical state of the art. *Ageing Research Reviews*. 2023; 84: 101834. <https://doi.org/10.1016/j.arr.2022.101834>.
- [7] Saini N, Singh N, Kaur N, Garg S, Kaur M, Kumar A, *et al.* Motor and non-motor symptoms, drugs, and their mode of action in Parkinson's disease (PD): a review. *Medicinal Chemistry Research*. 2024; 33: 580–599. <https://doi.org/10.1007/s00044-024-03203-5>.
- [8] Alharbi B, Al-Kuraishi HM, Al-Gareeb AI, Elekhnawy E, Alharbi H, Alexiou A, *et al.* Role of GABA pathway in motor and non-motor symptoms in Parkinson's disease: a bidirectional circuit. *European Journal of Medical Research*. 2024; 29: 205. <https://doi.org/10.1186/s40001-024-01779-7>.
- [9] Asadpoordezaki Z, Coogan AN, Henley BM. Chronobiology of Parkinson's disease: Past, present and future. *The European Journal of Neuroscience*. 2023; 57: 178–200. <https://doi.org/10.1111/ejn.15859>.
- [10] Janssen Daalen JM, van den Bergh R, Prins EM, Moghadam MSC, van den Heuvel R, Veen J, *et al.* Digital biomarkers for non-motor symptoms in Parkinson's disease: the state of the art. *NPJ Digital Medicine*. 2024; 7: 186. <https://doi.org/10.1038/s41746-024-01144-2>.
- [11] Antonini A, Reichmann H, Gentile G, Garon M, Tedesco C, Frank A, *et al.* Toward objective monitoring of Parkinson's disease motor symptoms using a wearable device: wearability and performance evaluation of PDMonitor®. *Frontiers in Neurology*. 2023; 14: 1080752. <https://doi.org/10.3389/fneur.2023.1080752>.
- [12] Polvorinos-Fernández C, Sigcha L, Borzì L, Olmo G, Asensio C, López JM, *et al.* Evaluating motor symptoms in Parkinson's disease through wearable sensors: a systematic review of digital biomarkers. *Applied Sciences*. 2024; 14: 10189. <https://doi.org/10.3390/app142210189>.

[13] Shcherbak A, Kovalenko E, Somov A. Detection and classification of early stages of Parkinson's disease through wearable sensors and machine learning. *IEEE Transactions on Instrumentation and Measurement*. 2023; 72: 1–9. <https://doi.org/10.1109/TIM.2023.3284944>.

[14] Wu X, Ma L, Wei P, Shan Y, Chan P, Wang K, *et al.* Wearable sensor devices can automatically identify the ON-OFF status of patients with Parkinson's disease through an interpretable machine learning model. *Frontiers in Neurology*. 2024; 15: 1387477. <https://doi.org/10.3389/fneur.2024.1387477>.

[15] Battista L, Romaniello A. A New Wrist-Worn Tool Supporting the Diagnosis of Parkinsonian Motor Syndromes. *Sensors* (Basel, Switzerland). 2024; 24: 1965. <https://doi.org/10.3390/s24061965>.

[16] Lin S, Gao C, Li H, Huang P, Ling Y, Chen Z, *et al.* Wearable sensor-based gait analysis to discriminate early Parkinson's disease from essential tremor. *Journal of Neurology*. 2023; 270: 2283–2301. <https://doi.org/10.1007/s00415-023-11577-6>.

[17] Davidashvily S, Cardei M, Hssayeni M, Chi C, Ghoraani B. Deep neural networks for wearable sensor-based activity recognition in Parkinson's disease: investigating generalizability and model complexity. *Biomedical Engineering Online*. 2024; 23: 17. <https://doi.org/10.1186/s12938-024-01214-2>.

[18] Johnson S, Kantartjis M, Severson J, Dorsey R, Adams JL, Kangaroo T, *et al.* Wearable Sensor-Based Assessments for Remotely Screening Early-Stage Parkinson's Disease. *Sensors* (Basel, Switzerland). 2024; 24: 5637. <https://doi.org/10.3390/s24175637>.

[19] Rodriguez F, Krauss P, Kluckert J, Ryser F, Stieglitz L, Baumann C, *et al.* Continuous and Unconstrained Tremor Monitoring in Parkinson's Disease Using Supervised Machine Learning and Wearable Sensors. *Parkinson's Disease*. 2024; 2024: 5787563. <https://doi.org/10.1155/2024/5787563>.

[20] Hammoud M, Shcherbak A, Istrakova O, Shindryaeva N, Bril E, Passerone R, *et al.* Wrist-Worn Sensors and Machine Learning for Parkinson's Disease Detection: Investigation of Binary and Multi-classification Problem. *IEEE Transactions on Instrumentation and Measurement*. 2025; 74: 1–11. <https://doi.org/10.1109/TIM.2025.3544381>.

[21] Brien DC, Riek HC, Yep R, Huang J, Coe B, Areshenkov C, *et al.* Classification and staging of Parkinson's disease using video-based eye tracking. *Parkinsonism & Related Disorders*. 2023; 110: 105316. <https://doi.org/10.1016/j.parkreldis.2023.105316>.

[22] Sarapata G, Dushin Y, Morinan G, Ong J, Budhdeo S, Kainz B, *et al.* Video-Based Activity Recognition for Automated Motor Assessment of Parkinson's Disease. *IEEE Journal of Biomedical and Health Informatics*. 2023; 27: 5032–5041. <https://doi.org/10.1109/JBHI.2023.3298530>.

[23] Zeng Q, Liu P, Yu N, Wu J, Huo W, Han J. Video-Based Quantification of Gait Impairments in Parkinson's Disease Using Skeleton-Silhouette Fusion Convolution Network. *IEEE Transactions on Neural Systems and Rehabilitation Engineering: a Publication of the IEEE Engineering in Medicine and Biology Society*. 2023; 31: 2912–2922. <https://doi.org/10.1109/TNSRE.2023.3291359>.

[24] Liu W, Lin X, Chen X, Wang Q, Wang X, Yang B, *et al.* Vision-based estimation of MDS-UPDRS scores for quantifying Parkinson's disease tremor severity. *Medical Image Analysis*. 2023; 85: 102754. <https://doi.org/10.1016/j.media.2023.102754>.

[25] Gao J, Bidulka L, McKeown MJ, Wang ZJ. Regular RGB-Video Based Eye Movement Assessment for Parkinson's Disease. *IEEE Transactions on Instrumentation and Measurement*. 2025; 74: 1–12. <https://doi.org/10.1109/TIM.2025.3606068>.

[26] Ian Craddock, Majid Mirmehdi, Emma Tonkin, Gregory Tourte, Alessandro Masullo, Ryan McConville, Alan Whone, Catherine Morgan, Ferdinand Jovan, Arindam Sikdar, Pushpajit Khaire. REMAP Dataset. 2023. Available at: <https://data.bris.ac.uk/da/tataset/21h9f9e30v9cl2fapjggz4q1x7> (Accessed: 16 September 2025).

[27] Xu Z, Zhang Y, Miao Q. An attention-based multi-scale temporal convolutional network for remaining useful life prediction. *Reliability Engineering & System Safety*. 2024; 250: 110288. <https://doi.org/10.1016/j.ress.2024.110288>.

[28] Saheed YK, Chukwuere JE. CPS-IIoT-P2Attention: Explainable privacy-preserving with scaled dot-product attention in cyber physical system-industrial IoT network. *IEEE Access*. 2025; 13: 81118–81142. <https://doi.org/10.1109/ACCESS.2025.3566980>.

[29] Yu Z, Shi X, Zhang Z. A multi-head self-attention transformer-based model for traffic situation prediction in terminal areas. *IEEE Access*. 2023; 11: 16156–16165. <https://doi.org/10.1109/ACCESS.2023.3245085>.

[30] Irani Azad M, Rajabi R, Estebsari A. Nonintrusive load monitoring (NILM) using a deep learning model with a transformer-based attention mechanism and temporal pooling. *Electronics*. 2024; 13: 407. <https://doi.org/10.3390/electronics13020407>.

[31] Boyanapalli A, Shanthini A. Ovarian cancer detection in computed tomography images using ensembled deep optimized learning classifier. *Concurrency and Computation: Practice and Experience*. 2023; 35: e7716. <https://doi.org/10.1002/cpe.7716>.

[32] Vijayan M, S V. A Regression-Based Approach to Diabetic Retinopathy Diagnosis Using Efficientnet. *Diagnostics* (Basel, Switzerland). 2023; 13: 774. <https://doi.org/10.3390/diagnostics13040774>.