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Abstract

Background: Parkinson’s Disease (PD) is a neurological condition characterized by motor symptoms that fluctuate throughout the day
depending on medication. Continuous and objective monitoring is essential, but conventional clinical assessments are episodic and
subjective, while wearable and video-based solutions may raise privacy concerns. This study aims to develop a real-time, privacy-
preserving deep learning framework that utilizes 2D skeleton pose data to simultaneously classify medication states (ON or OFF) and
continuously estimate motor symptom severity. Methods: To enable privacy-preserving and real-time monitoring of Parkinson’s motor
fluctuations, a Multi-Scale Temporal Attention-Transformer Network (MS-TATNet) was developed based on 2D skeleton pose data
collected from the REal-world Mobility Activities in Parkinson’s disease dataset (REMAP) dataset. The MS-TATNet captures complex,
variable, and multi-scale temporal dynamics of PD motor symptoms through a multi-scale temporal convolutional network, scaled dot-
product attention mechanism, stacked transformer encoder blocks with a multi-head self-attention mechanism, temporal pooling layer,
softmax classifier, and regression layer. Results: The experimental results demonstrate that the MS-TATNet achieved 99.63% accuracy,
99.50% recall, 99.33% specificity, and 99.67% F1-score for medication state classification. For continuous severity estimation, the
predicted scores showed a Pearson correlation coefficient of 0.97 with clinical assessments. Conclusion: Thus, this work highlights the
MS-TATNet’s potential for scalable, privacy-preserving remote monitoring of PD.

Keywords: motor symptoms; multi-scale temporal convolutional network; Parkinson’s disease; skeleton pose data; symptoms severity;
transformer encoder blocks

1. Introduction symptom variations is crucial for the optimal treatment de-
cisions that can alleviate the disease [10].

Recently, wearable sensors and other emerging tech-
nologies have drawn a lot of attention in the treatment of PD
[11,12]. Machine Learning (ML) algorithms and commer-
cial off-the-shelf devices based on STM32 have been devel-
oped for the early identification and categorization of PD
[13]. To classify the PD patient’s “ON” and “OFF” states,
an interpretable ML model was created using a temperature
sensor, a three-axis gyro, and a three-axis magnetometer
[14]. A new tool was presented to aid in the identification

Parkinson’s Disease (PD) is a long-term neurolog-
ical condition caused by the continuous degeneration of
cells that produce dopamine. Dopamine is a neurotrans-
mitter that enhances muscle activation and helps in move-
ment organization [1,2]. The number of persons with PD
increased to over 6 million during 1990 and 2015, mak-
ing it the fastest-growing neurological ailment globally,
while Fig. la illustrates the number of deaths attributed to
PD across different age groups [3]. PD can be identified

by a range of motor symptoms, including tremors, mus-
cle weakness, stiffness, or unstable posture, and also non-
motor symptoms, such as exhaustion, dysphagia, dimin-
ished sense of smell, depressive disorders, and sleep dis-
orders like rapid eye movement (REM) behavioral disor-
der, might be present decades before being diagnosed [4—
8]. People between the ages of 60 and 65 account for the
majority of PD cases. The number of people with PD has
increased along with the aging population, reaching 8.5 mil-
lion patients in 2019. Fig. 1b presents prevalence trends of
PD per 1,000 population across World Health Organization
regions, disaggregated by sex [9]. Accurate monitoring of

of PD motor disorders by analyzing data obtained from a
wrist-worn sensor [15].

1.1 Problem Statement

PD is a progressive neurodegenerative condition that
is characterized by fluctuating motor symptoms like tremor,
rigidity, and bradykinesia. Accurate and consistent mea-
surement of the ON and OFF medication states is neces-
sary to optimize treatment and improve the quality of life.
However, current approaches are based on episodic and
subjective clinical assessments or intrusive wearable and
video-based systems that raise usability, scalability, and
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Fig. 1. Parkinson’s Disease mortality and prevalence trends. (a) Shows the number of deaths attributed to Parkinson’s Disease

(PD) across different age groups over recent years. (b) Presents prevalence trends across World Health Organization regions, with data

disaggregated by sex.

privacy concerns. These challenges highlight the need for
a non-intrusive, objective, and privacy-preserving solution
that can provide real-time and fine-grained monitoring of
Parkinson’s motor symptoms in real-world environments.

1.2 Objective of the Work

The objective of this work is to develop a Multi-Scale
Temporal Attention-Transformer Network (MS-TATNet)
framework for Parkinson’s motor symptom monitoring us-
ing 2D skeleton pose data. Specifically, the framework
aims to accurately detect when patients are in the ON state
(when medication is effective and symptoms are reduced)
and the OFF state (when the effect of medication reduces
and symptoms reappear or worsen), while simultaneously
estimating the continuous severity of motor symptoms.

1.3 Research Contributions

The main contributions of the proposed MS-TATNet
Framework are as follows:

* Privacy-Preserving MS-TATNet Framework: The work
proposes a Multi-Scale Temporal Attention-Transformer
Network (MS-TATNet) framework to monitor PD mo-
tor symptoms using 2D skeleton pose data, instead of
raw video or wearable sensors. This approach allows for
privacy-preserving and non-intrusive analysis appropri-
ate for real-world deployment.

Dilated Multi-Scale Temporal Convolutional Modeling:
The work develops a Multi-Scale Temporal Convolu-
tional Network (MS-TCN) to capture short, medium,
and long-term temporal dependencies in motor fluctua-
tions by using a different dilation rate to effectively rep-
resent a range of symptom dynamics, such as tremor,
rigidity, and bradykinesia.

Dual-Task Learning for Classification and Regression:
The proposed work introduces an integrated end-to-
end model that jointly performs ON/OFF medication
state classification and continuously estimates symptom
severity to provide both discrete and fine-grained assess-
ments within a single framework.

 Attention-Integrated Transformer for Advanced Se-
quence Representation: The proposed MS-TATNet
model incorporates Scaled Dot-Product Attention
(SDPA) and stacked transformer encoder blocks to
highlight the most informative temporal scales and cap-
ture higher-order dependencies, which produce robust
and clinically meaningful sequence representations.

The remaining part of this paper is structured as fol-
lows. The existing works on PD detection using various
approaches are reviewed in Section 2. The suggested MS-
TATNet framework is presented in Section 3, the experi-
mental findings are described in Section 4, and the study is
concluded in Section 5.

2. Related Work

This section analyzes related works on PD detection
using wearable sensor-based approaches and video-based
approaches. Each study was analyzed thoroughly based on
the objectives, methodologies, advantages, and limitations
to identify the key gaps and scope for improvement.

2.1 Wearable Sensor—Based Approaches for PD

Lin et al. [16] utilized raw kinematic signals from
inertial measurement unit sensors to create a model that
uses ML to distinguish early-stage PD from essential tremor
based on gait and postural transition parameters. Even
though the model was highly stable, it was not appropri-
ate for real-time applications or personal usage at home
for monitoring PD patients. Davidashvilly et al. [17] cre-
ated a Deep Neural Network (DNN) for PD patients’ ac-
tivity recognition using wearable sensor data. The model
demonstrated better activity recognition performance us-
ing healthy data. However, there was an inconsistency in
the activity-matching procedure with the dataset. This was
due to the lack of an activity label that matched those in
the dataset used in that work. Johnson er al. [18] used
a multivariate ML model to remotely screen early-stage

PD using a consumer-grade wearable device. This ap-
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proach successfully generated high-dimensional informa-
tion from several sensors. But there were problems with the
non-demographically matched research group and the non-
clinically proven PD diagnosis due to its diminished con-
trol over enrollment screening. Rodriguez et al. [19] intro-
duced and applied an ML algorithm to assess the intensity
of tremor in free-living PD patients using wearable sensor
data with an Inertial Measurement Unit (IMU) securely at-
tached to patient’s wrist and ankles. Even though the model
enhanced therapeutic relevance in continuously monitoring
PD symptoms, the assessments during unrestrained action
in free-living situations continue to be challenging. Ham-
moud et al. [20] developed a wrist-worn IMU sensor to
identify and monitor the development of PD using ML ap-
proaches. With both left and right wrist sensors, the model
showed better performance with the left hand. Neverthe-
less, the model could not account for anatomical and physi-
ological aspects to determine why the left-hand sensor per-
formed better.

2.2 Video-Based Approaches for PD

Brien et al. [21] presented a simple, non-invasive PD
classification algorithm using video-based eye tracking and
ML methods. While the model attained comparable mea-
sures of sensitivity and specificity, it was still challenging
to evaluate what is sensitive to PD rather than age, par-
ticularly cognitive ratings. Sarapata et al. [22] created a
scalable and autonomous video-based human activity iden-
tification system for PD motor dysfunction using Spatio-
Temporal Graph Convolutional Network (ST-GCN). The
system successfully attained reasonable accuracy in activ-
ity categorization and frame-by-frame precise annotation
for high resolution. However, the model has difficulties
to identify identical body postures and movement patterns.
Zeng et al. [23] introduced a computerized video-based
gait analysis model using a skeleton-silhouette fusion con-
volution network. The model provides fine-grained ex-
tra characteristics for high-resolution gait measurement in
addition to accurately predicting the Movement Disorder
Society-Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) gait score. However, the model did not include
patients with severity score 3 and 4, which limits its appli-
cability to more severe cases. Liu ef al. [24] established
a global temporal-difference shift network to predict the
PD tremors’ MDS-UPDRS score from video. The model
demonstrated an increased ability for generalization ability
for the most severe score prediction of PD tremor. But the
model faced challenges in accurately detecting patients with
mild and moderate severity of PD. Gao ef al. [25] devel-
oped an DL-based model for eye movement analysis-based
PD assessment using regular red, green, and blue (RGB)-
video data. The model combined the 1D-Convolutional
Neural Network with Attention-based Network exhibited
superior performance in PD classification. The model had
problems with higher interference cost and generalizability
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issues. Most prior studies use raw video or high-resolution
images, raising patient privacy concerns and require large
storage or bandwidth. No models jointly perform motor
state classification and continuous symptom severity re-
gression on pose data. There is a need for non-invasive,
objective, and scalable methods to detect motor symptom
fluctuations in real-world settings. Thus, this work devel-
ops a real-time Al system that monitors PD motor symp-
toms using skeleton pose data to detect patients’ medication
and its severity.

3. Proposed Methodology

This work develops an MS-TATNet framework for
Parkinson’s motor symptom monitoring using 2D skele-
ton pose data from the REMAP Open dataset. The model
begins with a Multi-Scale Temporal Convolutional Net-
work, where parallel dilated 1D convolutions at short,
medium, and long temporal windows extract hierarchi-
cal motion features. These multi-scale representations are
fused through an SDPA mechanism to emphasize the most
informative time scales. The fused representation is pro-
cessed through stacked transformer encoder blocks with
Multi-Head Self-Attention (MHSA) for advanced tempo-
ral dependency modeling. Finally, temporal pooling gener-
ates representations that branch into two prediction heads,
a softmax classifier for ON or OFF medication state, and
a regression layer for continuous symptom severity estima-
tion. The detailed architecture of the MS-TAT framework
is depicted in Fig. 2.

3.1 Dataset Description

This work utilizes 2D skeleton pose data from
REMAP [26], a human rater-labelled dataset of real-world
mobility behavior in PD including Sit-To-Stand (STS) tran-
sitions and turns in gait while living in a home environ-
ment. These distinct activities are recorded during clin-
ical evaluation as well as during unstructured and unob-
served free-living. It involves 24 subjects, twelve partici-
pants (mean age 61.25; seven males, five females) have PD,
while the remaining twelve (mean age 59.25, three males,
nine females) do not have PD. The dataset was collected us-
ing wall-mounted Microsoft Kinect cameras in communal
rooms of a fully furnished test-bed house, capturing RGB
video at 640 x 480 resolution and 30 frames per second.
From these recordings, episodes of STS and turning in gait
were extracted and converted into 2D skeleton sequences
using pose estimation methods. A range of other annota-
tions that offer extensive details about the actions are shown
in Table 1.

The REMAP dataset includes multiple recording
sessions for each participant, and each session contains
several linked data files rather than a single sample,
resulting in a significantly larger number of usable in-
stances. For the STS task, each participant contributes
approximately 5-7 linked recording files, with each
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Table 1. The parameters involved in each activity label of human rater-labelled dataset.

Activity labelled Parameters

Turning duration

Angle of turn to nearest 45 degree

Number of turning steps

. . Type of turn
Turning of gait
PD or control status

“On” or “off” medication status for PD participants
“On” or “off” Deep Brain Stimulation (DBS) status for PD participants

Clinical assessment “Yes” or “No”

Whole episode duration
Final attempt duration

Extra detail about STS transition: uses flat surface(s) to push off from arms of chair, >1 attempt,

Sit-to-stand

moves forward in chair, carrying something in hand(s)

MDS-UPDRS question 3.9 rating on 0—4 scale

PD or control status

“On” or “off” medication status for PD participants
“On” or “off” DBS status for PD participants

Clinical assessment “Yes” or “No”

Action labelled
Episode duration

. . PD or control status
Non-turning, non-sit-to-stand

“On” or “off” medication status for PD participants
“On” or “off” DBS status for PD participants

Clinical assessment “Yes” or “No”

STS, Sit-To-Stand; MDS-UPDRS, Movement Disorder Society-Unified Parkinson’s Disease Rating Scale.

file containing 150-300 sequential frames represent-
ing a complete sit-to-stand movement cycle. The STS
metadata file includes fields such as Transition ID, Par-
ticipant ID, PD or Control, sts whole episode duration,
sts_final attempt duration, on_or off medication, Deep
Brain Stimulation (DBS) state, Clinical assessment,
STS additional features, and MDS-UPDRS score 3.9
(arising from chair). Each corresponding linked file con-
tains time-series motion data, where each row represents
one frame of the movement via the time(s) column, and
skeleton joint positions are stored as coordinates labeled
x0, y0, x1, y1 ... up to x24, y24, representing all 25 tracked
body joints. Most STS clips were 17 seconds long, with 2
seconds/2000 milliseconds included before the transition
and a variable amount of data included afterwards to make
up the total duration. The skeleton included 25 joints that
can be divided into different parts of the body as shown
in Fig. 3, in the head (0 nose, 15 and 16 eyes and 17 and
18 ears), trunk (1 neck and 8 mid hip), arms (2 and 5
shoulders, 3 and 6 elbows and 4 and 7 wrists), legs (9 and
12 hips, 10 and 13 knees, 11 and 14 ankles), and feet (19
and 22 big toes, 20 and 23 small toes and 21 and 24 heels).

For turning of gait episodes, the RGB video clips
were trimmed to contain the turning action with 6 frames
of data/200 milliseconds included both before and after
the action itself, comprises 17 body joints. The resulting
frame-by-frame skeleton data provided structured represen-
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tations of mobility actions suitable for quantitative analy-
sis. Each participant provides multiple turning trials, re-
sulting in several linked key-point files per subject. The
Turning metadata file includes Turn ID, Participant ID,
PD or Control, number of turning steps, turning_angle,
type of turn, turning duration, On_or Off medication,
DBS state, and clinical assessment. Together, the re-
peated STS and turning recordings across all participants
create a rich motion-sequence dataset with thousands of
frames and a large number of movement samples, enabling
detailed analysis despite the limited number of subjects.

3.2 Data Preprocessing

The dataset first undergoes column normalization us-
ing dictionary mapping and string standardization. Cate-
gorical and text values were encoded through rule-based
normalization, and missing values were handled thorough
imputation. After these preprocessing steps, the dataset was
split into 64% training, 20% testing, and 16% validation
sets. Feature scaling and normalization were then applied
using statistics computed from the training set, ensuring no
information leakage into the validation or test sets.

3.3 Multi-Scale Temporal Convolution Network to Capture
Movement Pattern

To effectively capture the diverse temporal dynamics
of Parkinson’s motor symptoms, this work develops an MS-


https://www.imrpress.com

11 14

24 21

23._.,_.‘,1,_._2-2 190720

Fig. 3. Layout of 2-dimensional skeleton joints used in sit-to-
stand data comprises 25 joints.

TCN [27]. The motor fluctuations of PD occur on various
temporal scales, while tremors are captured in rapid oscilla-
tory behavior, rigidity and bradykinesia slowly evolve over
time. A single receptive field is not suitable for modelling
such variability. Therefore, the model uses parallel tempo-

ral convolutional branches with multiple dilation factors to
extract short, medium, and long-term temporal dependen-
cies. Each stage contains four dilated 1D convolution lay-
ers with dilation rates of 1, 2, 4, and 8, enabling the network
to capture short-, medium-, and long-range dependencies
within the movement sequence. The stages use progres-
sively larger kernel sizes and channel capacities, Stage 1
uses a kernel size of 3 with 64 channels, Stage 2 uses a ker-
nel size of 5 with 96 channels, and Stage 3 uses a kernel
size of 5 with 128 channels, resulting in a total of 12 con-
volutional layers.

Formally, given a skeleton pose sequence
U = {ui, us,..., ur}, where u;eR? signifies the d-
dimensional skeletal joint features at ¢time step, each
branch applies a dilated 1D convolution defined in Eqn. 1.

k—1

y(t)=> w(i) u(t—r-i (M

where k is the kernel size, w (%) represents the convolutional
weights, and r is the dilation rate. Each branch produces
a feature representation Fj, F,,, and F}, corresponding to
short-, medium-, and long-term temporal patterns, respec-
tively. These features are concatenated into one multi-scale
feature representation as shown in Eqn. 2.

Fconcat = [Fs H Fm H Fl} S RTX288 (2)

where || indicates channel-wise concatenation. The multi-
scale features obtained through concatenation are passed
through SDPA to emphasize significant temporal patterns.
The model is trained in a supervised learning framework,
where movement patterns of Parkinson’s motor symptoms
are defined according to established clinical criteria, and la-
bels for each patient are provided by board-certified neurol-
ogists based on standardized clinical assessments. These
labels serve as ground truth, enabling the network to learn
and classify temporal patterns corresponding to diverse mo-
tor symptoms.

3.4 Scaled Dot-Product Attention Mechanism to
Emphasize Most Informative Time Scales

To dynamically identify and prioritize the most rele-
vant information of the input sequence, the proposed model
incorporates the SDPA mechanism. The SDPA mechanism
uses the dot product [28], which is scaled by the square
root of the key vector’s dimension to calculate attention
scores between a query vector Q, and a collection of key
vectors Ky, and value vectors V,,. Given, query (Qy), key
(Kg), and value (V,,) projections of Fyy,cqt, We can deter-
mine the attention score as follows in Eqn. 3.

Attention (Q, Ky, V) = softmazx QquV 3)
gy Dky Yo \/ﬁ v
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where dj, represents the key vectors’ dimensionality. The
softmax function is used to normalize the attention weights
to ensure they sum up to one. This mechanism ensures
that the network prioritizes the most informative time scales
based on the input sequence. This enhances the quality of
the representation before it is processed by the Transformer
encoder blocks.

3.5 Stacked Transformer Encoder Blocks With Multi-Head
Self-Attention for Advanced Sequence Learning

The model uses a stacked Transformer encoder with
Multi-Head Self-Attention (MHSA) to capture higher-level
temporal dependencies [29]. The encoder consists of three
identical layers connected sequentially. Each layer pro-
cesses the output of the previous one using MHSA with
four attention heads, followed by a feed-forward network
with a hidden dimension of 256. The embedding dimen-
sion of each token is 128. The input to the Transformer is a
temporal sequence reduced to 3—8 tokens depending on the
duration of the movement trial. Learnable positional em-
beddings of size 128 are added to preserve temporal order-
ing. By stacking multiple encoder layers, the model grad-
ually extracts more complex and long-range temporal rela-
tionships. The final contextualized representation is used

as the final output, as depicted in Fig. 4.
~{  Add & Norm

~
Feed
Forward
. J
N, —> Add & Norm
I ™
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Encoding k
Input
Embedding
Input

Fig. 4. Architecture of stacked transformer encoder blocks
with multi-head self-attention mechanism for advanced tem-

poral dependency modeling.
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3.6 Temporal Pooling Layer for Summarizing Information

Temporal pooling is a procedure that is commonly
employed in sequence modeling for transforming input se-
quences of variable-length into smaller fixed size represen-
tations. Temporal pooling summarizes information across
time, enabling the model to process longer input sequences
with fewer computations [30]. In this study, temporal pool-
ing is applied after the transformer encoder blocks to pro-
duce compact representations that preserve the most rele-
vant temporal information. This process allows for short-
term variability and long-term dependencies, which are en-
coded by the previous multi-scale and attention mecha-
nisms. The pooled representation provides a stable input
for the dual-output prediction heads, the softmax classifier
for classify the medication state of the patients, and a re-
gression layer for measuring the severity of the disease.

3.7 Softmax Classifier

A softmax classifier is a multi-class generalization of
logistic regression [31]. It is applied to normalize the raw
output scores (logits) of a neural network into probability
values, ensuring that the outputs sum to one and are all lie
in the range [0, 1]. The function for a softmax classifier
function is defined mathematically as shown in Eqn. 4.

el

= ZZ e

Ge (v) 4)

where G, (v) is the output from the softmax activation func-
tion, v, is the element of the input vector v. In this frame-
work, the softmax classifier is utilized in the output layer to
distinguish between the ON and OFF medication states of
patients with PD.

3.8 Regression Layer for Measuring the Severity of the
Disease

The MS-TATNet framework incorporates a regression
layer to estimate the severity of motor symptoms in patients
[32]. Formally, the regression head is implemented as a
fully connected layer applied to the pooled temporal repre-
sentation, is shown in Eqn. 5.

) =W,r+b, Q)

where r denotes the pooled input feature vector, W,. and
b, represent the regression layer’s weight matrix and bias
term, and ¢ is the predicted continuous severity score.

4. Results and Discussion

The experimental setting was implemented on Win-
dows 10 (version 1909, Microsoft, Redmond, WA, USA)
operating system. The model was developed by Python
3.10 (Python Software Foundation, https://www.python.o
rg) with Visual Studio Code 1.96.4 (Microsoft, https://code
.visualstudio.com). The model inference latency and real-
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Table 2. Parameter settings of the MS-TATNet framework.

Category Parameter Value
Data Batch size 16
Input size 1
Hidden size 64
MS-TCN Kernel sizes [3,5,7]
Dropout 0.2
Activation ReLU
Multi-head Attention heads 4
Attention & transformer Transformer layers 2
Transformer hidden size (d_model) 64
Batch first True
Optimizer Adam
Learning rate 0.001
Optimizer & training Weight decay 0.0001
Epochs 50

Loss function

Classification: CrossEntropyLoss, Regression: MSELoss

MS-TATNet, Multi-Scale Temporal Attention-Transformer Network; MS-TCN, Multi-Scale Temporal Convolutional Network.

time capability were evaluated on an Intel i7 CPU (Intel
Corporation, Santa Clara, CA, USA). The average latency
per sequence is 27 ms, corresponding to 35 frames per sec-
ond (FPS), confirming that the system operates in real-time
on CPU hardware. Table 2 displays the parameters used in
MS-TATNet framework.

4.1 Evaluation of the MS-TATNet Framework
4.1.1 Hyperparameter Tuning

Table 3 presents the hyperparameter tuning results of
the MS-TATNet framework with different learning rates be-
tween 0.0001 to 0.01 and training epochs of 10 to 50. The
very low learning rates of 0.0001-0.0005 show steady con-
vergence of the model, but require more epochs to approach
its best performance. The most balanced performance was
obtained with a learning rate of 0.001. The standard devi-
ation (SD) values reported in the table indicate the stabil-
ity of model performance across multiple runs, with lower
SD reflecting more consistent results. In addition, the in-
clusion of 95% confidence intervals provides a statistical
measure of reliability for the observed accuracy values, al-
lowing clearer interpretation of the model’s robustness un-
der different learning-rate and epoch combinations. Over-
all, this provides evidence that the precise tuning of learn-
ing rate and epochs significantly increases detection perfor-
mance and stability in the MS-TATNet framework.

4.1.2 Model Performance Evaluation

The ROC curve evaluating the performance of the
model as presented in Fig. 5, which shows TPR against
FPR at different decision thresholds. The ROC curve ap-
proaches the top-left corner of the plot, with AUC value of
0.9901. The results suggest the model performed extremely
well with little amounts of false positives and false nega-
tives.

1.0
@ 0.8
= -
&
206
~ 04
w L
g
=
0.2 o
" —— ROC Curve (AUC = 0.9901)
P (e Chance Level
0.0 ¥
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig. 5. Receiver operating characteristic (ROC) curve with
area under curve (AUC).

Fig. 6 illustrates the performance of the classification
model by comparing the predicted labels against the actual
labels. The matrix shows that the model correctly predicted
1180 instances as “YES” and 534 instances as “NO”. Mis-
classifications include 15 false positives and 10 false nega-
tives. This indicates high accuracy with relatively few mis-
classifications, demonstrating the model’s effectiveness in
distinguishing between the two classes.

4.1.3 Detection Timing and Session-Based Symptom
Monitoring

Fig. 7 presents the differences in time of detection
(minutes) and compared between PD and control partici-
pants. The PD group has a greater range of variability in
detection time with interquartile range distributed around
a higher median than controls. Outliers show evidence of
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Table 3. Performance evaluation of the MS-TATNet framework during hyperparameter tuning.

Learning rate Epochs Accuracy (%) Precision (%) Recall (%) Fl-score (%) R? Score (%) Std Dev 95% confidence score (%)

10 98.00 97.50 97.59 97.55 94.00 0.39 97.76-98.24
20 98.53 98.00 98.10 98.05 94.50 0.28 98.35-98.71
0.0001 30 98.78 98.25 98.40 98.32 94.80 0.27 98.60-98.96
40 98.80 98.43 98.50 98.45 95.00 0.21 98.65-98.95
50 98.00 98.30 98.60 98.55 95.20 0.25 97.83-98.17
10 98.54 98.10 98.20 98.15 94.60 0.22 98.38-98.70
20 98.80 98.41 98.50 98.45 95.00 0.21 98.65-98.95
0.0005 30 99.00 98.60 98.70 98.65 95.40 0.21 98.85-99.15
40 99.12 98.70 98.80 98.75 95.60 0.20 98.98-99.26
50 99.24 98.81 98.90 98.85 95.80 0.18 99.11-99.37
10 98.70 98.30 98.40 98.35 95.00 0.21 98.55-98.85
20 98.90 98.32 98.60 98.55 95.20 0.25 98.73-99.07
0.001 30 99.10 98.70 98.80 98.75 95.60 0.20 98.96-99.24
40 99.21 98.80 98.80 98.85 95.80 0.18 99.08-99.34
50 99.63 98.34 99.50 99.67 96.38 0.56 99.28-99.98
10 98.80 98.40 98.50 98.45 95.00 0.21 98.65-98.95
20 99.00 98.60 98.70 98.65 95.40 0.21 98.85-99.15
0.005 30 99.15 98.75 98.85 98.80 95.60 0.22 98.99-99.31
40 99.25 98.85 98.55 98.90 95.80 0.25 99.08-99.42
50 99.35 98.95 99.05 99.00 96.00 0.21 99.20-99.50
10 98.30 98.10 98.20 98.15 94.60 0.12 98.21-98.39
20 98.75 98.35 98.45 98.40 95.20 0.20 98.61-98.89
0.01 30 98.90 98.30 98.60 98.55 95.40 0.25 98.73-99.07
40 99.05 98.65 98.75 98.70 95.60 0.21 98.90-99.20
50 99.29 98.82 98.92 98.81 95.80 0.21 99.14-99.44
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Fig. 6. Confusion matrix of model classification results.

particularly early or late detections for individuals in the PD
group. In contrast, the control group’s distribution is nar-
row around zero, indicating a stable time of detection. The
red dashed line at zero serves as a reference baseline high-
lighting the deviation of PD patients from healthy controls.
These results show the model’s sensitivity to identify vari-
ations in motor states in PD subjects, whereas the controls
stay relatively stable.
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Fig. 8 shows longitudinal variations in motor symp-
tom severity detection over four sessions. Each line repre-
sents a separate subject (blue lines represent PD patients,
green lines represent control subjects). PD patients display
higher detected severity scores, reflected in greater variabil-
ity across sessions, in line with the variable nature of their
motor symptoms. Control subjects indicated low severity
score near zero across sessions with minimal variation. This
clearly shows that the proposed framework can discriminate
subjects between Parkinson’s and control groups as well
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Fig. 8. Longitudinal variation in detected motor symptom severity across multiple sessions between Parkinson’s Disease patients

and control patients.

as account for session-to-session changes and variation in
symptom severity in PD subjects.

4.1.4 Clinical Validity and Model Generalizability Across
Patient Subgroups

Fig. 9 illustrates the relationship between the model-
predicted severity values and the clinician-rated MDS-
UPDRS motor scores. Each blue point represents an in-
dividual observation, while the red regression line with its
95% confidence interval highlights the strong linear rela-
tionship (r = 0.94, 95% CI = [0.88, 0.97], p = 0.0000032)
between detected and clinically scored severity. The strong
positive correlation indicates that the model reliably re-
flects overall motor symptom severity. Notably, the model
captures subtle session-to-session fluctuations in tremor,
rigidity, and bradykinesia, which likely correspond to un-
derlying dopaminergic variability within the basal ganglia-
thalamocortical loops. These findings suggest that the
severity scores not only correlate with clinical ratings but
also provide a continuous and sensitive representation of
motor dysfunction, offering potential utility for tracking
disease progression or monitoring therapeutic response in
real-world settings. Fig. 10 displays the variation in sever-
ity estimation errors among patient groups, highlighting the
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model’s generalizability. Fig. 10a indicates the median,
quartiles, and outlying errors for each group, while Fig. 10b
shows the full error density. The result indicates that early-
stage PD patients and healthy controls had the lowest errors,
indicating accurate severity estimation when symptoms are
minimal or absent.

4.1.5 Model Evaluation With Confidence Intervals

Table 4 presents the key performance metrics of the
model including Accuracy, F1-Score, Recall, Specificity,
R? Score, and Mean Absolute Error (MAE), along with
their 95% confidence intervals. The confidence intervals
indicate the range within which the true metric values are
expected to fall, providing a measure of statistical relia-
bility. High metric values paired with narrow confidence
intervals demonstrate that the model performs consistently
and reliably across different samples.

4.2 K-fold Cross Validation

Table 5 indicate that the model performs steadily and
consistently across several data splits and has a low standard
deviation. These results demonstrate the model’s durability
and dependability while validating its strong and reliable
performance. These findings suggest that the model is not

&% IMR Press


https://www.imrpress.com

Pearson r = (0.94

p = 0.0000032

95% CI = [0.88, 0.97]

N W

—

Detected Severity

20

40 60

UPDRS Total Score

Fig. 9. Correlation between detected severity score from the MS-TATNet model and unified Parkinson’s Disease rating scale total

scores clinical ratings. CI, confidence interval.

Table 4. Model performance metrics with 95% confidence

intervals.
Metrics Mean score  95% Cllow  95% CI high
Accuracy 0.97 0.95 0.99
F1-Score 0.96 0.93 0.98
Recall 0.94 0.91 0.97
Specificity 0.97 0.94 0.99
R2 Score 0.95 0.93 0.97
MAE 0.15 0.13 0.17

too reliant on any subset of data. This mitigates concerns
regarding overfitting and data uniformity.

4.3 Ablation Study

In this section, an ablation analysis is performed to as-
sess the impact of MS-TCN, SDPA mechanism, stack trans-
former encoder with MHSA, and temporal pooling on MS-
TATNet model for classifying PD motor symptoms. We
compare the model’s performance with and without these
techniques and different combinations of these techniques
to analyze the impact of the techniques in the MS-TATNet
framework. To validate our findings, we employ several
evaluation measures, including accuracy, precision, recall,
and F1-score, along with R? Score and SD value. The find-
ings, illustrated in Table 6, validate the efficacy of these
techniques, resulting in more reliable classification out-
comes.
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4.4 Privacy Preserving Analysis

Table 7 summarizes the trade-offs between different
input modalities, including RGB video, 3D skeleton, and
the 2D skeleton utilized in the MS-TATNet model. It
presents identity exposure, data stored, reconstruction risk,
hardware requirements, model accuracy, inference latency
per sequence, and real-time capability. The result highlight
that the 2D skeleton approach achieves the highest accu-
racy while maintaining very low privacy risk and real-time
performance on CPU hardware, whereas RGB video and
3D skeleton modalities which either compromise privacy
or require more specialized hardware.

4.5 Comparative Evaluation With Existing Models

This section evaluates the effectiveness of the MS-
TATNet model in comparison to various existing methods
for classifying PD.

Table 8 (Ref. [14,17,19,21,23,24]) compares the
MS-TATNet with existing models, such as Support Vec-
tor Machine with Recursive Feature Elimination (SVM-
RFE), DNN, Support Vector Machine with Radial Basis
Functions (SVM-RBF), ML based approaches, ST-GCN
and Global Temporal-difference Shift Network (GTSN).
Previous models achieved accuracies ranging from 71—
95%, while the MS-TATNet achieved high performance of
99.63% accuracy, 99.50% recall and 99.33% specificity.
Overall, this demonstrates the MS-TATNet superior ability
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Table 5. Performance of the MS-TATNet model during 10-fold cross-validation.
Fold Accuracy (%)  Precision (%) Recall (%) Fl-score (%) R2-score (%) StdDev  95% confidence score (%)
Fold 1 99.61 99.29 99.46 99.00 96.35 1.18 99.46-99.76
Fold 2 99.58 99.31 99.42 99.62 96.32 1.15 99.42-99.73
Fold 3 99.65 99.36 99.50 99.67 96.39 1.18 99.50-99.80
Fold 4 99.69 99.38 99.53 99.68 96.42 1.19 99.54-99.82
Fold 5 99.62 99.27 99.45 99.63 96.34 1.17 99.46-99.77
Fold 6 99.59 99.28 99.40 99.61 96.30 1.16 99.44-99.74
Fold 7 99.66 99.35 99.51 99.66 96.38 1.18 99.51-99.82
Fold 8 99.60 99.30 99.48 99.61 96.33 1.16 99.43-99.75
Fold 9 99.64 99.33 99.48 99.65 96.37 1.17 99.49-99.78
Fold 10 99.67 99.37 99.52 99.68 96.38 1.19 99.52-99.82

to capture motor state fluctuation with both high sensitivity
and generalization. This is due to its capability to extract
short- and long-range temporal dependencies across skele-
tal pose data while preserving privacy. This enables robust
generalization across patients and relatively more reliable
motor state detection of motion-state fluctuations.
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4.6 Clinical and Neurophysiological Interpretation of
Model Outputs

Parkinson’s motor symptoms originate from dopamin-
ergic loss in the substantia nigra and abnormal modulation
of the basal ganglia—thalamocortical motor circuits. These
pathological changes produce bradykinesia, rigidity, im-
paired turning, and variability in sit-to-stand transitions pat-
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Table 6. Performance of the MS-TATNet model with and without diverse components.

Accuracy Precision Recall Fl-score R2 score

Variant Std Dev
(%) o) ) (%) (%)
Without MS-TCN 99.26 99.00 99.10 99.03 96.15 0.98
Without attention 99.05 98.80 98.90 98.85 96.06 0.97
Without transformer encoder with MHSA 99.10 98.90  99.00 98.95 96.08 0.95
Without pooling 98.91 98.70  98.80 98.75 95.98 0.97
Only with MS-TCN 98.50 98.20 98.35 98.27 95.78 1.11
Only with transformer 98.85 98.60 98.75 98.67 95.96 0.99
Only with pooling 95.15 94.07 94.50 94.25 94.03 1.93
With MS-TCN without attention, transformer, pooling 98.20 97.90 98.00 97.95 95.63 1.15
With transformer, without MS-TCN, attention, pooling 97.95 97.60 97.75 97.65 95.50 1.19
With pooling without MS-TCN, attention, transformer 97.70 9740 9750 9745 95.38 1.23
With MS-TCN and pooling without attention and transformer 98.35 98.05 98.15 98.10 95.70 1.10
With transformer and pooling without MS-TCN and attention 98.60 98.30 98.40 98.35 95.83 1.05
With MS-TCN and attention without transformer and pooling 99.12 98.75 98.85 98.78 96.03 0.90
With MS-TCN and transformer without attention and pooling 99.15 98.90  99.00 98.95 96.10 0.84
With MS-TCN, transformer, attention without pooling 99.42 99.18  99.30  99.25 96.23 0.79
Proposed (MS-TCN, attention, transformer, pooling, classifier, regression)  99.63 99.34  99.50 99.67 96.38 0.82

Table 7. Comparison of data modalities for privacy, accuracy, and real-time performance.

Method Identity Data stored Reconstruction risk Hardware  Accuracy Device latency per Real-time
exposure needed (%) sequence (ms) capable
RGB video Very High  Full video  High (face + background) RGB camera  94.38 81 No
3D skeleton Medium  XYZ joints Medium Depth camera  95.76 48 Partially
2D skeleton (proposed)  Low 2D joints only Very Low RGB camera  99.63 27 Yes

RGB, red, green, and blue.

Table 8. Comparison evaluation of the performance metrics of the MS-TATNet model with existing models.

Reference Method Accuracy (%)  Recall (%)  Specificity (%)
Wu et al. [14] (2024) SVM-RFE 84.21 89.47 89.47
Davidashvilly et al. [17] (2024) DNN 84.6 96.20 96.90
Rodriguez et al. [19] (2024) SVM-RBF 88 90 96
Brien et al. [21] (2023) ML-based approaches 95 83 78

Zeng et al. [23] (2023) ST-GCN 71.25 71.10 85.30

Liu ez al. [24] (2023) Global Temporal-difference Shift Network 90.6 85 85
Proposed MS-TATNet 99.63 99.50 99.33

SVM-RFE, Support Vector Machine with Recursive Feature Elimination; DNN, Deep Neural Network; SVM-RBE, Support Vector
Machine with Radial Basis Functions; ML, Machine Learning; ST-GCN, Spatio-Temporal Graph Convolutional Network.

terns that are directly captured in the temporal dynamics of
the 2D skeleton pose data. The MS-TATNet identifies re-
duced joint velocity, decreased movement amplitude, hesi-
tation, and tremor-like oscillations, which are biomechani-
cal correlates of these neural circuit abnormalities.

The continuous severity score generated by the regres-
sion module shows strong alignment with clinically evalu-
ated components of the MDS-UPDRS Part III motor sub-
scale, including bradykinesia, tremor intensity, gait, and
postural control. Higher predicted severity values corre-
spond to physiologically meaningful impairment and reflect
dopaminergic ON/OFF fluctuations rather than only a sta-
tistical trend. Thus, the model provides a clinically inter-
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pretable, objective, and fine-grained digital biomarker that
aligns with established PD motor circuit dysfunction.

In addition, the model’s ability to detect continu-
ous fluctuations in severity has direct implications for PD
therapy and disease management. Dopaminergic med-
ications such as levodopa produce characteristic phar-
macodynamic cycles, including wearing-off, delayed-ON,
and dose-failure that manifest as measurable changes in
movement amplitude, speed, and tremor patterns. The
model captures these transitions, allowing potential real-
time monitoring of medication response. Because symp-
tom trajectories vary across early, moderate, and advanced
PD, the fine-grained severity output can support longitu-
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dinal tracking of neurodegenerative progression. More-
over, such continuous monitoring could aid adaptive ther-
apy strategies, such as optimizing levodopa dosing sched-
ules or informing closed-loop DBS systems with objective,
high-frequency motor state information.

5. Conclusion

In this work, we introduce the MS-TATNet, a privacy-
preserving and real-time framework that monitor motor
symptoms of PD, utilizing 2D skeleton pose data. The
framework successfully employs a dilated MS-TCN to cap-
ture short, medium, and long-term temporal dependen-
cies, SDPA that emphasizes informative features and stacks
transformer encoder blocks with MHSA to provide ad-
vanced sequence modeling. The framework used tem-
poral pooling layer to generate compact representations
that were fed through two task-specific modules to pro-
duce accurate medication ON/OFF state classification of
the patient and estimate disease severity. Experiments re-
sult on the REMAP dataset show the framework demon-
strates excellent performance, achieving an accuracy of
99.63%, specificity of 99.33%, and recall of 99.50%, with
a strong correlation to UPDRS scores and robust severity
estimation across patients. Overall, this work provides a
clinically relevant, scalable, privacy-preserving monitoring
motor symptoms of PD, significantly improving upon the
state-of-the-art for automated neurological assessment be-
yond wearable or video-based approaches. This study used
only the REMAP dataset because comparable PD skeletal-
movement datasets are not publicly available. Future work
will validate the model on external datasets when they be-
come accessible.
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