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Abstract

Aims/Background: Deep learning radiomics (DLRadiomics) can capture a wide range of tumor and lesion characteristics, providing
valuable insights into biological behavior, pathophysiological status, and patient prognosis. This study integrated clinical data with deep
learning-derived features into a machine learning survival model to assess the effectiveness of hepatectomy and transarterial chemoem-
bolization (TACE) treatments in hepatocellular carcinoma (HCC) patients. Methods: This study included pathologically confirmed HCC
patients who received either hepatectomy or TACE between January 2013 and December 2022. We utilized three deep learning-based
algorithms (ResNet50, ResNet18, and DenseNet121) with contrast-enhanced computed tomography (CT) images to predict the overall
survival time. Deep learning features were extracted from these predictive models. Furthermore, a combined survival model was devel-
oped by incorporating clinical factors with the deep learning features for two treatment regimens separately. The areas under the curves
(AUQC) of the receiver operating characteristic (ROC) curves were used to assess the discrimination of the model at different time points.
Additionally, nomograms were constructed to predict patient prognosis undergoing different treatment regimens, and their survival risk
was evaluated using the Kaplan-Meier analysis. Results: This study recruited 409 HCC patients who received either hepatectomy (n =
278, 57 [49—66]; 239 men) or TACE (n= 131, 62 [51-69.5]; 111 men). ResNet50 achieved the highest AUC of 0.866 (95% confidence
interval (CI): 0.815-0.917) in the training set and 0.793 (95% CI: 0.675-0.912) in the testing cohort. Overall, six models were constructed
to assess overall survival for hepatectomy and TACE treatments, with the combined models exhibiting superior discriminative perfor-
mance. The C-index for the combined hepatectomy model was 0.836 (95% CI: 0.776—0.897) in the training cohort and 0.861 (95% CI:
0.755-0.967) in the testing cohort. The C-index for the combined TACE model was 0.840 (95% CI: 0.792—0.888) in the training cohort
and 0.834 (95% CI: 0.759-0.910) in the testing cohort. Two nomograms were created to help clinicians in selecting a treatment method
by examining the difference scores between treatments. Conclusion: The machine learning models can potentially predict differences in
outcomes between hepatectomy and TACE. Furthermore, prognostic models using deep learning-based features can effectively predict
survival risk in HCC patients.
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1. Introduction different survival outcomes among those receiving the same
treatment. Hence, the optimal treatment strategies for HCC
patients remain poorly defined [10]. Moreover, there is a
paucity of studies specifically addressing treatment selec-
tion and prognosis prediction for patients diagnosed with
HCC [11,12]. To evaluate the causal effect of hepatectomy
versus TACE, outcome comparisons within the same pa-

tient population are essential [13].

Primary liver cancer is the third most common cause
of cancer-related mortality worldwide, with hepatocellular
carcinoma (HCC) representing about 75%—-85% of cases
[1]. Various treatment guidelines have been developed to
guide the management of HCC, including the China Liver
Cancer (CNLC) staging system [2] and the Barcelona Clinic
Liver Cancer (BCLC) staging system [3]. Hepatectomy and

transarterial chemoembolization (TACE) are two primary
curative interventions for different stages of HCC [4,5];
however, their ability to inform clinical decision-making
remains limited. Advances in surgical approaches and the
expanding indications for TACE have led to an overlap in
the application of these treatments [6—9]. Furthermore, pa-
tient heterogeneity within the same disease stage leads to

Radiomics is an emerging field of quantitative imag-
ing analysis that aims to correlate extensive extracted imag-
ing features with clinical and biological outcomes [14]. Ad-
vances in quantitative imaging approaches combined with
machine learning have provided an opportunity for trans-
lating data science research into more personalized cancer
treatments [15].
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Fig. 1. A flowchart of the integrated study approach. (A) Collecting clinical features and contrast-enhanced computed tomography

(CT) images, and delineation of the region of interest (ROI) by using 3D Slicer. (B) Constructing deep learning-based networks. (C)

Extracting deep learning radiomics (DLRadiomics) features and developing a combined survival model using clinical and DLRadiomics

features individually for two treatments. (D) Comparing the performance of the models and Constructed nomograms to predict the

prognosis of patients. (E) Analyzing the predictive ability of the model in different subgroups.

Currently, deep learning-based radiomics (DLRa-
diomics) can capture various aspects of tumors and other le-
sions compared to traditional radiomics, offering valuable
insights into biological behavior, pathophysiological con-
ditions, and potential prognoses [16]. DLRadiomics mod-
els can further improve the predictive accuracy of tradi-
tional radiomic approaches. Emerging evidence suggests
that DLRadiomics holds significant potential for predicting
prognosis and treatment response in various cancer types,
such as nasopharyngeal carcinoma, HCC, and non-small
cell lung cancer [17]. However, there is a scarcity of studies
addressing how DLRadiomics can inform therapeutic deci-
sions between TACE and hepatectomy to enhance patient
outcomes.

Computed tomography (CT) imaging-based survival
predictions can support response evaluation in clinical tri-
als, precision medicine, and customized clinical interven-
tions. Therefore, we obtained CT images during both the
arterial and portal venous phases. To enhance treatment
decision-making for patients with HCC, we have devised
a DLRadiomics strategy using CT imaging data. The com-
plete workflow of our study design, including feature ex-
traction, model development, and validation, is illustrated
in Fig. 1.

2. Methods
2.1 Recruitment of Study Participants

This retrospective cohort study included pathologi-
cally confirmed HCC patients treated at Affiliated Hospital

of North Sichuan Medical College, China, between January
2013 and December 2022. Initially, patients received either
hepatectomy or TACE, and their dataset was acquired from
the medical record system of the hospital, with patient iden-
tity anonymized.

The inclusion criteria were as follows: (1) diagnosis
of HCC confirmed through histopathology or according to
the 2018 EASL/AASLD treatment guidelines [18,19]; (2)
those who underwent hepatectomy or TACE followed by
subsequent monitoring; (3) patients aged 18 years or above;
(4) those with no other malignancies. The exclusion crite-
ria included (1) patients with prior systemic or local anti-
tumor treatments (such as transcatheter arterial chemoem-
bolization, immunotherapy, or ablation) before the initial
treatment; (2) patients with no CT scans performed before
surgery or scans conducted more than 1 month before treat-
ment; (3) patients with poor quality CT images; (4) patients
with missing laboratory data, demographic information, or
follow-up records.

The primary endpoint was overall survival (OS), de-
fined as the time from the initiation of the first treatment
(hepatectomy or TACE) to death from any cause or the
last follow-up, which was performed in December 2023.
Clinical characteristics, including demographic informa-
tion, laboratory results, and radiological characteristics,
were analyzed in this study. The clinical characteristics of
the study participants are detailed in Supplementary Text
1.
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2.2 Acquisition of Images

All patients received a routine contrast-enhanced ab-
dominal CT within one month before treatment. CT scans
were conducted using the Philips Brilliance (Brilliance CT
64 Channel, Philips, Netherlands), GE Lightspeed VCT
(GE Healthcare, Chicago, IL, USA), and Siemens Defini-
tion AS (Siemens Healthineers, Erlangen, Germany). Each
patient received a 60 mL of contrast agent administered
intravenously at a rate of 3.0 to 3.5 mL/s using a high-
pressure injector. Subsequently, arterial-phase images were
captured 25-30 seconds after contrast injection, and portal-
phase images were obtained 50—-60 seconds post-injection.

2.3 Segmentation of Images

The regions of interests (ROIs) were delineated using
3D Slicer (Version 5.8.1, Kitware, Inc., Albany, NY, USA).
Two experienced radiologists independently annotated the
ROIs in a blinded and sequential manner to ensure unbi-
ased assessments. Any discrepancies between their anno-
tations were resolved by a senior radiologist with 20 years
of clinical experience, who established the final consensus
on the region of interest (ROI) boundaries. This meticulous
approach ensured accurate and reliable ROI identification,
which is crucial for subsequent analyses. All images under-
went Z-score normalization to standardize pixel intensities.

2.4 DLRadiomics Procedure
2.4.1 Model Training

Patients were randomly divided into training and test-
ing groups. They were further classified into two groups
based on three-year survival outcomes: those who sur-
vived longer than three years were categorized as low risk,
while those with shorter survival times (less than three
years) were designated as high risk. A convolutional neu-
ral network (CNN) model was then trained to differenti-
ate between the high- and low-risk groups. Transfer learn-
ing was implemented using three architectures—ResNet50,
ResNet18, and DenseNetl21—each initialized with Ima-
geNet pre-trained weights to leverage previously acquired
features. The learning rate was adaptively adjusted us-
ing a cosine decay strategy to ensure optimal convergence
during training. Detailed training parameters and proce-
dures are provided in Supplementary Text 2. The model
demonstrating the highest accuracy and generalization per-
formance on the test set was selected. The output probabil-
ities generated by the CNN were defined as DLRadiomics.

Gradient-weighted Class Activation Mapping (Grad-
CAM) is a visualization technique that identifies the regions
within an image that contribute most significantly to the
model’s predictions. It works by computing the gradients of
the target output (e.g., high-risk vs. low-risk classification)
with respect to the final convolutional layer, generating a
coarse localization map that indicates the region most rele-
vant to the prediction. This technique enables visualization
of how the model focuses on specific areas in the CT im-
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ages, providing valuable insights into its decision-making
process and improving the interpretability and transparency
of the deep learning model.

2.4.2 Feature Extraction and Selection for Survival
Analysis

After developing deep learning models, we extracted
DLRadiomics features from the penultimate layer for sur-
vival analysis. Feature selection was conducted in two pri-
mary steps to refine the feature set and minimize overfit-
ting. Initially, a correlation coefficient filter was applied to
reduce multicollinearity by retaining only one feature from
each pair with a correlation coefficient above 0.8. Sub-
sequently, univariate Cox proportional hazards regression
was performed to identify features significantly associated
with survival outcomes (p-value < 0.05), ensuring that only
meaningful predictors were included. The final radiomic
signature was then established using LASSO Cox regres-
sion. These selected features were then used to construct
the final Cox survival model for both treatment groups.

2.5 Signature Building

Patients were classified into either a hepatectomy
group or a TACE group. Separate individualized mod-
els were established for each treatment using the following
steps. First, we conducted univariate and multivariate Cox
proportional hazards regression analyses. Features with a
multivariate p-value below 0.05 were selected to develop
the clinical survival prediction model. Next, for each group,
we constructed a combined survival model that integrated
the DLRadiomics signature with the selected clinical fea-
tures. The areas under the curves (AUC) of the receiver
operating characteristic curves (ROC) were used to assess
the discriminative performance of each model at different
time points. Based on these models, nomograms were de-
veloped by incorporating both DLRadiomics and clinical
variables to predict patient prognosis for each treatment reg-
imen and guide optimal treatment recommendations. Fi-
nally, Kaplan-Meier analysis was performed to evaluate the
survival risk of the patients within the groups.

2.6 Statistical Analysis

The normality of continuous variables was assessed
using the Kolmogorov-Smirnov test. Variables follow-
ing normal distribution were analyzed using #-tests and
expressed as mean + SD (standard deviation). Non-
normally distributed variables were analyzed using the
Mann-Whitney U-test and expressed as median (inter-
quartile range). Moreover, categorical variables were an-
alyzed using the chi-square test and reported as counts (%).
A p < 0.05 was considered statistically significant.

Cox proportional hazards regression analyses were
conducted using R software (Version 4.5.1, R Core Team,
https://www.r-project.org). Radiomics features were ex-
tracted with PyRadiomics version 3.0.1. Machine learning
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algorithms, such as Logistic Regression (LR), were imple-
mented with Scikit-learn version 1.0.2 (open source). Fur-
thermore, deep learning models were developed in PyTorch
version 1.11.0 (open-source deep learning framework) and
optimized using CUDA version 11.3.1 and cuDNN version
8.2.1 (NVIDIA Corporation, Santa Clara, CA, USA).

3. Results
3.1 Patients

This study included 409 patients, comprising 278 in-
dividuals (age: 57 [49-66] years; 239 men) who received
hepatectomy and 131 (age: 62 [51-69.5]; 111 men) who un-
derwent TACE. In the hepatectomy group, the median sur-
vival time for the entire cohort was 517 days (interquartile
range [IQR]: 260-1098), with 144 patients alive at the last
follow-up. In the TACE group, the median survival time
was 218 days (IQR: 129-361), with 23 patients alive at the
last follow-up. Patients in both groups were randomly di-
vided into training and testing cohorts: the training cohort
included 208 hepatectomy and 78 TACE patients, while the
testing cohort included 70 hepatectomy and 53 TACE pa-
tients. The preoperative clinical characteristics of the hepa-
tectomy and TACE groups are detailed in Table 1 and Sup-
plementary Table 1.

3.2 Association of Clinical Characteristics With Overall
Survival of the Study Participants

For both the hepatectomy and TACE groups, clinical
characteristics were individually analyzed within the train-
ing cohort (n = 208 for hepatectomy, n = 78 for TACE). In
the hepatectomy group, univariate Cox proportional haz-
ards regression analysis revealed 13 factors significantly
associated with overall survival (OS) (p < 0.1), including
Child Pugh class, arterial peritumoral enhancement, glu-
tamyl transpeptidase (GGT), HCC capsule, serum albumin
(ALB), albumin-bilirubin (ALBI) grade, BCLC stage, cir-
rhosis, tumor number, international normalized ratio (INR),
fusion lesions, intratumoral necrosis, and tumor diameter
(Supplementary Table 2). Multivariate analysis further
confirmed that BCLC stage, cirrhosis, ALBI grade, and tu-
mor diameter were independent predictors of OS (p < 0.05).
In the TACE group, univariate analysis demonstrated 6 fac-
tors (GGT, ALB, ALBI grade, BCLC stage, cirrhosis, and
tumor location) were significantly associated with OS (p
< 0.1) (Supplementary Table 3). Moreover, multivariate
analysis revealed that BCLC stage, cirrhosis, and tumor lo-
cation were independent risk factors for survival (p < 0.05).

3.3 Development of Deep Learning-Based Radiomics
Models and Extracting Features

We stratified patients into low-risk and high-risk sub-
groups based on a three-year survival prognosis (low-risk:
survival >3 years; high-risk: survival <3 years). Using
these subgroups, we developed three deep learning-based
radiomics models to predict risk classification. The mod-

els were trained on the training cohort and evaluated on
the testing cohorts to assess their performance. Among
the models, ResNet50 achieved the highest AUC in both
the training and testing cohorts, with values of 0.866 (95%
confidence interval (CI): 0.815-0.917) and 0.793 (95% CI:
0.675-0.912), respectively.

Furthermore, ResNet50 demonstrated superior perfor-
mance across multiple evaluation metrics. In the training
cohort, it attained an accuracy of 0.766 (sensitivity: 0.724,
specificity: 0.877), while in the testing cohort, accuracy
was 0.767 (sensitivity: 0.787, specificity: 0.667). These
findings surpassed those of DenseNetl121 (training accu-
racy: 0.670, testing accuracy: 0.656) and ResNet18 (train-
ing accuracy: 0.761, testing accuracy: 0.600), indicating
ResNet50’s discriminative power and generalizability. De-
tailed performance metrics for all models are summarized
in Supplementary Table 4. DenseNet121 displayed mod-
erate performance, with an AUC of 0.798 (95% CI: 0.732—
0.864) in the training cohort, which declined to 0.748 (95%
CI: 0.602-0.894) in the testing cohort, suggesting a de-
crease in predictive capability. ResNet18 demonstrated sta-
ble but slightly lower performance, with an AUC of 0.782
(95% CI: 0.717-0.848) in the training set and 0.771 (95%
CI: 0.651-0.891) in the test set. These findings indicate
that the ResNet50 model outperformed the other models in
both the training and testing cohorts (Supplementary Ta-
ble 4, Supplementary Fig. 1). Therefore, ResNet50 was
selected as the primary model for extracting features in the
subsequent analyses.

A total of 1024 prognostically relevant deep radiomic
features were extracted from the penultimate convolutional
layer of ResNet50. Features were filtered using a correla-
tion coefficient threshold (|r] > 0.80) and univariate Cox
proportional hazards regression (p < 0.05), retaining 588
spatially distinct features. Using 10-fold cross-validation,
the optimal regularization parameter (A = 0.173) was iden-
tified in the LASSO Cox regression model, achieving a C-
index of 0.679 (95% CI: 0.638-0.713) with 26 non-zero
coefficients retained, comprising the final prognostic sig-
nature (Supplementary Figs. 2—4).

3.4 Visualization of Deep Learning-Based Radiomics
Models

To investigate how the deep learning models recog-
nize various samples, we used the Gradient-weighted Class
Activation Mapping (Grad-CAM) technique for visualiza-
tion. As illustrated in Fig. 2, Grad-CAM highlights the acti-
vation areas in the final convolutional layer that predict rel-
evant risk categories. This visualization identifies the im-
age regions that significantly impact the model’s decision-
making, offering valuable insights into its interpretability.
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Table 1. Preoperative clinical characteristics of the hepatectomy and TACE groups.

Features Hepatectomy (n=278)  TACE (n=131)  p-value
Survival time (days), [Median (Q1, Q3)] 517 (260, 1098) 218 (129, 361) <0.001
Survival mode, No. (%) <0.001
Survival 144 (51.8%) 23 (17.6%)
Non-Survival 134 (48.2%) 108 (82.4%)
Child Pugh class, No. (%) <0.001
A 251 (90.3%) 99 (75.6%)
B 27 (9.7%) 32 (24.4%)
ECOG-PS, No. (%) 0.291
0 56 (20.1%) 18 (13.7%)
1 210 (75.5%) 107 (81.7%)
2 12 (4.4%) 6 (4.6%)
Gender, No. (%) 0.739
Male 239 (86.0%) 111 (84.7%)
Female 39 (14.0%) 20 (15.3%)
HBYV infection, No. (%) 0.828
Absent 61 (21.9%) 30 (22.9%)
Present 217 (78.1%) 101 (77.1%)
DM, No. (%) 0.946
Absent 251 (90.3%) 118 (90.1%)
Present 27 (9.7%) 13 (9.9%)
ALBI grade, No. (%) <0.001
1 142 (51.1%) 32 (24.4%)
2 128 (46.0%) 91 (69.5%)
3 8(2.9%) 8 (6.1%)
Cirrhosis, No. (%) 0.254
Absent 202 (72.7%) 88 (67.2%)
Present 76 (27.3%) 43 (32.8%)
Tumor location, No. (%) <0.001
Left 97 (34.9%) 22 (16.8%)
Right 166 (59.7%) 65 (49.6%)
Across 15 (5.4%) 44 (33.6%)
BCLC, No. (%) <0.001
A stage 142 (51.1%) 33 (25.2%)
B stage 64 (23.0%) 40 (30.5%)
C stage 72 (25.9%) 58 (44.3%)
Fusion lesions, No. (%) <0.001
Absent 178 (64.0%) 55 (42.0%)
Present 100 (36.0%) 76 (58.0%)
HCC capsule, No. (%) <0.001
Absent 78 (28.1%) 47 (35.9%)
Integral 133 (47.8%) 25 (19.1%)
Unintegral 42 (15.1%) 45 (34.4%)
HCC capsule breakthrough 25 (9.0%) 14 (10.7%)
Intratumoral necrosis, No. (%) 0.749
Absent 100 (36.0%) 45 (34.4%)
Present 178 (64.0%) 86 (65.6%)
Arterial peritumoral enhancement, No. (%) 0.021
Absent 118 (42.4%) 40 (30.5%)
Present 160 (57.6%) 91 (69.5%)
Tumor number, No. (Median [Q1, Q3]) 1.00 (1.00, 2.00) 2.00(1.00, 6.00)  <0.001
Tumor diameter (mm) (Median [Q1, Q3]) 5.50 (3.73, 8.00) 9.80 (7.20, 12.70)  <0.001
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Table 1. Continued.

Features Hepatectomy (n = 278) TACE (n=131) p-value
Age (years) (Median [Q1, Q3]) 57.00 (49.00, 66.00) 62.00 (51.00, 69.50) 0.014
PLT (10°/L), (Median [Q1, Q3]) 135.00 (96.00, 191.75)  152.70 (111.50, 209.50) 0.021
AST(U/L), (Median [Q1, Q3]) 45.70 (30.33, 68.00) 75.00 (46.45, 130.50) <0.001
ALT (U/L), (Median [Q1, Q3]) 35.50 (24.00, 61.68) 39.00 (26.00, 66.00) 0.227
GGT (U/L), (Median [Q1, Q3]) 62.85(34.00, 139.75)  189.00 (105.50, 363.50) <0.001
ALB (g/L), (Median [Q1, Q3]) 40.05 (36.73, 43.55) 36.80 (33.70, 40.45) <0.001
TBIL (umol/L), (Median [Q1, Q3]) 16.40 (12.60, 23.20) 21.00 (14.50, 30.15) <0.001
Scr (pmol/L), (Median [Q1, Q3]) 67.85 (57.75, 76.38) 67.40 (57.55, 76.90) 0.780
PT (sec), (Median [Q1, Q3]) 13.80 (13.10, 14.30) 13.90 (13.40, 14.70) 0.026
INR (Median [Q1, Q3]) 1.07 (1.01, 1.13) 1.09 (1.03, 1.16) 0.014

Abbreviations: TACE, transarterial chemoembolization; HBV, hepatitis B virus; DM, diabetes mellitus; PLT,
platelet count; AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, glutamyl transpepti-

dase; TBIL, total bilirubin; Scr, serum creatinine; PT, prothrombin time; INR, international normalized ra-

tio; ECOG-PS, Eastern Cooperative Oncology Group performance status; ALB, albumin; ALBI, albumin-

bilirubin; BCLC, Barcelona Clinic Liver Cancer; HCC, hepatocellular carcinoma.
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Fig. 2. Grad-CAM visualizations for two representative sam-

®)

ples. These visualizations are instrumental in demonstrating how
the model focuses on different regions of the images for making
predictions. (A) Grad-CAM visualization for a high-risk HCC pa-
tient. (B) Grad-CAM visualization for a low-risk HCC patient.

3.5 Development and Validation of Models for Two
Treatments Separately

We developed six models to assess the risks of over-
all survival for each treatment group individually. Perfor-
mance metrics for these models in the training and testing
cohorts are shown in Supplementary Tables 5,6. The com-
bined model consistently outperforms the individual Clin-
ical and DLRadiomics models, particularly in the testing
cohort, where their C-index values closely match those of
the training cohort.

For the hepatectomy group, the combined model
yielded a C-index of 0.836 (95% CI: 0.776—0.897) in train-

ing and 0.861 (95% CI: 0.755-0.967) in the testing cohorts
at l-year points. Likewise, the combined model for the
TACE group achieved a C-index of 0.840 (95% CI: 0.792—
0.888) for the training cohort and 0.834 (95% CI: 0.759—
0.910) for the testing cohort. Time-dependent receiver op-
erating characteristic curve further demonstrated that the
combined model outperforms other models across multiple
time points in both the training and testing cohorts. Addi-
tional findings are shown in Supplementary Figs. 5,6.

In the training cohort, patients were divided into low-
and high-risk groups using a cutoff value of 1.03, based on
the median risk score. In the validation cohort, a similar
classification was conducted using a median cutoff of 1.25.
Kaplan-Meier curves (Figs. 3,4) indicated a significant dis-
tinction in the overall survival between the low- and high-
risk subgroups in both cohorts (p < 0.05). Based on these
results, two prognostic nomograms were constructed to pre-
dict survival outcomes for patients undergoing TACE and
hepatectomy, respectively (Fig. 5).

4. Discussion

In this study, the performance of three deep learning
algorithms, ResNet18, ResNet50, and DenseNet121, was
compared in predicting the prognosis of HCC patients us-
ing contrast-enhanced CT images. Among these models,
ResNet50 showed the best predictive performance. Deep
learning features extracted from ResNet50 were then com-
bined with clinical variables to develop nomograms for pre-
dicting the prognosis in patients undergoing hepatectomy or
TACE. These nomograms provided recommendations for
optimal treatment selection.

Compared to the study by Fu et al. [20], which com-
bined traditional radiomics features with clinical data to
predict progression-free survival (PFS) differences between
hepatectomy and TACE, our approach leverages DLRa-
diomics to automatically extract high-dimensional imag-
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Fig. 3. Kaplan-Meier Curves of survival risk based on combined models treated with hepatectomy. (A) Kaplan-Meier curves for
the training cohort treated with hepatectomy. The green line represents the low-risk subgroup, and the red line represents the high-risk

subgroup, as predicted by the combined model. (B) Kaplan-Meier curves for the testing cohort treated with hepatectomy. The green line

represents the low-risk subgroup, and the red line represents the high-risk subgroup, as predicted by the combined model.
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Fig. 4. Kaplan-Meier Curves of survival risk associated with combined models, which were treated with TACE. (A) Kaplan-Meier
curves for the training cohort treated with TACE. The green line represents the low-risk subgroup, and the red line represents the high-
risk subgroup, as predicted by the combined model. (B) Kaplan-Meier curves for the testing cohort treated with TACE. The green line

represents the low-risk subgroup, and the red line represents the high-risk subgroup, as predicted by the combined model.

ing features. This approach overcomes the limitations
of manual feature engineering while efficiently capturing
tumor heterogeneity and biological behavior. Our com-
bined model achieved a C-index of 0.861 in the testing co-
hort for predicting the risk of survival in the hepatectomy
group, significantly outperforming the C-index of 0.75 ob-
served in Fu et al.’s study [20]. Furthermore, the nomo-
grams developed in our study provide an intuitive and indi-
vidualized scoring system to facilitate treatment decision-
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making, thereby streamlining clinical workflows and en-
hancing practical utility.

Treatment guidelines for patients with HCC are often
not followed, with approximately 50% of patients deviating
from the recommended treatments [21,22]. Existing guide-
lines, along with clinical and laboratory indicators, may
have limited roles in guiding the choice between hepate-
ctomy or TACE therapy [23]. A previous study by Li ef al.
[24] suggested treatment recommendations based on imag-
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Fig. 5. Constructed nomograms to predict the prognosis of patients with different treatment regimens using DLRadiomics and

clinical features. (A) The nomogram, when used in conjunction with hepatectomy, identifies three risk factors associated with the risk

of survival. (B) The nomogram, when used in conjunction with TACE, identifies four risk factors associated with the risk of survival.

ing texture characteristics for patients with a single large
HCC, though its conclusions were limited by a small sam-
ple size. Given this, our study expanded the sample size and
compared multiple deep learning models to create a robust
prognostic model for patients undergoing hepatectomy or
TACE. This strategy aims to help clinicians in formulating
tailored treatment decisions based on prognostic differences
and individual patient characteristics.

Traditional radiomics methods often rely on manually
designed algorithms and predefined rules to extract imag-

ing features [25]. In contrast, DLRadiomics can automat-
ically learn the most representative features directly from
raw medical imaging data [26]. For instance, a deep learn-
ing model trained on a large-scale lung CT dataset can au-
tonomously detect characteristic patterns associated with
lung diseases, such as identifying texture changes along
nodule edges, without relying on human-defined rules [27—
29]. Utilizing multi-level neural network architectures,
deep learning is capable of capturing intricate and subtle de-
tails within images [30]. This is crucial for accurate disease
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diagnosis, staging, prognosis evaluation, and other clinical
assessments, thereby enhancing the precision of radiomics
analyses [31]. Hence, we integrated deep learning into the
radiomics procedure to automate and optimize feature ex-
traction. The fusion of deep learning with radiomics com-
bines the strengths of both approaches, enabling the ef-
ficient and accurate detection of minute, otherwise unde-
tectable features in medical images. This model provides
strong support for a range of clinical utilities, including dis-
ease diagnosis, treatment response prediction, and outcome
prognosis [32,33].

Despite several promising results, we acknowledge
some limitations in our study. Firstly, it is a single-center
retrospective study, and thus, external validation datasets is
needed to evaluate the generalizability of the model. Sec-
ondly, the sample size of the single-center study may be rel-
atively limited and given the complexity of causal inference
and treatment selection, future studies using larger datasets
are necessary to validate our results. Thirdly, the model es-
tablished in this study is only an auxiliary tool and should
not be used as a standalone decision-making algorithm. It
must be combined with other clinical evaluation metrics to
facilitate comprehensive treatment planning. Fourthly, pa-
tients were categorized into high-risk and low-risk groups
based on a 3-year survival threshold. However, the num-
ber of TACE patients who survived beyond three years was
small, and variations in treatment modalities across differ-
ent disease stages may have impacted the outcomes. Fu-
ture studies should collect an extensive dataset and conduct
stratified analyses based on disease stage to facilitate more
robust comparisons of treatment strategies. Lastly, the
study did not take into account patients’ subsequent treat-
ment, such as additional hepatectomy or TACE procedures.
In clinical practice, follow-up treatment decisions are af-
fected by several factors, including treatment response, tu-
mor progression, liver function, and overall patient con-
dition. Our future investigation would collect multicenter
data, develop a user-friendly interface to support clinical
decision-making, and establish evidence-based treatment
guidelines to enhance support for clinical diagnosis. Ad-
ditionally, we aim to optimize our model by incorporating
feedback on clinical applicability, clinician adoption, data
integration complexity, and other relevant implementation
factors.

5. Conclusion

In conclusion, this study established a prognostic
model using deep learning-based features to predict risks of
survival in HCC patients. Furthermore, we devised person-
alized models to evaluate prognostic differences between
patients receiving hepatic resection and those undergoing
TACE. These models can assist clinicians in making in-
formed, personalized treatment decisions for HCC patients.
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Key Points

e DLRadiomics, employing ResNet50 on contrast-
enhanced CT images, outperformed traditional ra-
diomics by achieving the highest AUCs in both training
and testing cohorts.

e This study developed and validated survival models that
combine clinical data with DLRadiomics features to
predict risks of overall survival (OS) in hepatocellular
carcinoma (HCC) patients treated with hepatectomy or
TACE.

e DLRadiomics enhances traditional radiomics by au-
tomatically extracting features from medical images,
thereby improving prognostic accuracy and offering
data-driven, personalized treatment approaches for hep-
atocellular carcinoma (HCC).

e This strategy offers clinicians practical tools for optimiz-
ing treatment decisions, marking a significant advance-
ment in precision oncology.
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