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Abstract

Asthma is a common and refractory chronic inflammatory disease of the airways, with its acute episodes governed by a multitude of
factors. The postulation that skin barrier damage poses a direct threat to respiratory system health is gaining traction. In fact, asthma is
closely associated with various skin barrier dysfunction—associated diseases such as atopic dermatitis and atopic eczema. Patients with
atopic eczema frequently exhibit concomitant atopic dermatitis, whereas asthma is often accompanied by allergic rhinitis, constituting the
classic pattern of the “allergic march”. Mechanistically, these conditions share key pathological features, including genetic susceptibility
(such as filaggrin (FLG) gene mutations), immune dysregulation characterized by a predominantly T helper 2 (Th2) type inflammatory
response, and epithelial barrier dysfunction. Environmental factors, such as dust mite allergens, induce systemic sensitization by dam-
aging the skin barrier, subsequently triggering airway inflammation. Targeted therapies have shown significant efficacy in both severe
asthma and atopic dermatitis, highlighting a potential pathogenic pathway shared by the two conditions. In this paper, we review the
relationships between asthma and skin barrier damage from a mechanistic viewpoint, thereby providing an important theoretical basis
for the early prevention and precise treatment strategies of allergic diseases with overlapping pathogenic pathways.
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1. Introduction tal factors [5]. As the largest organ and primary barrier
against external insults, the skin is highly vulnerable to
these pathogenic factors, which collectively elicit a series of
inflammatory responses that may drive the onset of asthma.
In recent years, the association between asthma and skin
barrier damage has attracted significant attention. Impaired
skin barrier function can lead to the development of in-
flammatory diseases, including allergic conditions of the
skin and lungs [6]. Comorbidities of asthma with atopic
dermatitis (AD), allergic sensitization, and atopic eczema
(AE) are common in clinical practice [7-9]. Large-scale
epidemiological studies have shown that up to 25% of pa-
tients with hand AE also suffer from AD, and about 30%
of patients with AD may develop asthma, constituting the
classic “atopic march” pattern [10,11]. This phenomenon
highlights a pathophysiological link between the skin and
the airway epithelium.

Environmental factors, such as pollutants and aller-
gens, and genetic factors together exacerbate epithelial bar-
rier damage. Individuals who are genetically susceptible
to skin-related disorders are at increased risk of more ag-
gressive allergen attacks, which penetrate the epidermis or

Bronchial asthma, abbreviated as asthma, is a hetero-
geneous disease characterized by chronic airway inflam-
mation, reversible airflow obstruction, and hyperreactiv-
ity. Its clinical manifestations include respiratory symp-
toms such as wheezing, shortness of breath, chest tightness,
and coughing, which may vary over time [1]. Asthma is
a chronic disease that affects both children and adults [2].
According to global statistics regarding asthma, the preva-
lence rate of asthma among children worldwide is 9.1%,
with a rate of 11.0% in teenagers and 6.6% among adults
[3]. In 2021, the Global Burden of Disease (GBD) study
reported an asthma prevalence of 3340 cases per 100,000
people, with a higher prevalence recorded in males below
20 years old [4]. The prevalence rate is positively correlated
with the socio-demographic index (SDI), while the mortal-
ity rate is negatively correlated with the socio-demographic
index. From 1990 to 2021, the contribution of high body
mass index to disability-adjusted life years due to asthma
worldwide increased by 4.3%. It has been estimated that
from 2022 to 2050, the global age-standardized incidence

rate will remain at a high level [4].

The onset of asthma is driven by a multitude of in-
ducers, including infections, allergies, and environmen-

airway epithelium, thereby activating both innate and adap-
tive immune responses and ultimately triggering a chronic
inflammatory state [12]. This article reviews the relation-
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ship between asthma and skin barrier damage, with a focus
on their shared pathogenic mechanisms, clinical evidence,
and treatment strategies, providing clinicians with a more
comprehensive perspective for diagnosis and therapy.

2. Skin Barrier Damage—Mediated
Mechanisms of Asthma Pathogenesis

2.1 Genetic Mutations

The skin and airway epithelium are embryologically
homologous, both originating from the ectoderm, and there-
fore share a variety of structural proteins and molecules that
support barrier function [13]. Mutations of the filaggrin
(FLG) gene are among the most characterized genetic sus-
ceptibility factors that have an impact on skin barrier func-
tion [14]. Individuals carrying the FLG gene mutations ex-
perience a reduced secretion of natural moisturizing factors
in the epidermis and abnormal stratum corneum structure,
which paves the way for allergen penetration into the epi-
dermis to induce sensitization [15]. In the airways, FLG
protein is mainly expressed in the nasal epithelium, and
its functional deficiency is highly associated with allergic
rhinitis [ 16], which has been confirmed as an important risk
factor for the development of asthma [17]. Studies showed
that the FLG gene mutations represent a high-risk factor
for atopic dermatitis (AD) [18] and are associated with
asthma [19]. Gonzalez-Tarancén et al. [20] confirmed that
12.6% of the 111 AD patients had LG mutations. Among
them, the most common FLG mutation in AD patients was
R501X (9.9%), followed by R2447X (2.7%) and 2282del4
(1.8%) [20]. A survey of 261 Han Chinese patients with AD
found that among 18 FLG loss-of-function mutations, 10
were newly identified, with K4671X and 3321delA being
the most common mutation sites [18]. This demonstrates
that there are significant regional or ethnic differences in
FLG mutations. FLG deficiency alone can cause impaired
skin permeability and disrupt the paracellular barrier func-
tion, while abnormalities in the extracellular lamellar bilay-
ers caused by impaired lamellar body secretion can further
lead to FLG deficiency. These structural abnormalities can
lower the inflammatory threshold of the skin to irritants or
haptens, forming an “outside-to-inside” pathogenic mecha-
nism for AD [21]. Notably, a study has discovered the rela-
tionship between DNA methylation and AD in the periph-
eral blood mononuclear cells (PBMCs) of pregnant women
exposed to bisphenol A (BPA), as well as its substitutes
bisphenol S (BPS) and bisphenol F (BPF). In patients with
AD, changes in DNA methylation of skin barrier—related
genes (FLG) resulted in damage and inflammation of the
skin barrier [22].

In addition to FLG mutations, abnormal expression of
the tight junction protein claudin-1 is also associated with
AD and asthma [23]. Claudin-1 is a key molecule respon-
sible for maintaining epidermal barrier function, and its
downregulation may enhance epidermal permeability [24].
Evidence has demonstrated that multiple tight junction pro-

teins are abnormally expressed in the bronchial epithelium
of asthma patients, and this leads to diminished airway bar-
rier function, paving the way for allergen access to antigen-
presenting cells, thereby triggering immune responses [25].

2.2 Immune-Inflammatory Abnormality

T helper 2 (Th2)-type inflammatory responses are cen-
tral to the link between asthma and diseases related to
skin barrier dysfunction [26]. Skin barrier damage in-
duces Langerhans cells and dendritic cells to capture aller-
gens, which subsequently migrate to the local lymph nodes
and activate differentiation of naive T cells into Th2 cells
[27,28]. Activated Th2 cells secrete cytokines such as in-
terleukin (IL)-4, IL-5, and IL-13, initiating an inflamma-
tory cascade, where IL-4 promotes B cells to produce im-
munoglobulin E (IgE), IL-5 promotes the differentiation
and survival of eosinophils, and IL-13 stimulates mucus
secretion by epithelial cells and enhances airway hyperre-
sponsiveness (Table 1) [29,30]. IL-31 is a key driver of
pruritus in autoimmune skin diseases [31] and plays a crit-
ical role in the development of allergic and inflammatory
disorders [32]. IL-31 induces skin itching by stimulating
sensory neurons [33,34]. Elevated IL-33 in the skin acti-
vates sensory nerve endings and group 2 innate lymphoid
cells (ILC2s), promoting release of histamine and IL-31,
which in turn induce scratching behavior. Scratching fur-
ther disrupts the barrier and exacerbates IL-33 release, cre-
ating a localized inflammatory cycle. Skin-derived ILC2s
migrate via circulation to the lungs, where it is amplified by
IL-33, exacerbating airway inflammation [35]. Activation
of dendritic cells by thymic stromal lymphopoietin (TSLP)
of human epithelial origin triggers the conversion of cluster
of differentiation 4 (CD4)* T cells into IL-4, IL-13 and IL-
5 secreting Th2 cells that mediate allergic sensitization of
the lungs and the skin (Table 1) [36,37]. In animal models,
dendritic cells derived from mouse bone marrow produced
TSLP signals to promote type 2 immune responses at the
barrier surface [38,39].

Mast cells play a key role in both skin and airway in-
flammation [40,41]. In patients with chronic spontaneous
urticaria, mast cells can be activated through the crosslink-
ing mechanism of the Fc¢ epsilon RI (FceRI) receptor (Ta-
ble 1) [42,43]. Activated mast cells release histamine and
various other mediators, leading to increased vascular per-
meability, smooth muscle contraction, and the sensation of
itching (Table 1) [44]. In the asthmatic airway, mast cells
play a central role in inducing bronchospasm and promot-
ing mucus secretion by releasing histamine and a range of
other mediators (Fig. 1, Ref. [45]) [46].

2.3 Itch—Scratch Cycle and Neuroimmune Regulation

As an important characteristic of impaired skin bar-
rier function, itching is a core symptom of AD [47]. This
sensation triggers the urge to scratch, exerting a severe im-
pact on quality of life (QoL) and psychosocial well-being
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Fig. 1. Molecular mechanism of asthma development as a result of impaired skin barrier function. The image was drawn through
BioGDP (https://biogdp.com/) and reprinted from Firdig et al. [45], available under the CC BY-NC license (https://creativecommon
s.org/licenses/by-nc/4.0/). Abbreviations: AD, atopic dermatitis; AE, atopic eczema; AS, allergic sensitization; FLG, filaggrin; IgE,
immunoglobulin E; IL, interleukin; ILC2, group 2 innate lymphoid cell; TEWL, trans-epidermal water loss; Th2, T helper 2; TSLP,

thymic stromal lymphopoietin; CD4, cluster of differentiation 4.

[48,49]. Intense itching leads to scratching, which further
damages the skin barrier, promotes the release of inflam-
matory mediators, and facilitates the invasion of allergens
[48]. Transient Receptor Potential (TRP) channels play
an important role in pruritus. Transient Receptor Poten-
tial Vanilloid-1 (TRPV1) has been reported to be upregu-
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lated in the skin of patients with AD [50]. TRPV1 activity
is increased in allergic rhinitis [51], characterized by itchy
eyes and sneezing. Another Trp channel that plays a major
role in the propagation of itch, Transient Receptor Poten-
tial Ankyrin 1 (TRPA1), acts downstream of skin neuropep-
tide substance P, triggering itch sensation [52]. TRPA1
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Table 1. Functions and pathological roles of key immune mediators common to skin barrier diseases and asthma.

Pathological roles

Immune mediator ~ Source Main functions

1L-4 Th2 cells Promotes Th2 differentiation and IgE
class switching

IL-5 Th2 cells Promote the proliferation of activated B
cells and indirectly regulate the production
of IgE

IL-13 Th2 cells Induces mucus secretion and promotes fi-
brosis

1L-31 Th2 cells Stimulates sensory neurons

1L-33 Epithelial cells Activates sensory nerve endings and
ILC2s to release histamine and IL-31;
scratching disrupts barrier, aggravating
IL-33 release

IgE B cells Binds to the FceRI receptor on the surface
of mast cells

Histamine Mast cells, basophilic  Expansion; increases permeability

granulocytes
TSLP Epithelial cells Activates dendritic cells

Triggers an allergic reaction and stimu-
lates B cells to produce IgE

Stimulate the sensory nerves and trigger
intense itching; inhibit barrier repair; work
in synergy with IL-4 and IL-13 to promote
the production of specific IgE by B cells,
leading to inflammation

Skin fibrosis

Induces itch
Triggers scratching and activates inflam-
matory cycle

Induces an allergic reaction

Causes hives, rashes and bronchial con-

striction
Induces Th2-type inflammation

Abbreviations: Ig, immunoglobulin; IL, interleukin; ILC2s, group 2 innate lymphoid cells; TSLP, thymic stromal lymphopoietin; FceRI,

Fc epsilon RI; Th2, T helper 2.

is increased in nerve fibers, keratinized cells, and trypsin-
like positive mast cells from the diseased skin of patients
with AD. Notably, the TRPA1 expression in dermal cells
of healthy skin remains minimal [53]. In addition, Tran-
sient Receptor Potential Vanilloid-3 (TRPV3) expression is
increased in AD-injured skin [54].

The neuropeptide substance P is expressed in both the
skin and the airways, and participates in the process of neu-
rogenic inflammation [55,56]. Also, mast cells and sensory
nerves are involved in neurogenic inflammation and pru-
ritus associated with chronic skin inflammation [44]. Sub-
stance P promotes the release of histamine from human skin
mast cells through a pertussis toxin-sensitive and protein
kinase C-dependent mechanism [57]. In the asthmatic air-
way, substance P is involved in bronchoconstriction and
mucus secretion [58]. This neuro-immune interaction may
be an important mechanism linking pathological changes in
the skin and the airways (Fig. 1).

2.4 Environmental Exposure and Barrier Damage

Environmental factors play a key role in the patho-
genesis of asthma and skin barrier damage. House dust
mites (HDM) are the primary indoor allergens responsi-
ble for allergic rhinitis and asthma [59]. HDM sensitiza-
tion is present in asthmatic adults, whose severity is as-
sociated with exposure to the HDM allergens [60]. The
Der p 2 protein is one of the main dust mite excreted al-
lergens that play a key role in the pathogenesis of asthma
[61]. Wan ef al. [62] discovered that higher concentra-
tions of HDM were associated with a higher prevalence of

asthma and allergies in the children investigated. A Der f
1 concentration exceeding 2000 ng/g is of clinical signifi-
cance since it provides useful insights into the diagnosis of
eczema. This indicates a dose—response trend in the preva-
lence of asthma and eczema with increasing concentrations
of HDM (threshold >2000 ng/g). In epidemiological stud-
ies, a variety of environmental factors have been associated
with asthma, such as childhood contact with pets, maternal
diet during pregnancy and lactation, breastfeeding, expo-
sure to tobacco smoke during pregnancy and early life, viral
infections, and disturbances in microbial balance [63,64].
Chemical irritants such as fabric softeners, although not tra-
ditional allergens, can trigger or worsen asthma symptoms
in sensitive individuals [65]. Similarly, in individuals with
impaired skin barriers, these chemicals can further damage
the skin barrier, creating a vicious cycle [66].

3. Clinical Association Between Asthma and
Skin Barrier Damage

3.1 Atopic Dermatitis and Asthma

AD is a recurrent, inflammatory, and pruritic skin dis-
ease that is often accompanied by respiratory symptoms
[67,68]. Thirteen prospective cohort studies (including
four birth cohort studies and nine atopic eczema (AE) co-
hort studies) have shown that infants with extrinsic AD
are at risk of developing asthma [69]. Through a system-
atic review and meta-analysis of 39 publications, includ-
ing 458,810 participants, Li et al. [70] found that the rel-
ative risk (RR) of asthma in AD was 2.16 (95% confi-
dence interval [CI]: 1.88-2.48), with higher risk noted in
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severe AD cases (RR: 2.40; 95% CI: 1.96-2.94) compared
to mild AD (RR: 1.82; 95% CI: 1.03-3.23) or moderate AD
cases (RR: 1.51; 95% CI: 1.30-1.75). The risk of develop-
ing asthma was slightly higher in early-onset AD than in
late-onset AD and was higher in boys than in girls. Epi-
demiological surveys indicate that the incidence of asthma
continues to rise among both children and adults with AD,
suggesting that this phenomenon is attributed to overlap-
ping genetic risk variations and environmental triggers [71].
According to research data from China, 16.7% of patients
with AD also suffer from asthma, and 33.7% have aller-
gic rhino-conjunctivitis. The prevalence of these extracu-
taneous comorbidities increases with age [72]. Early ab-
normalities in skin barrier function can be detected in AD
patients, manifested as reduced stratum corneum hydration,
increased trans-epidermal water loss (TEWL), and altered
pH values [73]. Mechanistically, under the influence of ge-
netic factors, the innate skin barrier dysfunction allows al-
lergens and other factors to penetrate the body through the
skin barrier, triggering type 2 inflammation and the produc-
tion of inflammatory mediators that cause allergy. These
activated cells and inflammatory mediators can further act
on the airways. In addition, upon inhalation by patients
with AD, these allergens can directly affect the airway ep-
ithelium, leading to activation of sensitized inflammatory
cells and synthesis of inflammatory mediators, which in
turn cause airway smooth muscle spasm, mucosal edema,
and increased mucus secretion—all of which precipitate the
development of asthma [74]. It has been reported that asth-
matic patients have reduced levels of antiviral interferons
(IFNs). Rhinovirus or respiratory syncytial virus released
by the virus-infected nasal epithelial cells spreads to the
lower airways, leading to epithelial cell death and the re-
lease of active IL-33, thereby triggering type 2 inflamma-
tion. Meanwhile, antiviral IFNs can directly inhibit the pro-
liferation of Th2 cells and ILC2s, as well as the production
of type 2 cytokines [75]. In addition, Staphylococcus au-
reus, a common infection in the AD patients, releases su-
perantigens that further amplify the inflammatory response;
this mechanism further plays a role in acute asthma exac-
erbations [76]. AD is categorized according to its sever-
ity (Scoring Atopic Dermatitis (SCORAD) score) as mild,
moderate, and severe. As the severity of AD increases, the
incidence of asthma also gradually rises. Growing evidence
demonstrates that patients with AD are prone to developing
asthma since this skin disorder is substantially associated
with the severity of asthma and the duration of skin dam-
age [77].

Among the affected children, 45% developed symp-
toms in the first six months of life, 60% in the first year of
life, and up to 85% developed AD by age 5 [78]. The sever-
ity of AD was associated with the risk of developing rhinitis
and elevated levels of total and specific immunoglobulin E
(IgE) antibodies [79]. While investigating the prevalence
of allergic rhinitis and asthma among 2270 children with
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AD, Kapoor et al. [80] found that nearly 66% of those aged
3 years suffered from allergic rhinitis or asthma, and that
the presence of these disorders was associated with poor
control of AD. These processes are consistently character-
istic of the “atopic march”. Repeated sensitization to cuta-
neous allergens in animal models leads to epidermal barrier
dysfunction, which results in AD phenotypes and systemic
sensitization, and increases the risk of allergic rhinitis, lung
inflammation, and airway hyperresponsiveness [81]. Skin
exposure to aeroallergens in mouse models induces sys-
temic Th2 immunity, which leads to nasal allergic reac-
tions, suggesting that the skin is an effective site for anti-
genic sensitization during the development of experimental
allergic rhinitis [82]. Indeed, murine models have shown
that exposure of the epidermis to ovalbumen after removal
of the stratum corneum induces a strong systemic Th2 im-
mune response characterized by an increase in IL-4 secre-
tion by T cells from the draining lymph nodes and high lev-
els of allergen-specific IgE and immunoglobulin G1 (IgG1)
[83]. Findings from these animal experiments lend further
credence to their interplay, which constitutes the “atopic
march”.

3.2 Atopic Eczema and Asthma

There is a moderate association between AE in infancy
and asthma in childhood [84], which is demonstrated in a
prospective, population-based study investigating the asso-
ciation between AE occurrence at age 2 and asthma devel-
opment at age 6 (odds ratio [OR]: 1.80; 95% CI: 1.10-2.96)
[85]. Eczema patients who carry specific IgE antibodies
against common environmental allergens at 2 to 4 years of
age are at a higher risk of developing allergic rhinitis and
asthma than those with eczema without IgE sensitization
[86]. The Tucson Children’s Respiratory Study found that
eczema in infancy was an independent risk factor for per-
sistent wheezing, and that 18% of children with wheezing
at age 6 had eczema before age 2 [87]. A prospective study
examining the development of allergy and asthma in infants
with eczema who were followed up to 7 years of age showed
that eczema improved in 82 of 94 children, but 43% of
them developed asthma and 45% developed allergic rhinitis
[79]. Children with eczema are at higher risk of developing
asthma, and early exacerbations of eczema are associated
with an increased risk of sensitization to inhalant allergens.
These studies suggest that IgE sensitization to environmen-
tal allergens in patients with eczema is an important fac-
tor in the progression to the allergic phenotype of asthma.
A study conducted in Tasmania on the impact of eczema
on the development of asthma from childhood to adulthood
found that childhood eczema was significantly associated
with new-onset asthma in three separate life stages, namely
preadolescence, adolescence, and adult life [88]. Collec-
tively, these studies illustrate the concept of “atopic march”.
Children with AE or those who are sensitized to allergens
in early childhood are more likely to develop asthma and
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allergic reaction syndrome [69]. A prospective study of
10-year-old children showed that the progression from AE
in infancy to early allergic reaction syndrome and subse-
quently to asthma in childhood supports the concept of the
“atopic march” [89].

3.3 Chronic Urticaria and Asthma

Chronic urticaria (CU) is characterized by intensely
itchy wheals that rapidly develop central edema surrounded
by erythematous areas [90,91]. In addition, mast cell me-
diators induce local vasodilatation, which increases cap-
illary permeability and plasma leakage, thereby intensify-
ing erythema [92]. The link between chronic urticaria and
asthma may reflect aberrant crosstalk between helper T
cells (Th2 type) and mast cells. For example, Shefler ef al.
[93] reported that mast cell activity may be indirectly influ-
enced by distal T cells. Perhaps this subtle abnormality of
crosstalk may lead to the co-occurrence of chronic urticaria
and asthma in the same patient. In a cross-sectional study
of 11,271 patients with chronic urticaria 1215 (10.8%) were
found to have asthma compared with 4342 (6.5%) of 67,216
controls, suggesting that patients with chronic urticaria are
at significantly higher risk of developing asthma than the
general population [94]. Mast cells act as common effec-
tor cells in both urticaria and asthma, and their activation
mechanisms are common to both diseases. IgE sensitization
is higher in patients with chronic urticaria, similar to atopic
diseases [95]. In patients with chronic urticaria, allergens
act by stimulating the production of IgE, which binds to
FceRlI, leading to mast cell and basophil degranulation [96].
These findings partly explain why some patients with re-
fractory urticaria are affected by comorbid asthma.

3.4 Psoriasis and Asthma

Characterized by erythema and silvery scales on the
trunk and extremities, psoriasis is a chronic inflamma-
tory disease of the skin, with a prevalence ranging up to
11.43% [97]. Psoriasis is considered an immune-mediated
disease associated with IL-23 and IL-17 [98]. Both pso-
riasis and asthma share common inflammatory cytokine—
mediated mechanisms. IL-17 may serve as a biomarker for
this phenotype, and recent studies have shown that asthma-
associated genes with high IL-17 expression overlap with
those altered in psoriasis [99]. This suggests that psoria-
sis and asthma have similar immunophenotypes. Abnor-
mal activation of T helper 17 (Th17) cells in patients with
psoriasis leads to high levels of IL-17 expression, a proin-
flammatory factor that not only drives the hyperprolifer-
ation of keratin-forming cells to form characteristic scaly
plaques but also migrates to respiratory tissues through
bloodstream. Approximately 24% of asthmatics present
with a “psoriasis-like immunophenotype” characterized by
frequent acute exacerbations, significant sputum and mu-
cosal neutrophilia, reduced lung microbiota diversity, and
elevated urinary thromboxane B2 levels [99]. Of note, there

is a two-way link between psoriasis and asthma. Cohort
[100] and cross-sectional [101-103] studies have demon-
strated the risk of asthma in patients with psoriasis. Two co-
hort studies have examined the risk of psoriasis in patients
with asthma [104,105]. A meta-analysis revealed that pa-
tients with psoriasis had a higher risk of developing asthma
(OR: 1.48; 95% CI: 1.28-1.68). Meanwhile, the overall risk
of psoriasis was higher in patients with asthma (OR: 1.33;
95% CI: 1.23-1.44) [106].

According to the literature, there is a close and multi-
faceted link between skin barrier dysfunction and the clin-
ical manifestations of asthma: (1) AD and asthma: Genet-
ically and environmentally driven skin barrier defects en-
hance allergen entry into the skin, thereby activating a sys-
temic type 2 (Th2) immune response. Activated inflam-
matory cells and mediators then act on the airways, caus-
ing airway inflammation and asthma. (2) AE and asthma:
IgE sensitization to common allergens is a key risk factor
of asthma development in eczema patients. Poor control of
early eczema is closely associated with subsequent devel-
opment for allergic airway disease. (3) CU and asthma: In
both of these conditions, mast cells act as the central ef-
fector cells. Abnormal Th2-type immune responses and
IgE-mediated mast cell activation and degranulation are
common pathological mechanisms linking the two condi-
tions. (4) Psoriasis and asthma: The association between
psoriasis and asthma lies in the abnormal activation of the
IL-23/Th17 immune axis, which is different from the Th2
pathway. Elevated proinflammatory factors such as IL-17
not only drive the development of psoriatic skin lesions but
also affect the airways via the circulation and lead to an
asthma phenotype characterized by neutrophilic inflamma-
tion. Different types of skin diseases trigger local and sys-
temic inflammation through distinct immune pathways, key
factors, and effector cells. In the event of an impaired skin
barrier or a dysregulated immune system, this inflammatory
response can “remotely” affect the airways, indirectly con-
tributing to different aspects of asthma development, such
as its clinical manifestations, severity, and risk augmenta-
tion.

4. Prevention Strategies

A three-tiered approach to curtailing the risk of asthma
induced by skin barrier damage has been proved to be ef-
fective in reducing morbidity and improving prognosis:

Primary prevention (risk avoidance): This preventive
strategy centers on blocking the penetration of allergens
into damaged skin. This approach entails allergen pro-
filing by means of patch testing and serum IgE measure-
ments, as well as the implementation of targeted protection
[107,108]. For those who are allergic to dust mites, anti-
mite bedspreads and regular (weekly) washing of bedding
in hot water are required. Further steps and requirements in-
clude installation of air purifier (High Efficiency Particulate
Air (HEPA) filter) and maintenance of humidity at 40-50%
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to prevent mold growth. Additionally, microbial exposure
intervention and early childhood exposure to farm environ-
ments have been found to increase microbial diversity and
reduce asthma risk [109].

Secondary prevention (early intervention): This form
of preventive strategy focuses on skin barrier repair. Bar-
rier repair is assessed by TEWL testing every three months.
Targeted prophylaxis of the skin barrier should be intro-
duced early in life before the clinical manifestations of AD
appear. This is important because in newborns and infants,
the skin barrier is immature at birth and typically achieves
full functionality by 6 months of age [110]. Two random-
ized controlled pilot studies showed that daily application
of a standard petroleum jelly moisturizer to the whole body,
starting within the first week of life, is effective in pre-
venting the later onset of AD [111,112]. In addition, daily
treatment of infants with moisturizers reduces the risk of
dry skin and dermatitis, which is associated with lower
TEWL, lower pH, and increased stratum corneum hydra-
tion, demonstrating that the protective effect of moisturizers
is attributed to improved skin function [113]. Similarly, a
randomized controlled trial observed that moisturizers con-
taining ceramides and amino acids may help reduce AD in
high-risk neonates [114].

Tertiary prevention (immunomodulation): Tertiary
prevention entails remodeling of immune homeostasis
through lifestyle interventions. This strategy requires 7—8
hours of deep sleep to maintain the physiological rhythm of
melatonin for inhibiting mast cell activation [115]. For ge-
netically susceptible individuals, supplementation with spe-
cific probiotic strains (e.g., Lactobacillus rhamnosus strain
GQG) should be considered during pregnancy and infancy
[116]. Furthermore, skin barrier disruption triggers Th2 in-
flammation by upregulating proinflammatory cytokine ex-
pression, and conversely, Th2 immune cytokines impair
skin barrier function through reduced expression of stratum
corneum proteins, which enhances epidermal allergen ac-
tivation, thereby creating a vicious cycle [117-119]. Ac-
tive anti-inflammatory therapy can be deployed to achieve
effective control of AD and mitigation of Th2 inflamma-
tion. Experimental studies on the epidermis of ovalbumin
(OVA)-sensitized mice showed that topical corticosteroid
pretreatment inhibited the expansion of eosinophils in the
skin and intestinal mucosa, while oral administration sup-
pressed the induction of allergic symptoms [120]. Through
aretrospective cohort study, Fukuie et al. [121] found a sig-
nificant decrease in serum total IgE levels in patients with
moderate to severe AD after receiving continuous active
topical corticosteroid treatment for 2 years.

5. Treatment Strategy
5.1 Targeted Biological Agents

Omalizumab, by binding to free IgE, blocks its inter-
action with the Fc epsilon RI (FceRI) receptors on the sur-
face of mast cells, thereby inhibiting their activation [122].
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Research has shown that the drug improves symptoms in
81.8% of patients with refractory chronic spontaneous ur-
ticaria [123], while approximately 7.2% of chronic sponta-
neous urticaria patients respond poorly to omalizumab, pos-
sibly related to IgE-independent pathways of mast cell ac-
tivation. Data from a study involving 18 patients showed a
reduction in asthma exacerbations following treatment with
omalizumab (Table 2) [124]. Dupilumab targets the shared
receptor subunit of IL-4 and IL-13, blocking a key node
in the Th2 signaling pathway [125]. The drug has been
approved for moderate-to-severe AD and asthma, signifi-
cantly improving clinical symptoms and restoring skin bar-
rier function [126]. In asthma treatment, it is particularly ef-
fective in patients with elevated levels of fractional exhaled
nitric oxide (FeNO), which is indicative of eosinophilic in-
flammation (Table 2) [127]. In patients with type 2 inflam-
matory phenotype, the annualized rate of severe asthma ex-
acerbation in children receiving dupilumab was 0.31 (95%
CI: 0.22-0.42), with an average change in FEV1 (forced
expiratory volume in 1 second) of (10.5 &+ 1.0), indicating
significantly improved asthma control (p < 0.001) [128].
The average number of asthma exacerbations in adult pa-
tients who received dupilumab decreased from 4 [2-7] to 1
[0-2] (p < 0.001), and the median [interquartile range] of
FEV1 was 59 [46-78] [129]. Thymic stromal lymphopoi-
etin (TSLP) is an epithelial cell-derived ‘alarmin’ that plays
a key role in initiating Th2 inflammation [130]. The TSLP
inhibitor tezepelumab has shown therapeutic effects in both
severe asthma and AD (Table 2) [131]. The Phase I clin-
ical trial of IBI3002 (NCT06213844), a bispecific anti-
body targeting both IL-4R« and TSLP, was completed fol-
lowing its first administration in Australia in March 2024.
The trial aimed to assess the safety and pharmacokinetics
in healthy individuals and patients with mild to moderate
asthma [132]. In December 2024, a Phase III clinical trial
application for conducting a multiple-dose escalation study
targeting asthma was submitted in China (registration num-
ber CTR20251384); however, the results have not yet been
released.

Lebrikizumab and tralokinumab are biologic agents
used to treat asthma, and both of them act on the IL-13 tar-
get (Table 2) [133-136]. Mepolizumab and reslizumab ex-
ert inhibitory effects on asthma by targeting IL-5 (Table 2)
[137,138]. Featuring enhanced antibody-dependent cell-
mediated cytotoxicity, benralizuamab—a humanized mon-
oclonal antibody targeting IL-5Ra—is available as a treat-
ment option for eosinophilic asthma (Table 2) [139,140].

5.2 Therapies for Skin Barrier Repair

Proactively repairing the skin has become a new strat-
egy for the prevention and treatment of allergic diseases.
The results of the Protocol for a Randomized, Blinded,
Parallel, Three-Group, Phase II Trial (PAF Study) showed
that emollients effectively prevent AD in high-risk new-
borns [141]. For patients with AD, emollients containing
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Table 2. Biologic agents for asthma and skin barrier diseases.

Medicine Clinical trial number  Target site of action Mechanism of action
Omalizumab NCT00314574 Anti-IgE monoclonal antibody Neutralizes free IgE and reduces mast cell activation
Tezepelumab ~ NCT02525094 TSLP inhibitor Blocks the epithelial alarm protein TSLP
Dupilumab NCT02948959 IL-4R« inhibitor Blocks the IL-4/IL-13 signaling pathway
IBI3002 NCT06213844 IL-4Ra-TSLP bispecific antibody ~ Blocks the IL-4Ra and TSLP targets, and inhibits type
2 and non-type 2 inflammation
Lebrikizumab . .
. NCT05916365 Anti-IL-13 Suppresses the effect induced by IL-13
Tralokinumab
Mepolizumab . . . .
. NCTO05598814 Anti-IL-5 Inhibits the IL-5 signaling pathway
Reslizumab
Benralizumab ~ NCT03401229 Anti-IL-5Ra Inhibits the signal transduction induced by the IL-5Ra

ligand

Abbreviations: Ig, immunoglobulin; IL, interleukin; TSLP, thymic stromal lymphopoietin.

ceramides can repair the lamellar structure of the stratum
corneum and reduce trans-epidermal water loss [142]. A
prospective randomized controlled clinical trial showed that
treatment with barrier-enhancing moisturizers can delay the
relapse of AD [143]. The optimized emollient mixture has
been demonstrated to possess an ability to maintain a low
pH level (<5) on the skin surface, inhibiting AD develop-
ment induced by repeated semi-antigen attacks and prevent-
ing progression of AD to asthma in mouse models [144].
The use of moisturizing cream during the neonatal period
can reduce the incidence of AD by 50% at 6 months [145],
and by 32% at 32 weeks [146]. This external repair of the
skin barrier helps overcome AD and prevent the develop-
ment of asthma. AD is often accompanied by subsequent
skin-related allergic diseases, such as asthma [147]; there-
fore, early moisturizer-based interventions should be im-
plemented to minimize epidermal allergic reactions so as
to block allergy exacerbations or prevent the occurrence of
asthma [146].

5.3 Microbial Regulation

Research has indicated that the dysfunction of the skin
barrier caused by microbial imbalance may increase the risk
of systemic allergic inflammation, including respiratory in-
flammation [148]. Targeted therapies against Staphylococ-
cus aureus (such as fusidic acid cream) have shown effec-
tiveness in managing AE [149]. Microbiota transplantation
therapies, such as topical application of Roseomonas mu-
cosa derived from healthy donors, have demonstrated ther-
apeutic improvements in skin barrier function in patients
with AD [150]. The microbial community in the nasophar-
ynx of children with asthma exhibited a higher Shannon
diversity index (combined intensive care unit (ICU) and
medium care unit (MCU), p = 0.002), and there were signif-
icant differences in the composition of the microbial com-
munity compared to the healthy control group (R% =1.9%, p
< 0.001) [151]. A multiple regression analysis conducted
by Rauer ef al. [152] confirmed that AD severity corre-
lates with microbiome diversity—as reflected by the Shan-

non diversity index in the affected skin (p < 0.001)—as
well as the relative abundance of Staphylococcus aureus (p
< 0.012) and the patient’s IgE level (p < 0.001). Most
of the studies focusing on modulation of the airway mi-
crobiota in asthma are ongoing, but one study prominently
showed that Lactobacillus rhamnosus combined with corti-
costeroids improves symptom control in mild asthma [153].
Bifidobacterium breve M-16 V and Lactobacillus rhamno-
sus NutRes1 have strong anti-inflammatory properties and
are beneficial for the treatment of chronic asthma [154].
Lactobacillus gasseri has been shown to alleviate asthma
symptoms and decrease IgE levels in children [155,156].

Table 3 offers detailed comparisons regarding effi-
cacy, advantages and disadvantages, cost-effectiveness, in-
dications, and contraindications across three therapeutic
modes: targeted biological agents, skin barrier repair ther-
apies, and microbial regulation.

6. Discussion

Asthma is a chronic inflammatory disease of the respi-
ratory tract and poses an adverse impact on patients’ qual-
ity of life [157]. Currently, the global incidence of asthma
continues to show an increasing trend, and its prevalence
has been projected to increase from a global population of
nearly 300 million patients to 400 million by 2025 [158].
Skin barrier damage has a direct or indirect impact on res-
piratory health, causing severe medical conditions such as
asthma [159]. Multifaceted evidence, spanning the genetic,
immune, and environmental aspects, suggests that the skin
barrier is a prerequisite for the development of asthma,
highlighting the impairment of epidermal barrier as a shared
pathogenic mechanism of these diseases [45,160].

To establish a causal relationship between skin bar-
rier damage and asthma, multi-omics and immunological
evidence is necessary to explain the association between
the skin condition and respiratory decline. Additionally,
randomized controlled trials are required to validate the
efficacy of skin barrier damage interventions in reducing
asthma incidence. It is equally important to identify infants
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Table 3. Comparison of treatment strategies for skin barrier damage and asthma.

Dimension Targeted biological agents Skin barrier repair therapies Microbial regulation
Efficacy Excellent Good General
Advantages 1. Targeted precise treatment, systemic control of inflammation 1. Convenient for oral/topical use, low cost 1. Regulation of immune homeostasis

2. Long-term control

2. High safety
3. Wide applicability

2. Reduced recurrence rate

Disadvantages 1. High cost
2. Increased infection risk (reoccurrence of tuberculosis, reac-
tivation of hepatitis B)
3. Requires regular injections

1. Long-term safety risks, due to blood clots, and infections
2. Consistent applications of barrier repair agents are required
to achieve effectiveness

1. Unstable efficacy
2. High strain specificity

3. Slow start

Cost-effectiveness Low cost-effectiveness ratio

Excellent cost-effectiveness ratio

1. Low cost of probiotics and oligogalactans
2. High cost in research and development of microbial trans-
plantation or engineered bacteria therapy

Indications Moderate to severe disease:
1. Eosinophilic asthma
2. AD

3. Psoriasis

4. Chronic urticaria

Mild to moderate disease or combination therapy:
1. Atopic dermatitis

2. Dry skin/barrier damage

3. Individuals with allergy

Early/chronic diseases:
1. Staphylococcus aureus-related AD
2. Intermission asthma

Contraindications 1. Active infections (e.g., tuberculosis, hepatitis)

[\

. Allergy to biologic ingredients

1. Progressive lesions

2. Individuals at high risk of blood clots
3. Widespread infections

1. Immunocompromised individuals (risk of bacterial trans-
plantation)
2. Open wounds (topical application contraindicated)

Abbreviation: AD, atopic dermatitis.
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at risk of lifelong chronic atopic diseases, in order to fa-
cilitate the implementation of early therapeutic interven-
tions. Treatments aimed at maintaining and repairing the
epidermal barrier in infants may prevent the subsequent
development of asthma. Screening potential therapeutic
candidates based on biomarkers (such as eosinophils, IgE,
TSLP, TEWL) is crucial for advancing the development
of personalized treatments for pathologies linked to both
skin and respiratory conditions. Trans-epidermal water loss
(TEWL) is an important biomarker for evaluating the skin
barrier function [161]. Infants aged 3 months experiencing
impaired skin barrier have a TEWL value >9.50 g/m?/h
[162]. For adults, a TEWL >15 g/m?/h is considered a
high-risk threshold [163]. Although blood eosinophils pro-
vide some insight into inflammatory status, their levels are
influenced by various factors—including sex, age, season-
ality, and smoking—and exhibit biological variability; thus,
reliance on a single measurement may misinform treatment
decisions [164,165]. It has been found that implementing
a series of early barrier protection measures, such as ap-
plying moisturizers since infancy and avoiding exposure to
specific allergens, in high-risk patient groups (such as the
FLG mutation carriers) may interrupt the development of
the atopic march [146].

Current research landscape in this field is constrained
by several limitations. First, the standardization of assess-
ment methods is lacking. Existing studies adopted vari-
ous TEWL measurement devices (open chamber vs. closed
chamber), employed different environmental temperature
and humidity conditions, and relied on different skin ar-
eas for measurement, posing a challenge to directly com-
pare their results [ 166,167]. Furthermore, most studies con-
ducted evaluations at only one time point, failing to reflect
the dynamic changes in skin barrier function and delineate
their temporal relationship with asthma activity. Secondly,
despite a clear association between FLG mutations and an
increased risk of asthma, approximately 40% of carriers do
not develop asthma [168], implying that epigenetic mod-
ifications or protective effects from environmental factors
could be at play. For instance, early exposure to a farm
environment may enhance immune tolerance through mi-
crobial exposure, thereby counteracting pathological risks
arising from genetic factors. Conversely, abnormal skin
barrier function in a significant number of asthmatic chil-
dren with non-FLG mutations indicates that other genes or
environmental exposures, such as excessive use of deter-
gents and changes in humidity, could independently con-
tribute to the risks for these conditions [169]. Thirdly, ani-
mal models are unable to accurately depict the chronic pro-
cess of atopy observed in humans. Of note, despite the
epidemiological association between skin barrier damage
and the risk of asthma, it has been reported that the inci-
dence of asthma in some children with severe eczema did
not show a corresponding reduction even after the patients
had achieved significant amelioration of skin symptoms as
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a result of active barrier repair treatments using moistur-
izers [170]. These conflicting results may be attributed to
several factors: (1) Missed treatment window period: The
optimal window for preventing immune deviation and pro-
mote skin barrier repair is typically between 3 and 6 months
after birth, commonly known as the “sensitization critical
period”; (2) Insufficient protection of distant organs: It is
challenging to improve integrity of the airway barrier if lo-
calized skin treatment is utilized; (3) Persistent dysbiosis:
Microbial imbalance may continue to drive systemic in-
flammation even after skin symptoms improve. Notably,
some patients with severe asthma have normal skin bar-
rier function, while others with generalized AD display no
respiratory symptoms [ 169]. This discrepancy likely stems
from several aspects: (a) Tissue-specific regulatory mech-
anisms: For instance, ILC2s have different differentiation
states in different organs; (b) Differences in local environ-
ment: The microbial composition, pH value, and humidity
could vary between the skin and the airway; (c) Differences
in neural innervation: The neural circuitry underlying the
itch—scratch response in the skin is far more pronounced
than that of the airways. Asthma and skin barrier dysfunc-
tion are closely linked through shared genetic backgrounds,
immune mechanisms, and environmental influences. Eluci-
dating these relationships not only deepens our understand-
ing of the overall pathogenesis of allergic diseases, but also
provides a theoretical basis for treatment strategies.

Owing to advances in molecular technologies, our un-
derstanding of the association between asthma and skin bar-
rier damage has expanded substantially, establishing a ro-
bust and systematic theoretical framework commonly re-
ferred to as the “skin-lung axis”. Future research should
focus on the following aspects:

(1) To effectively control the exacerbation of skin bar-
rier dysfunction and asthma, it is crucial to conduct early
prevention strategies that have been validated through mul-
ticenter randomized controlled trials. Implementing pre-
ventive measures for skin barrier care, applying skin barrier
repair agents consistently on infant patients, controlling the
risk of atopic disease progression, and preventing asthma
occurrence.

(i1) Future investigations should also focus on formu-
lating strategies for precision-guided interventions. This
entails designing individualized approaches tailored to pa-
tients’ biological and clinical profiles such as their barrier-
dominant, immune-dysregulation, and neuro-immune sub-
types. For example, patients classified as having immune
dysregulation may be better candidates for targeted biolog-
ical therapies.

(iii) By combining genomic, epigenomic, transcrip-
tomic, and proteomic data, future studies should conduct
comprehensive analyses to delineate the shared pathogenic
mechanisms underlying asthma and skin barrier diseases.
Particular attention should be given to the contribution of
non-Th2 inflammatory pathways (e.g., Th17/T helper 22
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(Th22)) in non-hypereosinophilic asthma and in specific
skin phenotypes.

(iv) Conceptualization efforts should be made to es-
tablish interdisciplinary teams to deliver efficient therapies
for patients affected by asthma and skin barrier diseases.
For instance, a joint outpatient clinic tackling both derma-
tologic and respiratory pathologies can be set up to provide
diagnostic assessments and treatments to a niched patient

group.

7. Conclusion

In summary, asthma and skin barrier damage arise
from complex interactions among genetic, environmental,
and immune factors. Future research should prioritize the
development of integrated management strategies targeting
both the skin and the respiratory tract. By combining early
barrier protection with precise targeted therapies, it may be
possible to achieve the goal of “one intervention for mul-
tiple diseases”, ultimately improving the overall quality of
life for patients with allergic conditions.

Key Points

» Asthma and skin barrier damage share overlapping
pathogenic mechanisms, including genetic mutations, im-
mune and inflammatory abnormalities, neuroimmune and
itch—scratch circuitry, and environmental factors that com-
promise barrier integrity.

» Asthma is associated with various skin barrier dis-
eases, such as atopic dermatitis and atopic eczema.

« Targeted biologics, barrier repair therapies, and mi-
crobiome modulation represent treatment strategies that ad-
dress the shared pathogenic mechanisms underlying both
skin barrier dysfunction and asthma.

» Given the limited efficacy of current early preven-
tion and treatment strategies for asthma, more comprehen-
sive therapeutic approaches are needed to enhance patient
quality of life.
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