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Abstract

Aims/Background: Stroke recurrence remains a significant challenge in post-stroke management, with traditional prediction models
often showing limited accuracy. This study aims to compare the performance of multiple machine learning (ML) algorithms that integrate
routine clinical variables with imaging-derived features in predicting stroke recurrence risk, and to identify the optimal predictive model.
Methods: This retrospective cohort study enrolled 350 patients with ischemic stroke who were admitted to The Fifth People’s Hospital of
Jinan between January 2018 and December 2021. Patients were divided into three groups based on the time of first stroke onset: Group
A (n=110), Group B (n=120), and Group C (n = 120). Routine clinical variables (age, gender, hypertension, and diabetes) and imaging
features (infarct size and location) were collected. Four ML-based algorithms—Ilogistic regression, random forest (RF), support vector
machine (SVM), and extreme gradient boosting (XGBoost)—were used to construct predictive models. The predictive performance of
these models was evaluated by area under the curve (AUC), sensitivity, specificity, and accuracy. Results: The XGBoost model showed
the superior predictive performance, achieving the highest AUC of 0.86, followed by the random forest model (0.82), support vector
machine model (0.78), and logistic regression model (0.75). The most influential predictors for stroke recurrence were found to be
infarct size, history of hypertension, and fasting blood glucose levels. Conclusion: ML-based algorithms that integrate routine clinical
variables with imaging-derived data can predict stroke recurrence risk effectively, with the XGBoost model demonstrating superior
predictive performance, which may further support more individualized clinical decision-making.
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1. Introduction the Stroke Prognostic Instrument (SPI), and the ABCD?
(Age, Blood pressure, Clinical features, Duration of symp-
toms, Diabetes) score, are widely used in routine clinical
care [6]. These models generally rely on a limited set of
readily available clinical variables, including age, history of
hypertension, diabetes mellitus, atrial fibrillation, and a pre-
vious transient ischemic attack (TIA) [7]. While they pro-
vide a convenient approach to risk stratification, their pre-
dictive performance is often moderate, with validation stud-
ies demonstrating area under the curve (AUC) values of 0.6
to 0.7 [8]. This modest accuracy indicates, in part, the lim-
ited ability of these strategies to capture the complex, multi-
factorial biology of stroke, which involves interactions be-
tween clinical features, biochemical pathways, and struc-
tural brain changes. Moreover, many of these models of-
ten do not incorporate detailed neuroimaging information
that can provide insights into the severity and anatomical
distribution of cerebral damage, all of which are important

Stroke is a devastating global health burden and re-
mains one of the leading causes of death and long-term dis-
ability across all age groups [1,2]. The World Health Orga-
nization estimates that over 15 million people experience a
stroke each year; approximately 5 million die and 5 million
are left with permanent disability [3]. A major challenge in
effective stroke management is the significant risk of recur-
rence. Epidemiological evidence indicates that about 5.7—
51.3% of patients experience a second stroke within the first
year after the initial event, and the risk can persist for years
[4]. Recurrent stroke often results in more severe neurologi-
cal impairment, increased healthcare costs, and a significant
reduction in quality of life for patients and their families [5].
Therefore, early and accurate identification of individuals at
high risk of recurrence is not merely a clinical priority but
also a critical public health need, enabling individualized

secondary prevention strategies to mitigate this risk.

Traditional approaches for predicting the risk of stroke
recurrence, such as the Essen Stroke Risk Score (ESRS),

determinants of recurrence risk.
In recent years, machine learning (ML) has revolu-
tionized various fields of medicine, including diagnostic
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imaging, prognostic prediction modeling, and assessment
of treatment response [9]. By processing high-dimensional
data, identifying non-linear relationships, and extracting
complex patterns from large datasets, ML approaches of-
fer a promising alternative to traditional statistical meth-
ods for predicting stroke recurrence [10]. Unlike conven-
tional approaches, ML models can integrate diverse data
sources, including routine clinical variables, laboratory re-
sults, and imaging-derived features, enabling the develop-
ment of more comprehensive and more accurate prediction
tools [11].

Neuroimaging, in particular, holds significant poten-
tial for enhancing the prediction of recurrent stroke risk.
Computed tomography (CT) and magnetic resonance imag-
ing (MRI) can characterize infarct size and location and de-
tect associated pathologies such as leukoaraiosis, cerebral
microbleeds, and carotid artery stenosis [12]. These imag-
ing features can reflect the underlying vascular pathology,
the severity of cerebral ischemia, and the burden of silent
cerebrovascular disease, all of which are strongly linked to
stroke recurrence. For example, larger infarct sizes have
consistently been associated with a higher recurrence risk
[13], likely indicating more extensive vascular injury and a
greater likelihood of unstable atherosclerotic plaques. Sim-
ilarly, leukoaraiosis, a marker of cerebral small-vessel dis-
ease, has been established as an independent predictor of
recurrent vascular events [14].

Despite growing interest in applying ML in stroke re-
search, limited studies have performed systematic compar-
isons of various ML algorithms for predicting stroke recur-
rence using a combination of routine clinical variables and
imaging features. Most published studies have assessed
only a single algorithm or have used one data modality
alone (e.g., clinical data without imaging, or imaging with-
out detailed clinical data), which limits our understanding
of which algorithm and which data integration approach
yields the best predictive performance. Additionally, prior-
itizing and interpreting the most influential predictors of re-
currence within an integrated dataset remains crucial, both
to enhance model transparency and to generate mechanistic
insights that could inform the development of more effec-
tive secondary preventive strategies.

Therefore, this study aims to address these gaps by
evaluating the performance of four commonly used ML ap-
proaches: logistic regression, random forest, support vec-
tor machine (SVM), and extreme gradient boosting (XG-
Boost). Using an integrated dataset that combines routine
clinical data with detailed imaging features, the study seeks
to determine which algorithm achieves the highest predic-
tive performance for stroke recurrence. Furthermore, the
study will identify the most influential predictors of recur-
rence within the integrated dataset and assess the generaliz-
ability of the optimal model across clinically relevant sub-
groups, such as patients with cortical versus subcortical in-
farcts. Overall, the findings may support the development

of more accurate and clinically useful tools for recurrence
risk stratification, enabling more individualized secondary
prevention and improved patient outcomes.

2. Methods
2.1 Study Population

This study enrolled 350 patients with ischemic stroke
from the Department of Neurology, The Fifth People’s Hos-
pital of Jinan, China, between January 2018 and Decem-
ber 2021. Inclusion criteria were as follows: (1) diagno-
sis consistent with Chinese Stroke Association guidelines
for clinical management of ischaemic cerebrovascular dis-
eases: executive summary and 2023 update [15]; (2) first-
ever ischemic stroke confirmed by CT or MRI; and (3)
availability of complete clinical and imaging data. How-
ever, patients were excluded if they had: (1) hemorrhagic
stroke; (2) stroke secondary to trauma, tumor, or other non-
atherosclerotic causes; (3) severe cognitive impairment or
other conditions preventing completion of follow-up.

Patients were categorized into three groups based on
the admission period: Group A (January 2018—December
2019), Group B (January 2020—June 2021), and Group C
(July 2021-December 2021). This non-uniform time inter-
val design was adopted to account for a hospital-wide tran-
sition to a digital medical record system in the later study
phase (post—June 2021), which substantially improved the
efficiency of patient identification and research recruit-
ment. To ensure balanced sample sizes and baseline char-
acteristics across groups (all p > 0.05) while maintaining
consistent inclusion criteria, longer intervals were used for
Groups A and B (pre-digitalization) to accumulate adequate
patients, and a shorter interval was applied for Group C
(post-digitalization) to avoid over-recruitment. The pri-
mary outcome was stroke recurrence, defined as a new is-
chemic stroke event confirmed by imaging within one year
after the first stroke. A 1-year follow-up was selected be-
cause the risk of stroke recurrence is highest during the first
year after the initial event, making it a critical window for
intensified secondary prevention [16]. The observed dif-
ference in monthly enrollment rates across cohorts, includ-
ing the higher recruitment rate in Group C, likely reflects a
hospital-wide transition to a digital medical record system
during the later study phase, which significantly improved
the efficiency of patient identification and research recruit-
ment while maintaining the same inclusion criteria.

2.2 Data Collection

Two categories of variables, such as routine clinical
data and imaging features, were collected for each par-
ticipant. Routine clinical variables included demographic
characteristics (age, gender), comorbidities (hypertension,
diabetes, atrial fibrillation, coronary heart disease), labora-
tory results (fasting blood glucose, total cholesterol, low-
density lipoprotein cholesterol, creatinine), and treatment
(antiplatelet therapy recorded as a binary variable without
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Table 1. Hyperparameter search ranges for machine learning algorithms.

Algorithm Hyperparameter Search range Optimal value (Selected)
Penalty (penalty) 1,2 2
Logistic regression (LR) Regularization strength (C) 0.001, 0.01, 0.1, 1, 10, 100 1
Solver (solver) liblinear, saga liblinear
Number of trees (n_estimators) 50, 100, 200, 500 200
Random forest (RF) Max tree depth (max_depth) 3,5, 10, None 10
Min samples per leaf (min_samples_leaf) 1,2,5 2
Kernel (kernel) linear, rbf rbf
SVM Penalty parameter (C) 0.1, 1, 10, 100 10
Gamma (gamma) scale, auto, 0.01, 0.1, 1 scale
Learning rate (eta) 0.001, 0.01,0.1,0.3 0.1
Max depth (max_depth) 3,6,9,12 6
XGBoost X
Subsample ratio (subsample) 0.6,0.8,1.0 0.8
Min child weight (min_child_weight) 1,3,5 3

SVM, support vector machine; XGBoost, extreme gradient boosting; rbf, radial basis function.

specifying the agent or combination regimen, and statin
use). Information on formal anticoagulation (e.g., warfarin
or direct oral anticoagulants) was not consistently avail-
able and was therefore excluded from the analysis. Demo-
graphic factors and key comorbidities (hypertension, dia-
betes, atrial fibrillation, and coronary heart disease) were
selected because they are well-established clinical determi-
nants of stroke recurrence.

Imaging features included infarct size (cm?, measured
by CT/MRI), infarct location (cortical, subcortical, or pos-
terior circulation), severity of leukoaraiosis (mild, moder-
ate, severe), and carotid artery stenosis (>50% or not, as-
sessed using ultrasound).

2.3 Machine Learning Models

Four ML algorithms selected for model construction
were as follows: (i) Logistic regression (LR), a linear clas-
sifier that models the log-odds of binary outcomes, incor-
porating L1 regularization to reduce overfitting and support
feature selection [17]. (i1)) Random forest (RF), an ensem-
ble approach that combines multiple decision trees, using
bootstrap resampling and random feature selection to en-
hance robustness and reduce variance [18]. (iii)) SVM is
a margin-based classifier that identifies an optimal hyper-
plane to separate classes, using a radial basis function ker-
nel to capture non-linear associations [19]. (iv) XGBoost,
a gradient-boosting framework that builds sequential trees
with regularization to enhance generalization and minimize
prediction error [20].

Feature importance was calculated from each model’s
internal metric, scoring features based on their average gain
across all splits in which they contributed. For benchmark-
ing against traditional risk stratification, the Essen Stroke
Risk Score (ESRS) was also calculated for each patient.
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2.4 Model Training and Evaluation

The entire cohort was randomly categorized into a
training set (70%, n = 245) for model development and
an independent testing set (30%, n = 105) for final perfor-
mance evaluation. All data preprocessing procedures were
established using the training data and then applied to the
testing data to prevent data leakage. These preprocessing
steps included imputation of missing values (median for
continuous variables and mode for categorical variables),
standardization of continuous variables, one-hot encoding
of categorical variables, winsorization of outliers at the 1st
and 99th percentiles, and application of the Synthetic Mi-
nority Over-sampling Technique (SMOTE) to address class
imbalance.

Model hyperparameters were optimized using 5-fold
cross-validation within the training set, applying grid search
for LR, RF, and SVM, and Bayesian optimization for XG-
Boost. The hyperparameter search ranges and the optimally
selected values are detailed in Table 1. Model performance
was determined on the independent testing set using the
AUC, sensitivity, specificity, and accuracy. All analyses
were performed in Python 3.9 (Python Software Founda-
tion, Beaverton, OR, USA) using scikit-learn (v1.0.2) and
XGBoost (v1.5.1) libraries.

2.5 Statistical Analysis

Statistical analyses were conducted using Python
(v3.9; Python Software Foundation, Beaverton, OR, USA)
with the scikit-learn (v1.0.2) and XGBoost (v1.5.1) li-
braries, and R (v4.1.2; R Foundation for Statistical Com-
puting, Vienna, Austria) with the tidyverse (v1.3.1) and
pROC (v1.18.0) packages. Categorical variables are pre-
sented as frequencies and percentages (n, %). Group com-
parisons were performed using Pearson’s chi-square test.
Continuous variables: Normality was assessed using the
Shapiro-Wilk test, and homogeneity of variances was as-
sessed using Levene’s test. Normally distributed contin-
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Table 2. Comparison of baseline characteristics of the study participants.

Variable Group A (n=110) Group B (n=120) Group C (n=120) Test statistic ~ p-value
Age, mean + SD (years) 65.23 +8.34 64.82 +7.95 65.51 +8.16 F=0.218 0.805
Male, n (%) 68 (61.82%) 75 (62.50%) 73 (60.83%) x2=0.071 0.965
Hypertension, n (%) 82 (74.55%) 89 (74.17%) 91 (75.83%) x2=0.097 0.953
Diabetes, n (%) 45 (40.91%) 49 (40.83%) 51 (42.50%) x2 =0.087 0.958
Atrial fibrillation, n (%) 22 (20.00%) 24 (20.00%) 25 (20.83%) x2=0.034 0.983
Coronary artery disease, n (%) 18 (16.36%) 20 (16.67%) 19 (15.83%) x2=10.031 0.984
Total cholesterol, mean + SD (mmol/L) 4.53 £0.94 4.62 £ 1.05 441 £ 0.86 F=1.4064 0.233
Low-density lipoprotein (LDL) cholesterol, 2734074 2.82 4+ 0.65 2,61+ 0.76 F=2585 0077
mean + SD (mmol/L)
Creatinine, mean + SD (umol/L) 78.23 + 12.54 77.82 + 11.95 79.11 + 13.26 F=0.328 0.721
Fasting blood glucose, mean 4+ SD (mmol/L) 5.83+1.24 592 + 1.15 5.71 + 1.36 F=0.848 0.429
Antiplatelet therapy, n (%) 95 (86.36%) 103 (85.83%) 104 (86.67%) x2 =0.036 0.982
Statin use, n (%) 88 (80.00%) 96 (80.00%) 97 (80.83%) x2=0.035 0.983
Infarct size, median (IQR) (cm?) 3.1 (2.04.5) 3.0 (1.94.3) 3.2(2.14.6) H=0.639 0.998
Infarct location, n (%) x2=0.108 1.000

Cortical 38 (34.55%) 41 (34.17%) 43 (35.83%)

Subcortical 60 (54.55%) 66 (55.00%) 65 (54.17%)

Posterior circulation 12 (10.91%) 13 (10.83%) 12 (10.00%)
Leukoaraiosis, n (%) x2=0.143 0.931

None 42 (38.18%) 46 (38.33%) 45 (37.50%)

Mild 35 (31.82%) 38 (31.67%) 39 (32.50%)

Moderate 22 (20.00%) 24 (20.00%) 23 (19.17%)

Severe 11 (10.00%) 12 (10.00%) 13 (10.83%)
Carotid stenosis (>50%), n (%) 28 (25.45%) 31 (25.83%) 33 (27.50%) x2=0.143 0.931

Continuous variables are presented as mean + standard deviation (mean + SD) if normally distributed, or median (interquartile range, IQR)

if non-normally distributed (infarct size). For normally distributed variables, group comparisons use one-way ANOVA; for non-normally

distributed infarct size, the Kruskal-Wallis H-test is used. Categorical variables are presented as n (%) and compared using Pearson’s chi-

square test.

uous variables are presented as mean + standard devia-
tion (mean + SD) and compared using Student’s ¢-test (two
groups) or one-way analysis of variance (ANOVA; three or
more groups). Non-normally distributed continuous vari-
ables are presented as median (interquartile range, IQR) and
compared using the Mann-Whitney U test (two groups) or
Kruskal-Wallis test (three or more groups). All statistical
tests were two-tailed, and a p-value of <0.05 was consid-
ered statistically significant.

Model calibration, representing agreement between
predicted probabilities and observed outcomes, was as-
sessed using the Hosmer-Lemeshow goodness-of-fit test.
To further evaluate the key predictors identified by the best-
performing model , multivariate logistic regression was per-
formed with adjustment for potential confounders.

3. Results

3.1 Comparison of Baseline Characteristics Across Three
Groups

The baseline characteristics of the three groups are
summarized in Table 2. No significant differences were
found across three groups (Group A, B, and C) regarding
age, gender, comorbidities, or imaging features (all p >
0.05), indicating that the groups were well balanced at base-
line.

3.2 Comparison of Characteristics Between the Training
and Testing Sets

Comparison of baseline characteristics between the
training set (70% of patients, n = 245) and the testing set
(30%, n = 105) is detailed in Table 3. No substantial dif-
ferences were observed across any variables, including de-
mographic factors, comorbidities, laboratory assessments,
treatments, and imaging features (all p > 0.05), confirming
balanced randomization. This balance ensures the validity
of subsequent model training and validation.

3.3 Stroke Recurrence Rate

Stroke recurrence rates across predefined subgroups,
including admission-period groups, infarct location, and
key clinical risk factors, are summarized in Table 4. Re-
currence rates were comparable across the three time-
period groups. Conversely, hypertension and carotid steno-
sis (>50%) were linked to significantly higher recurrence
rates, underscoring their role in recurrent stroke risk.

3.4 Predictive Performance of the ML Models

Predictive performance of the four ML models for
stroke recurrence is shown in Table 5. Among them, the
XGBoost model achieved the highest discrimination, with
an AUC of 0.86 (95% confidence interval [CI]: 0.79-0.92),
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Table 3. Comparison of baseline characteristics between the training and testing sets.

Variable Training set (n =245)  Testing set (n = 105)  Test statistic p-value
Age, mean + SD (years) 65.14 + 8.12 65.32 + 8.05 t=0.177 0.860
Male, n (%) 151 (61.63%) 65 (61.90%) x2 =0.002 0.962
Hypertension, n (%) 183 (74.69%) 79 (75.24%) x2=0.012 0914
Diabetes, n (%) 101 (41.22%) 44 (41.90%) x2=0.014 0.906
Atrial fibrillation, n (%) 49 (20.00%) 22 (20.95%) x2 =0.041 0.840
Coronary artery disease, n (%) 40 (16.33%) 17 (16.19%) x2 =10.001 0.975
Total cholesterol, mean + SD (mmol/L) 4.54 +0.92 4.60 + 0.86 t=10.542 0.588
LDL cholesterol, mean &+ SD (mmol/L) 2.72 £ 0.73 2.69 £ 0.65 t=0.378 0.706
Creatinine, mean + SD (pumol/L) 78.48 +£12.22 78.03 £+ 12.77 t=0.302 0.763
Fasting blood glucose, mean 4+ SD (mmol/L) 585+ 1.20 582+ 1.18 t=0.221 0.825
Antiplatelet therapy, n (%) 211 (86.53%) 91 (85.71%) x2 =0.020 0.887
Statin use, n (%) 196 (80.00%) 85 (80.95%) x2 =0.043 0.836
Infarct size, median (IQR) (cm?) 3.1(2.04.4) 3.0(1.94.2) Z=1258.800 0.715
Infarct location, n (%) x2=0.010 0.995

Cortical 85 (34.69%) 37 (35.24%)

Subcortical 134 (54.69%) 57 (54.29%)

Posterior Circulation 26 (10.61%) 11 (10.48%)
Leukoaraiosis, n (%) x? =0.046 0.997

None 93 (37.96%) 40 (38.10%)

Mild 78 (31.84%) 34 (32.38%)

Moderate 49 (20.00%) 20 (19.05%)

Severe 25 (10.20%) 11 (10.48%)
Carotid stenosis (>50%), n (%) 64 (26.12%) 28 (26.67%) x2=0.012 0914

Continuous variables are presented as mean + standard deviation (mean + SD) if normally distributed, or median (interquartile

range, IQR) if non-normally distributed (infarct size). For normally distributed variables, comparisons use Student’s ¢-test; for non-

normally distributed infarct size, the Mann-Whitney U-test is used. Categorical variables are presented as n (%) and compared

using Pearson’s chi-square test.

Table 4. Stroke recurrence rates by time-period groups, infarct location, and clinical characteristics.

Subgroup

Total patients (n) Recurrent cases (n) Recurrence rate (%) Test statistic (x2) p-value

Overall cohort
Time-period group
Group A (January 2018-December 2019)
Group B (January 2020—June 2021)
Group C (July 2021-December 2021)
Infarct location
Cortical
Subcortical
Posterior circulation
Comorbidities
Hypertension
No hypertension
Diabetes
No diabetes
Atrial fibrillation
No atrial fibrillation
Carotid stenosis
>50% Stenosis
<50% Stenosis

350

110
120
120

122
191
37

262
88
145
205
71
279

92
258

78

24
27
27

31
37
10

69
9
38
40
18
60

29
49

22.29

21.82
22.50
22.50

25.41
19.37
27.03

26.34
10.23
26.21
19.51
25.35
21.51

31.52
18.99

¥2=0.020

x2=2.104

x2=9.870

X2 =2.198

x2 =0.484

\2=6.147

0.990

0.349

0.002

0.138

0.487

0.013
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Table 5. Predictive performance of machine learning models in the testing set (n = 105).

Model AUC (95% CI)  Sensitivity (%)  Specificity (%)  Accuracy (%)
Logistic regression  0.75 (0.67-0.83) 70.5 76.2 74.3
Random forest 0.82 (0.75-0.89) 76.2 80.0 78.1
SVM 0.78 (0.70-0.86) 73.8 78.1 76.2
XGBoost 0.86 (0.79-0.92) 81.0 84.1 83.5
ESRS 0.68 (0.60-0.76) 65.2 70.3 68.9

ESRS, Essen Stroke Risk Score; CI, confidence interval; AUC, area under the curve.

Table 6. Predictive performance in subgroups by infarct

Table 7. A list of ten most influential predictors of stroke

location. recurrence (XGBoost model).
Subgroup Model AUC (95% CI) Predictor Feature importance
L XGBoost 0.88 (0.80-0.96) Infarct size 100
Cortical infarct . .
Random forest 0.83 (0.74-0.92) History of hypertension 85.2
XGBoost 0.84 (0.76-0.92) Fasting blood glucose 78.6
Subcortical infarct A 721
Random forest 0.80 (0.71-0.89) ge :
bosterior cireulat XGBoost 0.81 (0.70-0.92) Carotid artery stenosis (>50%) 68.5
osterior circulation
Random forest 0.78 (0.66-0.90) Total cholesterol 62.3
Leukoaraiosis (moderate/severe) 58.9
Diabetes 55.7
followed by RF (AUC 0.82, 95% CI: 0.75-0.89), SVM Atrial fibrillation 49.2
(AUC 0.78, 95% CI: 0.70-0.86), and LR (AUC 0.75, 95% Antiplatelet therapy 42.8

CI: 0.67-0.83). Additionally, the XGBoost model showed
the highest sensitivity (81.0%), specificity (84.1%), and
overall accuracy (83.5%).

3.5 Calibration of Models

Calibration of all five predictive models, reflecting
the agreement between predicted probabilities and observed
outcomes, was assessed using the Hosmer-Lemeshow
goodness-of-fit test. As shown in Supplementary Table
1, all models, including the traditional ESRS, demonstrated
good calibration, with non-significant p-values (all p >
0.05). These findings indicate close agreement between
predicted and observed stroke recurrence risk.

3.6 Subgroup Analysis by Infarct Location

A subgroup analysis stratified by infarct location was
conducted to evaluate whether the predictive performance
differed across etiologically distinct stroke subtypes, de-
spite comparable overall recurrence rates. To assess the
generalizability of the optimal model across these patho-
physiologically heterogeneous stroke subtypes, model per-
formance was evaluated individually in subgroups stratified
by infarct location: cortical, subcortical, and posterior cir-
culation. As described in Table 6, XGBoost maintained the
highest performance across all three subgroups, achieving
an AUC of 0.88 (95% CI: 0.80-0.96) for cortical infarcts,
0.84 (95% CI: 0.76-0.92) for subcortical infarcts, and 0.81
(95% CI: 0.70-0.92) for posterior circulation infarcts. Ran-
dom forest followed as the second-best performer in each
subgroup, with AUCs of 0.83, 0.80, and 0.78, respectively.

3.7 Key Predictors of Stroke Recurrence

The ten most influential predictors of stroke recur-
rence identified by the XGBoost model based on feature im-
portance ranking are listed in Table 7. Infarct size demon-
strated the greatest contribution (100.0), followed by a
history of hypertension (85.2) and fasting blood glucose
(78.6), suggesting crucial roles in recurrence risk predic-
tion.

3.8 Multivariate Logistic Regression for Key Predictors

Multivariate logistic regression findings assessing as-
sociations between key predictors and stroke recurrence are
shown in Table 8. It revealed that infarct size (odds ratio
[OR]=2.15,95% CI: 1.52-3.04), hypertension (OR = 1.89,
95% CI: 1.12-3.18), and fasting blood glucose (OR = 1.67,
95% CI: 1.03-2.71) were independently associated with in-
creased recurrence risk of stroke (all p < 0.05).

4. Discussion

The present study systematically compared the perfor-
mance of four machine learning algorithms for predicting
stroke recurrence using an integrated set of routine clinical
variables and imaging features. Among them, the XGBoost
model demonstrated the strongest predictive performance,
achieving an AUC of 0.86. The findings underscore the
potential of ML-based approaches to enhance risk stratifi-
cation for stroke recurrence and to address key limitations
of traditional prediction models that rely on a narrow set of
clinical variables.
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Table 8. Multivariate logistic regression of key predictors for stroke recurrence.

Predictor Regression coefficient ~ SE OR 95% CI  p-value
Infarct size (per cm? increase) 0.77 0.21 215 1.52-3.04 <0.001
History of hypertension 0.63 026 1.89 1.12-3.18 0.017
Fasting blood glucose (per mmol/L increase) 0.51 0.25 1.67 1.03-2.71 0.038

OR, odds ratio; SE, standard error.

The superior performance of XGBoost compared
with logistic regression, random forest, and SVM aligns
with previous findings highlighting that gradient-boosting
frameworks are well-suited to complex, high-dimensional
clinical datasets [21]. A possible explanation for its su-
perior performance is XGBoost’s capability to model non-
linear relationships and higher-order interactions among
variables, such as the synergistic effect of infarct size and
hypertension. For instance, while large infarcts are asso-
ciated with higher recurrence risk, this effect may be sig-
nificantly amplified in patients with poorly controlled hy-
pertension, a relationship that linear models such as logis-
tic regression may not capture adequately. This capabil-
ity is particularly relevant in stroke research, where recur-
rence risk is determined by a complex interaction of vascu-
lar, metabolic, and neuroimaging-related factors.

Integrating imaging-derived features into the predic-
tive models represents a key strength of this study. Tra-
ditional models often overlook neuroimaging data because
of its analytical complexity and the need for specialized
interpretation; however, our results indicate that imaging
features, particularly infarct size, contribute significantly
to recurrence prediction. Infarct size, ranked as a cru-
cial predictor in the XGBoost model, consistent with pre-
vious evidence linking larger infarcts to higher recurrence
risk [22]. Larger infarcts usually reflect more severe arte-
rial occlusion, greater ischemic injury, and a higher like-
lihood of underlying vasculopathy, which all together in-
crease the risk of subsequent cerebrovascular events [23].
Additionally, incorporating markers such as leukoaraio-
sis and carotid artery stenosis captures the contributions
of small-vessel disease and large-artery atherosclerosis, re-
spectively, thereby enhancing the clinical relevance of risk
stratification [24].

The identification of hypertension and fasting blood
glucose as key predictors reinforces the crucial role of
metabolic and vascular risk management in secondary pre-
vention. Hypertension, a well-established driver of stroke
pathogenesis, promotes arteriosclerosis, disrupts endothe-
lial function, and increases susceptibility to small vessel
occlusion [25]. Similarly, elevated fasting blood glucose
levels, even among individuals without a diagnosis of dia-
betes, may indicate insulin resistance and systemic inflam-
mation, both of which contribute to vascular injury and
thrombus formation [26]. Notably, lifestyle-based inter-
ventions can significantly improve these metabolic parame-
ters [27]. These findings support current clinical guidelines
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that emphasize tight blood pressure and glycemic manage-
ment after stroke, while also highlighting how ML-based
models may help identify high-risk individuals who could
benefit from more aggressive intervention.

Subgroup analyses revealed that the XGBoost model
maintained strong predictive performance across patients
with cortical, subcortical, and posterior circulation infarcts,
suggesting good generalizability in distinct stroke subtypes
with varying etiologies (e.g., large-artery atherosclerosis
for cortical, small-vessel disease for subcortical, and ver-
tebrobasilar pathology for posterior circulation). This re-
sult is clinically relevant because cortical and subcortical
strokes often have distinct etiologies, such as large-artery
atherosclerosis and small-vessel disease, and may therefore
require tailored preventive strategies [15]. The consistent
performance of the model across these subgroups supports
its potential ability as a flexible and broadly applicable ap-
proach in clinical risk stratification.

Our results also highlight the limitations of traditional
risk scores. For example, the ESRS, which relies on vari-
ables such as age, hypertension, and diabetes, typically
achieves an AUC of about 0.65-0.70 for predicting recur-
rence [28]. In contrast, the XGBoost model yielded an AUC
of 0.86, representing a meaningful improvement in predic-
tive accuracy that could improve identification of high-risk
patients. However, ML-based models should be used to
complement, not replace, clinical decision-making. While
the XGBoost model provides a quantitative risk estima-
tion, clinicians should interpret these findings alongside
patient-specific factors, including adherence to medication
and lifestyle factors, to guide tailored management.

Several limitations of the study should be considered
before interpreting these results. First, the single-center,
retrospective design may limit the generalizability of the
findings. Variations in clinical practice patterns, imaging
acquisition and interpretation, and follow-up procedures
across institutions could affect model performance, empha-
sizing the need for external validation in multicenter co-
horts. Second, the study focused on recurrence within the
first year of stroke, and longer follow-up is needed to as-
sess how well these models predict late recurrent events.
Third, several potentially informative predictors, includ-
ing genetic markers, lifestyle factors (e.g., smoking sta-
tus and physical activity), and detailed data on medica-
tion adherence, were not included due to unavailability in
electronic medical records. Incorporating these variables
in future studies may further improve predictive accuracy.
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Fourth, while the XGBoost model demonstrated strong per-
formance, the restricted interpretability typical of “black
box” models may hinder clinical acceptance without ro-
bust explanation frameworks and prospective assessment.
Fifth, and importantly, antithrombotic medications were in-
adequately characterized. The “antiplatelet therapy” was
captured only as a binary variable and did not distinguish
between single or dual regimens. Crucially, anticoagulant
use, which is a critical determinant of recurrence preven-
tion in patients with atrial fibrillation, was not consistently
available. The absence of this key confounder likely af-
fected the model’s performance and should be addressed in
future studies.

Despite these limitations, this study advances our un-
derstanding of ML-based stroke recurrence prediction by
demonstrating the benefit of integrating routine clinical
variables with imaging-derived data. The XGBoost model
demonstrated high discriminative performance and consis-
tent outcomes across subgroups, indicating potential ap-
plication for supporting personalized secondary prevention
strategies. However, the single-center, retrospective design
and the lack of external validation remain significant limita-
tions and may restrict generalizability. The lack of external
validation in diverse, multi-center cohorts represents a sig-
nificant limitation, potentially affecting the generalizability
of our model. Future studies should prioritize external vali-
dation to ensure robustness across different patient popula-
tions, imaging protocols, and clinical workflows. Further-
more, restricting outcomes to a 1-year recurrence window
does not capture late recurrent events, and longer follow-
up would strengthen the clinical relevance of the model.
Future studies should focus on external validation, incor-
porating additional predictive variables (such as lifestyle,
adherence, and other biologically informative predictors),
and develop practical, user-friendly tools to facilitate im-
plementation in routine clinical care.

In summary, machine learning algorithms that inte-
grate routine clinical variables with imaging-derived fea-
tures can effectively predict stroke recurrence risk, with the
XGBoost model offering the highest overall performance.
Infarct size, hypertension, and fasting blood glucose were
identified as most influential predictors, underscoring the
importance of structural neuroimaging and rigorous man-
agement of metabolic and vascular risk factors in secondary
prevention. These findings support the use of ML-based
models as adjuncts to clinical decision-making, with the po-
tential to improve outcomes by facilitating more targeted
risk reduction approaches.

5. Conclusion

This study demonstrates that machine learning algo-
rithms integrating routine clinical data and imaging fea-
tures can predict stroke recurrence risk effectively, with
the XGBoost model achieving the highest overall perfor-
mance. The key predictors, particularly infarct size and

a history of hypertension, underscore the significance of
structural brain injury and vascular-metabolic dysregula-
tion in driving recurrence risk. Robust performance across
cortical, subcortical, and posterior circulation infarct sub-
groups further supports the model’s potential clinical utility
in diverse stroke subtypes with distinct pathophysiological
mechanisms.

Key Points

* Machine learning models, particularly XGBoost,
that integrate both routine clinical and imaging-derived
features demonstrate a higher predictive performance for
stroke recurrence risk than traditional models.

* Infarct size, a history of hypertension, and fasting
blood glucose levels were identified as the most influential
predictors of recurrence.

* The XGBoost model maintained robust predictive
performance across different stroke subtypes defined by in-
farct location.

¢ This study highlights the potential of applying ad-
vanced analytical methods and multimodal data for en-
hancing risk stratification and supporting personalized sec-
ondary prevention strategies in stroke survivors.
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