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Abstract

Background: The activation of adenosine-monophosphate-activated protein kinase (AMPK) by berberine (BBR) benefits various in-
flammatory diseases. Conversely, high mobility group box-1 (HMGB1), a prototypical damage-associated molecular pattern (DAMP),
typically exerts opposing effects. This research aims to investigate the relationship between AMPK and HMGBI, elucidating the func-
tions and underlying mechanisms by which BBR alleviates acute lung injury (ALI) caused by lipopolysaccharide (LPS). Methods: Male
C57BL/6J mice were intragastrically administered BBR twice daily for three days with a total of 25 and 100 mg/kg/day. On day four,
an intraperitoneal injection of 10 mg/kg LPS was administered, and BBR was given two hours before and six hours after this injec-
tion, respectively. Eighteen hours post-LPS administration, lung tissues and serum samples were collected to assess indicators of lung
tissue injury, inflammation, oxidative stress, and apoptosis. The relationship between AMPK activation, HMGBI release, and inflam-
matory activation was investigated in both mice and RAW?264.7 cells using protein expression analysis, AMPK silencing, and exogenous
HMGBI introduction. Results: Our findings demonstrate that BBR activates AMPK and inhibits HMGBI1 expression, translocation,
and release in LPS-induced ALI, resulting in reduced histopathological lung injuries, decreased expression of inflammatory cytokine
genes, and diminished oxidative stress and apoptosis. Mechanistic studies revealed that BBR decreases extracellular HMGB1 in LPS-
stimulated RAW264.7 cells and inhibits HMGB1-stimulated nuclear factor Kappa B (NF-xB) activation. Concurrently, silencing the
activation of AMPK by siRNA and compound C reversed the BBR-reduced extracellular HMGBI1 level in LPS-stimulated RAW264.7
cells. Conclusions: Based on these findings, we conclude that BBR effectively inhibits inflammation, oxidative stress, and apoptosis
in LPS-induced ALI by modulating the AMPK-HMGBI1-NF-xB axis. Consequently, BBR and other AMPK activators may represent
promising therapeutic options for managing systemic inflammation and injury during sepsis.
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1. Introduction oxidative stress, apoptosis, and pyroptosis [4—6]. Conse-

Sepsis is a life-threatening impairment of organ func- quently, targeting HMGB1 may lead to organ protection

tion that arises from an unregulated systemic immune and
inflammatory response by the host to an infection [1].
Among the various types of organ dysfunction, lung tissue
injury is a pivotal contributor to the morbidity and mortality
associated with sepsis [2,3]. To date, traditional manage-
ment strategies, such as early antibiotic administration and
fluid resuscitation, have shown efficacy in mitigating early-
stage sepsis to some degree. However, due to the signif-
icant host-mediated systemic inflammatory responses ob-
served during sepsis, therapeutic approaches targeting spe-
cific signaling pathways and molecules warrant greater at-
tention [1]. High mobility group box-1 (HMGBI1), a mul-
tifunctional damage-associated molecular pattern (DAMP)
and signaling molecule, has been identified as a crucial
late-phase inflammatory mediator that contributes to endo-
toxin lethality in sepsis. Upon infection, the interaction be-
tween HMGBI1 and TLR4/MD?2, as well as the formation
of HMGBJ1-lipopolysaccharide (LPS) complexes, plays a
key role in triggering downstream inflammatory pathways,

and potentially improve survival outcomes [1].

Berberine (BBR, Fig. 1A), a benzylisoquinoline alka-
loid, is an active constituent present in various medicinal
plants and exhibits multiple pharmacological properties, in-
cluding antimicrobial, antiprotozoal, antidiarrheal, and an-
titrachoma activities. Recently, BBR has also been reported
to possess therapeutic potential for metabolic, neurological,
and cardiological diseases [7—11]. Among the various tar-
gets of BBR, adenosine-monophosphate-activated protein
kinase (AMPK) activation is considered a pivotal target of
BBR, mediating its diverse pharmacological effects. Pre-
vious studies have indicated that AMPK activation benefits
the balance between oxidants and antioxidants during lung
injury, whereas the release of HMGBI triggers inflamma-
tion and subsequent apoptosis [4,5,12].

Predictably, BBR may also activate AMPK during
acute lung injury (ALI). Nonetheless, the involvement of
BBR and the activation of AMPK in the regulation of lung
injury, inflammation, oxidative stress, and apoptosis in the
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context of sepsis, along with the role of HMGBI in this
process, remains inadequately understood. This research
aims to evaluate the impact of BBR on lung damage, in-
flammatory responses, oxidative stress levels, and apop-
tosis in mice subjected to LPS-induced sepsis. Further-
more, we elucidated the effect of BBR on AMPK acti-
vation and HMGBI levels during ALI, and the correla-
tion between BBR-induced AMPK activation and HMGBI1
release in LPS-stimulated mouse monocyte/macrophage
cells, RAW264.7. Our results highlight the effectiveness
of BBR in suppressing inflammation, oxidative stress, and
apoptosis in LPS-induced ALI, mediated via modulation of
the AMPK-HMGB1-NF-«B signaling pathway.

2. Materials and Methods
2.1 Animal Experiments

Male C57BL/6J mice (6-8 weeks, 18-20 g) were
sourced from SPF Biotechnology Co., Ltd. (Beijing, China)
and housed for one week under a 12-h light/dark cycle in
specific pathogen-free conditions before the experiment.
To evaluate the effect of BBR (A75865, InnoChem, Bei-
jing, China; purity >97%) on LPS-induced ALI in septic
mice, the mice were randomly allocated into four groups:
Control, LPS, LPS +BBR (25 mg/kg/day), and LPS + BBR
(100 mg/kg/day), with six mice in each group. The LPS-
induced ALI model was modified based on previously de-
scribed methods [13,14]. The mice were administered a
single intraperitoneal injection of LPS at a dosage of 10
mg/kg of body weight without the use of analgesia, as pre-
viously used [15—17]. This minimally invasive procedure
did not induce signs of distress and adhered to the 3R prin-
ciples of animal welfare. Briefly, following intragastric ad-
ministration of BBR dissolved in 0.5% carboxymethyl cel-
lulose sodium (CMC-Na) or a control solvent twice daily
for three days, LPS (L8880, Solarbio, Beijing, China) dis-
solved in normal saline was injected intraperitoneally at
a dosage of 10 mg/kg body weight two hours following
BBR treatment on day 4. At six hours post-LPS injection,
the mice underwent a final treatment with either BBR or
the control solvent. Eighteen hours after LPS injection,
the mice were subjected to terminal anesthesia using 5%
isoflurane (I8000, Solarbio, Beijing, China). After con-
firming that the mice were in a state of deep anesthesia
and the absence of pain reflexes, their abdominal cavities
were opened. Blood samples were obtained from the in-
ferior vena cava with a 1-mL syringe, and the mice were
euthanized via exsanguination, following which lung tis-
sues were collected. The harvested lung tissues were either
preserved at—80 °C for further analysis or fixed in 10% neu-
tral formaldehyde for histological examination. All animal-
related procedures received approval from the Ethics Com-
mittee of Beijing Friendship Hospital, Capital Medical Uni-
versity (Approval number #24-2034) and were performed
in accordance with the National Guidelines for the Housing
and Care of Laboratory Animals.

2.2 Biochemical Analysis

Blood samples underwent centrifugation at 2500 g for
a duration of 10 min to obtain serum. The levels of HMGB1
in serum and cell culture supernatants were measured us-
ing a mouse HMGBI1 enzyme-linked immunosorbent as-
say (ELISA) kit (SEKM-0145, Solarbio, Beijing, China).
Additionally, mouse lung tissues were homogenized, and
commercial assay kits were utilized to quantify malondi-
aldehyde (MDA) (S0131, Beyotime Biotechnology, shang-
hai, China), superoxide dismutase (SOD) (S0101, Bey-
otime Biotechnology, shanghai, China), and myeloperoxi-
dase (MPO) (A044-1-1, Nanjing Jiancheng Biotechnology
Co., Ltd., Nanjing, China) to assess oxidative stress in the
lungs and infiltration of neutrophils.

2.3 Histological Analysis

Lung tissues that were fixed in paraffin, and sections
measuring 5 um were subjected to standard hematoxylin
and eosin (H&E) staining to assess histopathological al-
terations using a light microscope. A semi-quantitative
scoring system was utilized to evaluate the infiltration of
neutrophils, the presence of pulmonary edema, disorgani-
zation within the lung parenchyma, and any hemorrhagic
changes in the lung tissue. The scoring criteria were de-
fined as follows: 0, no pathological changes observed
in the visual field; 1, 2, 3, and 4 represent pathological
changes present in less than 25%, 25%—50%, 51%—75%,
and greater than 75% of the total visual field, respectively
[18]. Apoptotic characteristics in lung tissues preserved
with formaldehyde were identified using terminal deoxynu-
cleotidyl transferase dUTP nick end labeling (TUNEL)
staining, which employed the DAB (SA-HRP) (PR30010,
Proteintech, Wuhan, China) TUNEL Cell Apoptosis De-
tection Kit (G1507, Servicebio, Wuhan, China). The pro-
portion of TUNEL-positive cells was quantified using Im-
ageJ software (NIH, Bethesda, MD, USA). Additionally,
immunofluorescence was performed to detect HMGBI in
lung tissue, and its expression and intracellular distribution
were evaluated.

2.4 Cytoplasmic and Mitochondrial Protein Isolation

Mitochondria were isolated from lung tissue using a
mitochondrial isolation kit (C3606, Beyotime Biotechnol-
ogy, Shanghai, China). In summary, the lung tissue un-
derwent homogenization followed by centrifugation at 4 °C
and 600 g for 10 min to eliminate cell nuclei. The resulting
supernatant was centrifuged a second time at 11,000 g and
4 °C for 10 minutes to collect crude mitochondrial pellets.
Next, the supernatant underwent centrifugation at 12,000 g
for 10 minutes to separate cytoplasmic proteins. The con-
centration of proteins was assessed using a BCA protein as-
say kit (#23225, Thermo Fisher Scientific, Waltham, MA,
USA), after which the proteins were heated and analyzed
via Western blot.
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2.5 RNA Extraction and Quantitative Real-Time
Reverse-Transcription PCR (qRT-PCR)

RNA was extracted from the cells using the RaPure
total RNA kit (R4011, Magen, Shanghai, China), in
accordance with the instructions provided by the manufac-
turer. The mRNA expression levels of the inflammatory
cytokine genes Tnfo and 1/6, along with the internal
control gene glyceraldehyde 3-phosphate dehydroge-
nase (Gapdh), were amplified using specific primers:

Gapdh (5’-CTCTGGAAAGCTGTGGCGTGATG-
3 and 5'-ATGCCAGTGAGCTTCCCGTTCAG-
3%, Tnfao  (5-CCAAAGGGATGAGAAGTTCC-3/

and 5'-CTCCACTTGGTGGTTTGCTA-3'), and
16 (5-CCATCCAGTTGCCTTCTTGG-3’ and 5'-
TGCAAGTGCATCATCGTTGT-3) [14,19].  Quantifi-
cation was performed using one-step qRT-PCR with the
HiScript II One Step qRT-PCR SYBR Green Kit (Q221-01,
Vazyme). The comparative Ct method was employed to
calculate relative mRNA levels, following normalization
to Gapdh.

2.6 Western Blot

Lung homogenates or cell lysates were collected
utilizing a protein extraction reagent (78510, Thermo
Fisher Scientific, Waltham, MA, USA) combined with in-
hibitor cocktails for proteases and phosphatases (C0001
and C0004, TargetMol, Boston, MA, USA). The concen-
tration of protein was assessed using a BCA protein as-
say kit. For Western blotting, protein samples were sep-
arated by 12% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis, and subsequently transferred to polyvinyli-
dene fluoride (PVDF) membranes. The membranes were
blocked with 5% fat-free milk and incubated overnight
at 4 °C with antibodies against ACTB (GB15001, Ser-
vicebio, Wuhan, China), HMGBI1 (ET1601-2, HUABIO,
Hangzhou, China), AMPKal (ET1608-40, HUABIO,
Hangzhou, China), p-AMPK«1 (2535, CST, Danvers, MA,
USA), NF-xB p65 (4764, CST, Danvers, MA, USA), p-NF-
kB p65 (3033, CST, Danvers, MA, USA), cleaved Caspase-
3 (WL02117, WanleiBio, Shenyang, China), Cleaved
Caspase-9 (WL01838a, Wanleibio, Shenyang, China),
Bax (WLO01637, Wanleibio, Shenyang, China), Bcl-2
(WLO015556, Wanleibio, Shenyang, China), and histone
H3 (9715, CST, Danvers, MA, USA). The horseradish-
peroxidase-conjugated secondary antibody was used to in-
cubate the PVDF membrane, and the signals of the target
proteins were assessed with Enhanced Chemiluminescence
(ECL) chemiluminescence detection kits (E412, Vazyme,
Nanjing, China) utilizing the ChemiDoc MP imaging sys-
tem (Bio-Rad, Hercules, CA, USA). Signal intensity was
measured using the Gel-Pro Analyzer (Thermo Fisher Sci-
entific, Waltham, MA, USA), calculating the ratio of target
proteins to the internal control protein ACTB, which was
then normalized to 1.0 for the control group.
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2.7 Cell Treatment and Cytotoxicity Assay

Mouse monocyte/macrophage cells RAW264.7 (CL-
0190, Procell Life Science & Technology, Wuhan, China)
were maintained in a 5% CO4 atmosphere at 37 °C and cul-
tured in DMEM supplemented with 10% FBS, 100 IU/mL
penicillin, and 100 pg/mL streptomycin. RAW264.7 cells
were validated by STR profiling and tested negative for my-
coplasma (D101, Vazyme, Nanjing, China). To investigate
the critical role of HMGB1 in BBR-mediated NF-xB inhi-
bition, RAW264.7 cells were seeded in 6-well plates until
they reached a confluence of 70%. After a pretreatment pe-
riod of 2 hours with either 2 or 10 uM BBR, the cells were
treated with 0.5 pg/mL LPS for 24 h. Subsequently, total
protein and RNA were extracted to assess the levels of p-
NF-xB and NF-xB proteins, as well as the mRNA expres-
sion of the inflammatory genes 7nfo and /6. The super-
natant HMGBI1 level in cell culture was quantified using the
ELISA method. Similarly, RAW?264.7 cells were pretreated
with 2 and 10 pM BBR and then simultaneously treated
with 1 pg/mL recombinant mouse HMGB1 (rmHMGBI,
50913-M0O1H, Sino Biological, Beijing, China) protein for
24 h to evaluate NF-xB activation and the inflammatory re-
sponse.

To investigate whether AMPK activation by BBR con-
tributes to the reduction of extracellular HMGBI levels in
LPS-stimulated RAW264.7 cells, we inhibited AMPK ac-
tivation using RNA silencing or the inhibitor compound C
(#T1977, TargetMol, Boston, MA, USA). Briefly, either 50
nM negative control siRNA or siRNA targeting AMPK« 1
(target sequence: 5'-ATGATGTCAGATGGTGAATTT-3'),
synthesized by Sangon Biotech (Shanghai, China) [20,21]
was transiently transfected into RAW264.7 cells via Lipo-
fectamine RNAIMAX reagent (13778, Invitrogen, Carls-
bad, CA, USA) and incubated for an additional 24 h. Subse-
quently, 0.5 pg/mL LPS, with or without 10 uM BBR treat-
ment, was added to the culture medium for another 24 h.
The protein expressions of AMPK a1 and p-AMPK a1 were
detected by Western blot, while the extracellular HMGB1
content was measured using the ELISA method. Addition-
ally, RAW264.7 cells were pretreated with 10 pM BBR and
BBR plus 5 pM Compound C for 2 hours, followed by
induction with 0.5 pg/mL LPS for 24 hours, after which
AMPK activation and extracellular HMGBI levels were
also assessed. To evaluate potential cytotoxicity in these
experiments, the corresponding treatments were conducted
in 96-well plates, and cell viability was assessed accord-
ing to the cell counting kit-8 method with commercial kits
(C0005, TargetMol, Boston, MA, USA).

2.8 Statistical Analyses

The data in this article are presented as the mean +
SD or as representative figures. Statistical analyses were
performed using SPSS 17.0 (IBM, Armonk, NY, USA) or
GraphPad Prism 8 (GraphPad Prism Software Inc. La Jolla,
CA, USA) and analyzed by Student’s #-test or One-way
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Fig. 1. BBR ameliorates LPS-induced ALI and inflammatory response in mice. (A,B) Chemical structure of BBR (A) and ex-

perimental scheme (B). (C) H&E staining of lung tissues at 18 h after LPS stimulation (200, scale bar = 100 um). (D) lung injury

score. (E,F) mRNA levels of inflammatory cytokine genes 7nfa and //6 in lung tissues determined by quantitative PCR. (G) MPO level

in the lung tissues of mice. Data are presented as the mean + standard deviation (SD) (n = 6 for every group) or the representative

figures. One-way analysis of variance (ANOVA), **p < 0.01 vs. the control group. *p < 0.01 vs. the LPS group. BBR, berberine;

LPS, lipopolysaccharide; ALIL, acute lung injury; H&E, hematoxylin and eosin; Tnfc, tumor necrosis factor-; 716, interleukin 6; PCR,

polymerase chain reaction; MPO, myeloperoxidase.

analysis of variance followed by Student-Newman-Keuls
post hoc tests. The threshold for statistical significance was
established at p < 0.05 or 0.01.

3. Results

3.1 BBR Ameliorates LPS-Induced ALI and Inflammatory
Response in Mice

To evaluate the effects of BBR (Fig. 1A) on LPS-
induced ALI, mice were administered BBR twice daily (a
total of 25 or 100 mg/kg/day) for 3 days before LPS in-
duction, with an additional treatment at 6 hours post-LPS
injection (Fig. 1B). 18 h following LPS stimulation, lung
tissues stained with H&E from the group treated solely
with LPS displayed marked infiltration of inflammatory
cells, edema, increased interstitial congestion, and thick-
ened alveolar walls. Conversely, BBR treatment effectively
alleviated these pathological changes (Fig. 1C), with the
lung injury score corroborating the protective effect of BBR

in ALI (Fig. 1D). Inflammatory mediators play a vital role
in the development of ALI triggered by LPS. Additionally,
our findings indicated that BBR markedly reduced the over-
expression of the inflammatory genes 7nfo and 116 in the
lungs of mice subjected to LPS (Fig. 1E,F). Neutrophil infil-
tration in lung tissues occurs during ALI, with MPO activity
serving as a key indicator. As depicted in Fig. 1G, LPS sig-
nificantly elevated MPO activity, whereas BBR treatment
markedly reduced MPO activity, further confirming the
protective effects of BBR against lung injury and inflam-
mation. These findings suggest that BBR notably reduces
the inflammatory response and alleviates LPS-induced ALI
in mice.

3.2 BBR Inhibits Oxidative Stress and Apoptosis During
LPS-Induced ALI in Mice

ALI is characterized by an excessive inflammatory re-
sponse that often exacerbates oxidative stress and apop-
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Fig. 2. BBR inhibits oxidative stress and apoptosis during LPS-induced ALI in mice. (A,B) MDA levels and SOD activity in lung
tissues were assessed as oxidative stress indicators at 18 h after LPS and/or BBR treatment. (C,D) Representative staining (200, scale

bar = 50 um) and positive-cell quantification of the TUNEL assay in mouse lung tissues. (E,F) Western blot analysis and quantification

of apoptosis-associated proteins in mouse lung tissues. The results are shown as means =+ standard deviation (n = 6 for every group) or

as representative figures. One-way analysis of variance (ANOVA) was conducted. *p < 0.05 and **p < 0.01 vs. the control group. *p
< 0.05 and #p < 0.01 vs. the LPS group. MDA, malondialdehyde; SOD, superoxide dismutase; TUNEL, transferase dUTP nick end
labeling; BCL2, B cell lymphoma 2; BAX, BCL2-Associated X protein.

tosis [22]. To investigate the effects of BBR on oxida-
tive stress injury, we measured the activity of the antiox-
idant enzyme SOD and the levels of MDA in lung tis-
sues. The results indicate that LPS significantly reduced
SOD activity and increased MDA levels in lung tissues,
whereas BBR treatment significantly reversed these alter-
ations (Fig. 2A,B), emphasizing its potent antioxidant prop-
erties. To evaluate the effect of BBR on apoptosis, we
conducted the TUNEL assay on lung tissues and analyzed
the expression of apoptosis-related proteins. Our findings
revealed a marked increase in the proportion of TUNEL-
positive cells following LPS treatment, which was notably
reduced by BBR (Fig. 2C,D). Additionally, BBR markedly
suppressed the levels of apoptosis-related proteins, specifi-
cally cleaved caspase-3 and cleaved caspase-9, induced by
LPS (Fig. 2E,F). Compared with the control group, the LPS
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group exhibited lower B cell lymphoma 2 (BCL2), levels
and higher BCL2-Associated X protein (BAX) levels, and
these abnormalities were also significantly attenuated by
BBR treatment (Fig. 2E,F). The findings collectively af-
firm the antioxidative stress and anti-apoptotic properties
of BBR in LPS-induced ALI, which correspond to its anti-
inflammatory function.

3.3 BBR Activates AMPK and Suppresses
HMGBI-Mediated NF-xB Activation in LPS-Induced ALI
in Mice

BBR has been widely reported to activate AMPK,
which in turn contributes to the maintenance of oxidant-
antioxidant balance in various inflammatory conditions
[12,23]. Conversely, excessive HMGBI release triggers
inflammatory responses and subsequent apoptosis in sep-
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sis [4,5]. Consequently, we chose to examine the roles
of AMPK and HMGBI in mediating the protective ef-
fects of BBR against sepsis-induced inflammatory acti-
vation, a critical mechanism underpinning ALI. The re-
sults indicate that LPS significantly reduced phosphory-
lated AMPK (p-AMPK) levels and increased total HMGB1
protein levels, resulting in NF-xB activation in mouse
lung tissues (Fig. 3A,B). In contrast, BBR treatment par-
tially reversed these effects without affecting the total
AMPK levels (Fig. 3A,B). The regulatory effect of BBR on
AMPK aligns with previous reports on its effects in other
inflammation-related models [23,24]. Furthermore, our re-
sults demonstrated that BBR inhibits the nuclear translo-
cation of HMGBI, as evidenced by increased nuclear and
decreased cytoplasmic HMGBI1 protein levels compared
with the LPS-induced ALI model (Fig. 3C,D). Immunoflu-
orescence staining of HMGB1 in mouse lungs also showed
increased total and cytoplasmic HMGBI levels following
LPS induction, which were mitigated by BBR treatment
(Fig. 3E). The function of HMGB1 depends on its release
into circulating fluids, where it acts as a DAMP by binding
to cell surface receptors, ultimately triggering the inflam-
matory response. Consequently, we measured the serum
levels of HMGBI in the ALI model induced by LPS. As
anticipated, LPS resulted in a marked increase in serum
concentrations of HMGBI1, while treatment with BBR sig-
nificantly lowered these levels in a dose-dependent way
(Fig. 3F). Consequently, BBR exerts inhibitory effects on
HMGB1-mediated NF-xB activation in LPS-induced ALI,
and this mechanism may be related to the activation of
AMPK during this process.

3.4 BBR Decreases Extracellular HMGB1 in LPS-Induced
RAW264.7 Cells and Inhibits HMGBI-Stimulated NF-xB
Activation

The primary mechanism underlying sepsis is immune
dysfunction, with macrophages playing a pivotal role [25].
In this study, we utilized the mouse macrophage cell line
RAW264.7 to elucidate the role of HMGBI in BBR-
mediated inhibition of NF-xB activation during sepsis. Af-
ter 24 hours of treatment with LPS and BBR, LPS signifi-
cantly induced the activation of NF-xB (Fig. 4A), increased
the extracellular HMGBI level (Fig. 4B), and was accom-
panied by excessive expression of Tnfo (Fig. 4C) and 116
(Fig. 4D) mRNA. In contrast, BBR reversed the increased
extracellular HMGBI level and inflammatory activations
induced by LPS (Fig. 4A-D). HMGBI typically acts as a
potent inflammation inducer by binding to multiple cell-
surface receptors [26] or by binding with LPS to amplify
its pro-inflammatory activity [27,28]. To further verify the
role of HMGBI in the protective effect of BBR during sep-
sis, we evaluated the anti-inflammatory effect of BBR in
HMGBI1-stimulated RAW?264.7 cells. The results indicated
that HMGBI1 significantly promoted NF-xB activation and
upregulated the inflammatory genes Tnfa and /6 expres-

sion, whereas BBR partially mitigated this effect (Fig. 4E—
Q). Therefore, the evidence that BBR decreases extracellu-
lar HMGBI1 in LPS-induced RAW264.7 cells and inhibits
HMGB1-induced NF-xB activation suggests that BBR alle-
viates sepsis-related inflammatory injury, at least partially,
through decreasing extracellular HMGB1, which is con-
sistent with the results derived from animal experiments

(Fig. 3).

3.5 Silencing the Activation of AMPK Reverses
BBR-Reduced Extracellular HMGBI Level in
LPS-Stimulated RAW264.7 Cells

As extracellular HMGBI serves as a final effector
in the inflammatory activation process, we further as-
sessed whether BBR-induced decreases in extracellular
HMGBI levels are mediated through AMPK activation
in LPS-stimulated RAW264.7 cells. For this, we utilized
AMPKa1-specific small interfering RNA (siRNA) and the
pharmacological p-AMPK inhibitor compound C to knock
down or inhibit AMPK activation. Results indicate that, un-
der non-cytotoxic conditions in RAW264.7 cells (Fig. 5A),
AMPK protein expression was inhibited after transfection
with siAMPK, leading to subsequently lower p-AMPK lev-
els (Fig. 5B). Compared with the control group, LPS re-
duced p-AMPK levels, whereas BBR enhanced its level.
However, by knockdown of AMPK«a1, the p-AMPK level
remains lower even in the presence of BBR (Fig. 5B). Cor-
respondingly, the inhibition of supernatant HMGBI1 level
by BBR in LPS-induced RAW264.7 cells was reversed by
AMPK silencing (Fig. 5C). Similarly, at a non-cytotoxic
concentration (Fig. 5D), Compound C also reversed BBR’s
effects on p-AMPK activation and extracellular HMGB1
levels (Fig. 5E,F). The findings indicate that the reduction
in extracellular HMGBI levels caused by BBR is at least
partially facilitated through the enhancement of p-AMPK
level in RAW264.7 cells stimulated by LPS.

4. Discussion

Targeting the signaling pathways and molecules that
mediate systemic inflammation represents a critical ther-
apeutic strategy for alleviating organ injury during sepsis
[1]. We previously reviewed the protective effects of BBR
against multiple organ injuries, encompassing the intestine,
liver, kidney, and lung [29]. In this study, we further re-
vealed that BBR significantly mitigates LPS-ALI, as evi-
denced by reductions in histopathological damage, inflam-
matory responses, oxidative stress, and apoptosis. Mech-
anistic insights reveal that BBR activates AMPK, which
subsequently diminishes serum and extracellular HMGB1
levels, ultimately inhibiting HMGB1-mediated NF-x<B ac-
tivation.

To date, there remains a lack of effective treatments
for irreversible septic shock and multiple organ dysfunc-
tion syndromes, although extensive research has been con-
ducted on dysregulated signaling pathways and molecules
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Fig. 3. BBR activates AMPK and suppresses HMGB1-mediated NF-<B activation in LPS-induced ALI in mice. (A,B) Western
blot analysis and quantification of p-AMPK, AMPK, p-NF-xB, NF-xB, and HMGB1 in mouse lung tissue. (C,D) Western blot analysis
and quantification of HMGBI in the nuclei and cytoplasm. (E) Immunofluorescence analysis of HMGB1 protein expression in mouse
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0.01 vs. the control group. *p < 0.05 and #p < 0.01 vs. the LPS group. AMPK, adenosine-monophosphate-activated protein kinase;
HMGBI, high mobility group box-1; NF-xB, nuclear factor Kappa B; ELISA, enzyme-linked immunosorbent assay.

underlying sepsis pathogenesis [1]. Regarding signaling-
and molecule-targeted anti-sepsis strategies, BBR could al-
leviate LPS-induced lung injury through mechanisms in-
cluding inhibition of TNF-« production and the expression
and activation of cytosolic phospholipase A2 [30], activa-
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tion of the PERK-mediated Nrf2/HO-1 signaling axis [31],
and suppression of NF-xB and IL-6-mediated STAT3 acti-
vation [32]. In line with these findings, our research also
demonstrates that BBR significantly reduces lung injury,
inflammation, oxidative stress, and apoptosis. Consider-
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group.

ing BBR’s ability to activate AMPK across diverse disease
models, HMGB1’s role as a DAMP in inflammatory dis-
eases, and BBR’s protective role for ischemia-reperfusion
injury by inhibiting the HMGB1-NF-xB pathway [33,34],
we posit a potential causal link between BBR-mediated
AMPK activation and HMGB1-mediated inflammatory in-
jury in sepsis.

Serum HMGBI1 concentrations have been closely
linked with mortality in animal sepsis models [35,36]. Our
study in a murine septic model revealed that BBR reduced
serum HMGBI concentrations, potentially by suppressing
the total protein expression, nucleus-to-cytoplasm translo-
cation, and extracellular release of HMGBI (Fig. 3). These
results reinforce the concept that HMGBI1 translocation
from the nucleus to the cytoplasm is a pivotal step pre-
ceding its extracellular release [37]. Although the reduced
HMGBI release might also be attributed to the enhanced
HMGBI deacetylation by SIRT3 or SIRT1, which are po-
tentially regulated by BBR [10,38—40], it might also stem
from BBR’s potential modulation of the AMPK/mTOR and
Nrf2/HO-1 signaling pathways [41,42]. Collectively, the
decrease in extracellular HMGB1—the functional form of
HMGB 1—contributes to the multifaceted regulation of in-
flammatory diseases by BBR, thereby reinforcing the idea

that BBR is a multifunctional compound with diverse phar-
macological activities [43].

Multiple cell types, such as alveolar epithelial cells,
neutrophils, monocytes, and macrophages, participate in
the progression and prognosis of sepsis-related lung in-
jury. Among them, although alveolar epithelial cells ini-
tiate inflammation via barrier damage, neutrophils drive in-
jury through NETosis and oxidative stress, and monocytes
through infiltration and differentiation, macrophages serve
as central orchestrators by polarizing into pro-inflammatory
(M1) or reparative (M2) phenotypes, ultimately influenc-
ing the progression or resolution of sepsis-induced lung in-
jury across all phases [1,44,45]. Consequently, we inves-
tigated the anti-inflammatory mechanisms specifically in
RAW264.7 macrophages derived from mice. Exogenous
HMGBI1 accumulates on the surface of macrophages, form-
ing a complex with its receptors, which subsequently acti-
vates the inflammatory pathway. As expected, our findings
revealed that BBR’s inhibition of NF-xB activation is partly
mediated by decreased extracellular HMGBI1 levels, which
depend on AMPK activation by BBR. Notably, AMPK can
also suppress NF-xB activation via alternative pathways,
such as MAPK (P38, ERK, and JNK) [46].
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Nonetheless, our study is subject to some limitations.
For instance, we primarily explored the causal or upstream-
downstream relationship by which BBR activates AMPK,
reduces the release of HMGB1, and inhibits NF-xB activa-
tion. However, the direct mechanisms through which BBR
modulates the AMPK-HMGB1-NF-xB pathway were not
thoroughly investigated in this study. We believe the key
question lies in how BBR activates AMPK. Previous stud-
ies indicated that BBR inhibits mitochondrial Complex I
and modulates cellular energy metabolism, which is con-
sidered a pivotal mechanism for AMPK activation [10,23].
Moreover, given that the functional form of HMGBI is
present in the extracellular milieu, we thus mainly focus
on the extracellular HMGBI1. However, according to the
results in the mouse model (Fig. 3), BBR could also dimin-
ish HMGBI1 protein levels and impede its nuclear translo-
cation, and thus further exploration is warranted to eluci-
date the precise mechanism. Furthermore, our investiga-
tion has not yet delved into the direct causation of oxida-
tive stress and apoptosis by exaggerated inflammatory re-
sponses, as these processes are widely studied and inter-
act as both causes and effects. Third, about the activation
of AMPK by BBR, we have not set another AMPK acti-
vator as a positive control to compare its specificity and
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rule out potential off-target effects, though other researchers
have previously demonstrated the activation of AMPK in
RAW264.7 cells [24,47]. Besides, in demonstrating the
mechanism of BBR in a cellular model, we did not con-
duct the loss function experiment of HMGBI or establish
additional control groups, such as LPS + siAMPKal and
LPS + Compound C groups, to comprehensively compare
the effects of HMGB1, AMPK, and BBR on inflammation
activation.

5. Conclusions

Taken together, the current study proposes that BBR
markedly inhibits inflammation, oxidative stress, and apop-
tosis via the AMPK-HMGBI1-NF-xB signaling axis, un-
veiling a novel mechanism underlying BBR’s protective ef-
fects against ALI in sepsis. Given the absence of effective
treatments, BBR and other AMPK activators might serve as
promising candidates for managing systemic inflammation
and injury during sepsis.
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