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1. ABSTRACT

Prostate secretory protein of 94 amino acids 
(PSP94), primarily found in the prostatic secretion, 
was originally isolated and purified from human 
seminal plasma. PSP94 has several putative biological 
functions and is considered a marker of prostate 
cancer (PCa). Here, we review the structural-functional 
relationships of PSP94, address its fungicidal activity 
and role as an inhibitor of sperm motility and protection 
from female immune surveillance, and review its role 
in tumor suppression. We also review the diagnostic 
assays that are developed for PSP94 for use in 
the diagnosis of PCa and use of such tests in the 

differential diagnosis of PCa from benign prostatic 
hyperplasia (BPH).

2. INTRODUCTION

Prostate secretory protein of 94 amino acids 
(PSP94) is a predominant protein secreted by the 
epithelial cells of the prostate which is also known 
to be a candidate prostate cancer (PCa) biomarker. 
Worldwide, PCa is the leading cause of cancer-related 
deaths in men. While, the incidence rate of PCa 
is lower in India as compared to its rate in Western 
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countries, this rate has been steadily rising (1,2). The 
difference in the incidence rates of PCa throughout 
the world is mainly dependent on the coverage of 
prostate-specific antigen (PSA, human kallikrein-3) 
screening. Although serum PSA (sPSA) testing has 
been used routinely for screening and has significantly 
reduced PCa mortality (3), increased sPSA levels 
are also reported in non-malignant conditions such 
as benign prostatic hyperplasia (BPH) and prostatitis 
(4). Thus, sPSA has low specificity for PCa, especially 
in the diagnostic gray zone (sPSA levels between 
4–10 ng/ml) which may lead to unnecessary biopsies. 
Hence, there is a constant need for exploring alternate 
markers. Potential of PSP94 is being investigated in 
PCa progression by several investigators worldwide. 
The various studies on PSP94 with respect to i 
isolation, structural characterization, identification of 
various binding partners and putative functions so far 
are described below.

3. HISTORICAL PERSPECTIVE

PSP94 earlier referred to as human seminal 
plasma inhibin (HSPI) or prostatic inhibin peptide (PIP) 
was originally believed to be of testicular origin, with a 
function to regulate circulatory levels of follicle stimulating 
hormone (FSH) (5–7). Seidah et al. delineated the 
complete amino acid sequence of HSPI which was 
purified from human seminal plasma and predicted 
that the FSH inhibiting activity may reside within the 
C-terminal region (8). Concurrently, the sequence of 
inhibin from ovarian follicular fluid was delineated and 
found to be a glycosylated heterodimer (9) having no 
sequence similarity to HSPI. Subsequently, the ability of 
HSPI to suppress FSH secretion by the pituitary gland 
was later contradicted, wherein investigators observed 
that highly purified fractions of HSPI were devoid of 
inhibin-like activity (10,11). Later, studies showed that 
the amino acid sequence of HSPI was identical to that 
of a sperm coating antigen of prostatic origin reported by 
Johansson et al. (1984) and was proposed to play a role in 
reproduction (12). On complete amino acid sequencing 
by automated Edman degradation, this protein isolated 
from seminal plasma was shown to consist of 93 
amino acid residues with a molecular mass of 10652 
Da and was referred to as beta-microseminoprotein 
(beta-MSP) (13). At the same time, a 16 kDa protein 
was identified from human seminal plasma, which on 
N-terminal sequencing was found to be identical to 
HSPI. This protein consisted of 94 amino acids and 
hence was referred to as PSP94 (14). PSP94 is a non-
glycosylated, cysteine rich protein having a molecular 
mass of ~10 kDa with an apparent molecular size of 
~16 kDa on sodium dodecyl sulfate polyacrylamide 
gel electrophoresis (SDS-PAGE) due to anomalous 
migration. PSP94 is believed to be involved in various 
biological processes including prostate pathophysiology 
and male reproduction. Further observation showed 
that PSP94 levels are significantly lower in tissue of 

PCa patients as compared to BPH patients and healthy 
men (15). Early studies have indicated PSP94 to 
exist as a bound form in serum (16,17) and at the cell 
surface of pituitary, prostate and sperm (18,19,20). The 
identification and characterization of proteins interacting 
with PSP94 has been the subject of numerous research 
studies to understand the biology behind the many 
reported functions of PSP94.

4. PROSTATIC AND NON-PROSTATIC  
ORIGIN OF PSP94

PSP94 is mainly secreted by the prostatic 
epithelial cells in seminal fluid (~1 mg/ml) (14,15) 
and these concentrations are similar to that of PSA 
and prostatic acid phosphatase (PAP) in the seminal 
plasma (21). PSP94 has also been shown to be 
present in the epithelial tissue of porcine epididymis, 
seminal vesicles and Cowper’s gland (22). Several 
studies have revealed the presence of PSP94 on rat 
(23), porcine (24,25) and macaque (26) sperm as 
well. PSP94 transcripts were demonstrated in human 
uterine, breast and other female reproductive tissues 
as well in endometrial cancer cell lines (27) indicating 
that the protein may have functions other than those 
related to male reproduction as a local autocrine/ 
paracrine factor. Low concentrations of human PSP94 
have also been reported in non-reproductive tissues 
like the gastric, tracheobronchial (28) and in uterine 
cervix secretions (29), suggesting an overall protective 
role. Thus, various functions have been attributed to 
PSP94 based on the difference in localization.

5. PSP94 HOMOLOGS

Several studies were undertaken to identify 
the presence of PSP94 homologs in other species. 
Cloning of cDNA and sequencing of the gene for 
PSP94, referred to as MSMB, was reported by Mbikay 
et al. (30). They observed that PSP94 encodes for 
a 114 amino acid polypeptide which includes a 20 
amino acid signal sequence and the same has been 
confirmed by Nolet et al. (31). Additional studies defined 
the promoter structure and mapped the chromosomal 
location of the gene to the 10q11.2. region (32,33). 
Besides the old world monkeys like rhesus (31) and 
baboon (34), PSP94 homologs were identified in new 
world monkey species such as cotton-top tamarin and 
common marmoset (35). Likewise, based on amino 
acid and cDNA sequence comparison, homologs were 
identified in pigs (36,37), rat (38) and mice (39) as well. 
The sequence analysis did not show homology with any 
other protein sequences from the database indicating 
that these homologs constitute a unique protein family, 
collectively referred to as beta-microseminoprotein.

Subsequently, two avian species, namely 
ostrich (40) and chicken (41,42) were identified to 
contain a protein which was structurally related to 
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mammalian beta-MSP. Database searches using the 
amino acid sequence of ostrich beta-MSP allowed 
identification of related proteins in numerous species 
such as cow, African clawed frog, zebrafish and 
Japanese flounder (40). Presence of beta-MSP was 
also explored in invertebrates, wherein cDNA encoding 
beta-microseminoprotein-like (beta-MSPL) protein from 
the gut cDNA library of amphioxus was amplified (43). 
In the recent past, snake serum has also been shown to 
contain homolog of PSP94 called small serum protein 
(SSP2) (44). Interestingly, all the ten cysteine residues 
present in PSP94 are conserved in the homologs from 
all the species (40). However, the primary structure 
of the protein revealed a remarkably low level of 
conservation in amino acids. Further, antibodies 
against PSP94 from different species (human, primate, 
rodents) have poor cross-reactivity indicative of PSP94 
being a rapidly evolving protein across species (45). 
We searched for beta-microseminoprotein related 
proteins in the various databases like UniProt and 
SWISS PROT and orthologues of MSMB gene reported 
in Ensembl. Figure 1 provides the multiple sequence 
alignment percentages between the various PSP94-
related proteins exhibiting considerable amino acid 
sequence variation (signal peptides included).

6. PSP94 GENE VARIANTS AND THEIR 
SIGNIFICANCE IN PROSTATE  
TUMORIGENESIS

The gene for PSP94, MSMB, has two 
transcript variants–these splice variants represent all 
the isoforms reported in Ensembl genebuild 52 (46). 

The longer transcript is MSMB1 (for full length PSP94 
or PSP94 protein) and the shorter transcript is MSMB2 
(for PSP57 protein which has a deleted Exon III) (47). 
MSMB1 and MSMB2 transcripts have both been shown 
in prostate (predominantly, MSMB1). However, MSMB2 
was not detected in breast and lung, but was largely 
found in kidney and bladder. Hence, the researchers 
proposed that in kidney and bladder, the majority of 
MSMB1 was alternatively spliced resulting in MSMB2. 
This aberrantly spliced MSMB2 mRNA was localized 
in the nuclear fraction of the cell. On the other hand, 
no alternative splicing was observed in lung and breast 
and only the full length MSMB1 mRNA exists in these 
tissues. This study led to the conclusion that alternative 
splicing of MSMB occurs primarily in urogenital tissues. 
The same study suggested presence of both forms 
of MSMB mRNA in normal, benign and malignant 
prostate tissues. They later showed both MSMB1 (487 
bp) and MSMB2 (381 bp) transcripts in endometrium 
and myometrium. However, breast, ovary and placenta 
showed presence of MSMB1, but not MSMB2 (27).

Comparison of the predicted amino acid 
composition of PSP94 and PSP57 showed that 
the proteins shared the first 16 amino acids. Unlike 
PSP94, PSP57 was predicted to be a highly basic 
protein with hydrophobic regions and would harbor 
only one cysteine residue as compared to ten in 
PSP94. Because of this basic nature of PSP57 and 
presence of hydrophobic regions, PSP57 could have 
a role in anti-microbial host defense functions (47). 
There are several reports showing increased PSP94 
mRNA levels in benign tumors, which are decreased or 

Figure 1. Percent sequence identity created by Clustal2.1. between reported PSP94/beta-MSP amino acid sequences. The sequence identity were 
determined following multiple sequence alignment of full length sequences of PSP94/beta-MSP (signal peptides included) using the Clustal Omega 
(CLUSTAL O (1.2.1.)) multiple sequence alignment program at http://www.ebi.ac.uk/Tools/msa/clustalo/
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lost in PCa (48). Transcript abundance studies in our 
laboratory have also shown that the mean fold-change 
in MSMB1, as well as MSMB2 mRNA levels were lower 
in prostate samples from PCa as compared to BPH 
(49). Interestingly, we observed similar results with 
the sPSP94 protein levels, which were significantly 
lower in patients with PCa than in BPH (50). Similar 
to our results, Ohnuma et al. had also shown MSMB1 
and MSMB2 transcripts to be present in the normal 
prostate and showing diminished presence in most 
of the PCas (51). Additionally, expression of either of 
the transcripts was not seen in normal colon, uterus 
and breast. On the contrary, Harries et al. found that 
MSMB2 is predominant in benign prostate tissue, 
whereas, MSMB1 represents the majority of the total 
MSMB expression in PCa tissues (52). Their results 
suggested that the isoform MSMB2 may render a 
tumor suppressor property and the MSMB1 isoforms 
could be pro-carcinogenic. Nevertheless, in another 
recent study, the absolute expression of both MSMB1 
and MSMB2 in malignant prostate tissue has been 
shown to be decreased as compared to normal 
prostate tissue even though both the transcripts were 
comparable to each other in all the studied tissues 
(46). Concurrently, the transcript levels of both splice 
variants of PSP94, MSMB1 and MSMB2, have also 
been demonstrated to strongly correlate with each 
other not only in PCa but also in BPH (49). This may 
suggest that the MSMB2 transcript could have a 
physiological role in the prostate. Also, since a diverse 
presence of the aberrantly spliced MSMB2 transcript 
is seen in various organs, MSMB2 may be involved in 
regulation of maintenance of the varied levels of the 
PSP94 protein seen in different organs. Importantly, 
no PSP57 protein has been detected in the prostate 
tissue so far (27) due to which no function can be 
associated with PSP57.

The level of the PSP94 protein is also driven 
by the presence of the allele at -57 position of the 
MSMB promoter. Presence of T-allele at this single 
nucleotide polymorphism (SNP) (rs10993994), results 
in up to 13 percent decrease in MSMB promoter 
activity as compared to the C-allele (53). This SNP is 
in a binding site for cAMP response element-binding 
protein (CREB), and the decrease in activity may 
be attributed to the effect of the marginal decrease 
in DNA affinity on the CREB activation cascade like 
protein kinase A (PKA) phosphorylation (54). Several 
SNPs have been identified as predisposition loci for 
PCa (55). However, among these SNPs, genome-
wide association studies (GWAS) have identified 
risk allele rs10993994 (g.-57C>T), to be associated 
with PCa risk (56,57). This association has also 
been ascertained in varied ethnicities and the risk 
allele has been established as a causal variant for 
PCa (46,53,58–60). Similarly, the sPSP94 levels 
significantly associate with the rs10993994 genotype 
(53) and both hold potential as biomarkers for PCa 

risk. Of the 30 SNPs reported in the dbSNP (http://
www.ncbi .n lm.nih.gov/projects/SNP/snp_ref) 
corresponding to the MSMB proximal promoter region, 
rs10993994 is well established as a susceptibility 
locus for PCa. However, the T allele of rs10993994 
may not be predisposing to PCa risk in Chinese Han 
population (61). Also, this SNP was not found to be 
a predisposing factor for BPH development (62,63). 
In a recent study by our group, we observed that 
the frequency of rs10993994 was similar in healthy 
participants as well as BPH and PCa patients (64). 
Another Asian study, which included 122 PCa patients 
from North India, suggested that the T risk allele was 
associated with risk for metastatic PCa (65). Two 
independent studies have shown a higher frequency 
of the T risk allele in aggressive PCa (56,66). However, 
contrary results have been observed in other studies 
(67,68). Hence, more replicative studies of larger 
sample size can ascertain whether Asian Indian 
ethnicity harbors rs10993994 as a PCa risk factor. 
Nonetheless, three large functional studies show that 
the T allele at rs10993994 is associated with lower 
sPSP94 levels as compared to the C allele, in PCa 
cases (69) as well as healthy controls (70,71). Our 
study also showed the T risk allele to be associated 
with reduced PSP94 mRNA and protein expression, 
in both malignant and non-malignant cases and the 
rs10993994 was found to be a functional SNP in Asian 
Indians (64). Nevertheless, rs10993994 had been 
shown to be associated with both the altered sPSP94 
expression and PCa risk (69,72). Interestingly, the 
rs10993994 risk allele is common with a frequency 
of about 30–40 percent in Europeans and 70–80 
percent in men of African ancestry (59). However, 
PCa is not that common, thus decreased sPSP94 
levels may not be the sole causal event in PCa and 
could be only one of the contributing factors (71). 
More studies to elucidate the biological significance 
of influence of rs10993994 on sPSP94 levels and 
prostate pathophysiology need to be undertaken, 
since this SNP influences the PSP94 expression 
in healthy men in multiple populations. Significant 
findings of the MSMB promoter polymorphisms from 
various studies are summarized in Table 1.

7. REGULATION OF PSP94

Different study groups have gained insight in 
understanding the hormonal regulation of the PSP94 
gene, MSMB. Intense immunohistochemical staining 
observed for PSP94, as compared to PSA and PAP, 
in 3 androgen independent human and rat prostate 
carcinoma cell lines, suggested that the synthesis 
and secretion of PSP94 is not solely dependent on 
androgens (90). Unlike PSA, PSP94 is not affected 
by loss of androgen receptor activation and continues 
to be expressed despite hormone manipulation, 
indicating possible alternative pathways in regulation 
of the gene. Thus, PSP94 was proposed to be a 
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Table 1. Major findings of the MSMB promoter SNPs rs10993994

Sr. No. Population studied (n) Salient findings

1. European (145) T allele is positively associated with decreased PSP94 expression in normal as well as 
malignant prostate tissue (46)

2. Swedish (4621) European (2009) 
Caucasian (3530) European (2329)

SNP found to be positively associated with PCa risk (53)

3. European (10377) Functionally active SNP and a probable causal variant for PCa, a higher frequency of the 
PCa risk allele T, was seen in patients with more aggressive PCa (56)

4. European (3748) Australian (6634) GWAS identified MSMB locus at rs10993994 for rendering PCa susceptibility (57)

5. European (12213) T allele of rs10993994 found to be most strongly associated marker with PCa risk. C allele 
binds to the CREB transcription factor and shows more PSP94 expression than T allele (60)

6. Chinese (320) SNP positively associated with biochemical relapse after radical prostatectomy (61)

7. Scottish (646) Increased PCa risk associated with TT genotype at rs10993994, however no significant 
association found between rs10993994 and BPH (62)

8. Korean (173) Significant positive association seen between rs12770171 and BPH development, while 
rs10993994 did not show any association with BPH (63)

9. Asian Indian (112) No significant association of rs12770171 / rs10993994 with BPH or PCa development was 
observed. However, the rs10993994 was found to be a functional SNP in Asian Indians with 
respect to sPSP94 levels (64)

10. Caucasians (1675) Asian Indians (444) 
African Americans (296)

T allele found to be associated with increased risk for metastatic PCa, but not with 
recurrence (65)

11. European (5486) T allele of rs10993994 found to be positively associated with less aggressive PCa (66)

12. European (2045) SNP not associated with aggressiveness of PCa or with Gleason scores, pathologic stage, 
or age at diagnosis of PCa (67)

13. African Americans (1435) European 
Americans (887) Latinos (1175) 
Japanese Americans (1409) Native 
Hawaiians (221)

SNP positively associated with PCa, could be a global marker of risk of PCa (68)

14. African Americans (649) Japanese (998) 
Latino (521) Native Hawaiian (173) 
Caucasians (575)

Low blood levels of PSP94 increased the risk of PCa irrespective of race, ethnicity or 
rs10993994 genotype (69)

15. European Americans (125) African 
Americans (125) Latinos (125) Japanese 
Americans (125)

T allele accounts for 30–50 percent of the variation in PSP94 levels in blood plasma of 
healthy men. PSP94 levels were found to be highest in African Americans and lowest in 
Japanese Americans (70)

16. Swedish (304) TT genotype was associated with lower PSP94 but higher PSA levels. This SNP is 
significantly correlated with levels of blood and semen PSP94, free and total PSA, and 
semen levels of hK2 at normal physiological levels (71)

17. Han Chinese (509) T allele found to be positively associated with decreased sPSP94 levels and increased PCa 
risk (72)

18. European and others (70) Study did not find additional SNPs in perfect linkage disequilibrium (LD) with rs10993994 
which was suggested as the probable variant associated with PCa (73)

19. Swedish (2875) SNP not associated with death from PCa in a cohort of men diagnosed with PCa (74)

20. European (168) TT genotype linked with moderate to low PSP94 expression in prostate tissue (75)

21. Swedish (4323) SNP found to be PCa susceptibility locus, significantly associated with total PSA (tPSA), free 
PSA (fPSA) and human kallikrein 2 (hK2) levels in plasma (76)

22. European (384) In silico studies predict that rs10993994 changes the binding site for the ubiquitous CCAAT 
and Gli–Kreupel Transcription Factors and is positively associated with PCa risk and is in LD 
with rs12770171 (r2=0.3.2), however no SNPs in perfect LD with rs10993994 (77)

23. African American (136) rs10993994 not significantly associated with PCa (78)

24. European Americans (296) Japanese 
(298) African Americans (168)

T allele significantly associated with less PSP94 expression in all 3 ethnicities (79)

25. Western European (165) T allele associated positively with DNA repair capacity (80)

26. Chinese (3492) SNP genotype found to be associated with increased levels of PSA (81)

27. Swedish (3412) SNP found to be positively associated with PCa diagnosis, and independently associated 
with PCa risk. SNP was not shown to enhance predictive power of PSA testing (82)



PSP94 in prostate pathophysiology

540 © 1996-2018

useful biomarker following hormone ablation therapy 
(91). Concurrently, in vivo hormonal regulation of 
PSP94 mRNA in long-term castrated rats revealed 
that PSP94 is under androgen regulation in the rat 
lateral prostate. In addition, this protein could also 
be regulated by glucocorticoid and progestin; though 
not zinc (92). As direct evidence of the androgen 
responsiveness of PSP94, increasing concentrations 
of a synthetic androgen was shown to result in a 
dose-dependent increase in promoter activity of the 
MSMB gene (53). Short- and long-term androgen 
deprivation therapy (ADT) showed decrease in PSP94 
expression in these patients, indicating androgen-
dependent expression. However, the expression was 
not fully repressed (88). Thus, androgen-independent 
expression seen of PSP94 is likely mediated by 
alternate pathways like regulation by other steroids, 
in absence of androgens.

Further, PSP94 expression is low in 
progressive and metastatic disease which is in 
contrast to PSA expression indicating that both 
proteins are differentially regulated in progressive PCa 
(88). This could be due to gene silencing mediated by 
the putative oncogene, enhancer of zeste homolog 
2 (EZH2) (93). EZH2 is a Polycomb protein which 
represses transcription via trimethylation of histone 
H3 on Lys27 (H3K27). Knockdown of EZH2 resulted 
in a loss of H3K27 trimethylation and an increased 
expression of the MSMB gene, while overexpression 
of EZH2 was associated with a decreased expression 
of the MSMB gene (93). PSP94 expression is also 
found to be controlled by the SNP rs10993994 on 
the MSMB promoter as discussed in Section 6. This 
SNP regulates the PSP94 levels in normal as well 
abnormal prostate (64) by altering the transcription 
factor binding site (53). Thus, PSP94 expression 
may be regulated by several mechanisms and may 
be under tight control and needs to be investigated 
further.

8. PURIFICATION AND CHARACTERIZATION 
OF PSP94 FROM SEMINAL PLASMA

PSP94 has been isolated, purified and 
characterized from human seminal plasma using 
various methods (8,14,94). Dubé et al. (1987) reported 
the purification of a protein from human seminal 
plasma which was found to be identical to PSP94 
(14). Ohkubo et al. purified PSP94 which resolved at a 
molecular weight of 19 kDa and 17 kDa on gel filtration 
and reduced SDS-PAGE respectively (95). Another 
procedure for the purification of PSP94 from human 
seminal plasma was reported by Baijal-Gupta et al. 
(96). Cation and anion exchange chromatography 
were used, resulting in a yield of 18–25 mg PSP94 
per 50 ml of seminal plasma. Our group has also 
successfully purified PSP94 from human seminal 
plasma by ammonium sulphate precipitation, 
hydrophobic interaction chromatography followed 
by preparative reversed phase-high performance 
liquid chromatography (RP-HPLC) which resulted in 
35 mg of pure PSP94 per 100 ml of seminal plasma 
(97). An in-depth characterization of purified PSP94 
was carried out by amino acid analysis, N-terminal 
sequencing and molecular mass estimation which 
confirmed the homogeneity and identity of the protein. 
This preparation was used for elucidating the 3D 
structure of PSP94 by X-ray crystallography.

9. RECOMBINANT PSP94 AND ITS  
EXPRESSION

The earliest preparation of recombinant 
PSP94 was reported by Linard et al. (98) in E. coli. 
A clone expressing PSP94 epitopes in periplasmic 
extracts was identified. Further, this periplasmic 
PSP94 was shown to be similar to natural PSP94 
indicating correct processing and folding of the 
cysteine-rich protein. Attempts were also made to 

28. Caucasian (729) T allele is associated with decreased PSP94 protein expression, and the association is 
stronger in tumor compared to normal prostate tissue. (83)

29. European American (2471) Positive association seen between number of sexual partners and PCa risk in men carrying 
the T allele (84)

30. Han Chinese (720) Increased risk of idiopathic infertility with azoospermia was associated with T allele of 
rs10993994, where these males have significantly higher PSP94 expression levels than 
fertile controls (85)

31. European (21511) T allele of rs10993994 inversely associated with risk of PCa-specific mortality and found to 
be positively associated with both fatal and nonfatal PCa (86)

32. European (424) SNP found to be significantly associated with MSMB expression in tumor or normal prostate 
tissue (87)

33. Swedish (13) Low PSP94 expression found to be associated with the TT genotype at rs10993994 (88)

34. Finnish (1272) Significantly lower levels of sPSP94 were associated with SNP in both PCa patients and 
healthy controls, however, no association found with PCa risk (89)
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produce recombinant human PSP94 to evaluate its 
clinical and functional role in PCa (99). The PSP94 
cDNA was cloned and expressed in yeast using Pichia 
pastoris expression system and showed functional 
similarity with that of native PSP94. The production and 
purification of recombinant PSP94 in insect cells using 
baculovirus system has also been reported (100). The 
protein was recovered using ethanol extraction and 
the yield in culture medium was ~35 mg/L.

10. STRUCTURAL STUDIES OF PSP94

Characterization of the primary structure of 
PSP94 purified from human seminal plasma has been 
undertaken since last four decades. The amino acid 
sequence for ostrich MSP was established through 
a combination of automated Edman degradation and 
matrix assisted laser desorption ionization–time of 
flight mass spectrometric (MALDI-TOF MS) analysis 
(40). Homology-based computational methods could 
not be applied for determining the structure of PSP94, 
due to difficulties in extracting PSP94 in the pure form 
and lack of sequence homology with known structures. 
Hence, an ab initio structure was generated as one 
of the first attempts to understand the biophysical 
properties of PSP94 (101). A detailed secondary 
structure study was later reported using native and 
recombinant porcine beta-MSPs by Wang et al. (102). 
Both native and recombinant proteins were shown 
to exhibit a very similar structure based on circular 
dichroism and nuclear magnetic resonance data. 
However, determination of the tertiary structure of 
PSP94 was evaded for a long time due to difficulties in 
crystallizing PSP94. In 2005, Wang et al. determined 
the three dimensional solution structure of porcine 
beta-MSP using nuclear magnetic resonance (NMR) 
spectroscopy (103). Another study by Ghasriani et 
al. reported the solution structures of porcine and 

human beta-MSPs, which on comparison showed 
conservation of the ten cysteine residues maintaining 
the three-dimensional conformation between the 
species (104). However, the orientation of the protein 
was entirely different compared to the one reported by 
Wang et al.

Using X-ray crystallography, our group has 
successfully determined the crystal structure of PSP94 
(PDB id. 3IX0) (105, 106). The protein was determined 
to have a two-domain structure rich in beta-sheets 
with an identical pattern of five disulfide linkages as 
reported for porcine beta-MSP (104). However, this 
structure is completely different compared to that of 
the structure predicted by the ab initio method (101). 
PSP94 exists as a monomer which consists of two 
domains held together by the disulfide linkage between 
Cys37-Cys73; where the N- (residues 1–52) and C- 
terminal (residues 53–94) are held in close proximity 
via a strong hydrogen bond (106). The ten cysteine 
residues were found to be paired between 2Cys-50Cys, 
18Cys-42Cys, 37Cys-73Cys, 40Cys-49Cys and 64Cys-87Cys 
(Figure 2). The disulphide alignments of beta-MSPs 
from different species obtained by means of different 
methods are compared in Table 2.

The C-terminal domain has two double-
stranded antiparallel beta-sheets, which has no 
structural similarity with any known proteins, but 
the N-terminal (15–52 residues) has a fold similar 
to Fibronectin type I (FnI) module (106, 107). The 
N-terminal domain has four antiparallel beta-strands 
(beta1: 1–6, beta4: 30–34, beta5: 38–42 and beta6: 
46–51) arranged in the form of Greek-key motif and 
two small antiparallel beta-strands (beta2: 18–21 and 
beta3: 23–27) forming a flap on top of the Greek key 
motif. The edge-to-edge interaction of two monomers 
by the sequential alignment of terminal antiparallel 

Figure 2. Cartoon representation of PSP94 with polypeptide chain in rainbow color from blue (N-terminus) to red (C-terminus). Five disulfides are shown 
in stick representation. Adapted with permission from Elsevier (106).
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beta-strands has been shown to aid in the formation 
of PSP94 homodimer. The N-terminal Greek key motif 
in each monomer gets extended across the dimer 
interface by the C-terminal strands beta10 and beta7 
of the adjacent monomer (Figure 3). This monomer/

dimer transition was attributed to difference in pH 
conditions; wherein the monomeric form was observed 
in acidic pH. The structure of monomeric PSP94 as well 
as its dimeric form; and possible mode of interaction 
with different binding proteins may provide clues to 

 Table 2. Comparison of disulphide alignments of cysteine at position 2, 18, 37, 40, 42, 49, 50, 64, 73, 87 of
different beta-MSPs by different methods

Ostrich
MALDI-TOF
(40)

Human
Ab initio
(101)

Porcine
NMR
(102)

Human
NMR
(104)

Human
X-ray
(106)

2–18 2–50 2–50 2–50 2–50

37–73 18–64 18–42 18–42 18–42

40–49/50 37–87 37–73 37–73 37–73

42–49/50 40–42 40–49 40–49 40–49

64–87 49–73 64–87 64–87 64–87

Figure 3. PSP94 dimer. Topology diagram of dimeric interaction showing extension of beta-sheet across the dimer interface (broken vertical line). The 
beta-strands in the N-terminal domain are shown in cyan, and those in the C-terminal domain are shown in red. Reproduced with permission from 
Elsevier (106).
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the biological functioning of this important family of 
proteins.

11. PSP94 INTERACTOME

11.1. Prostate secretory protein binding  
protein (PSPBP) (CRISP-9/PI16)

In late 1980s, Abrahamsson et al. indicated 
variable concentrations of PSP94 to be present in the 
serum of PCa patients (108). Further studies revealed 
the presence of a higher molecular weight form of the 
native protein (between 60 and 150 kDa) which was not 
efficiently detected by antibodies raised against free 
PSP94 (109). Thus, investigators began to work towards 
identifying putative binding molecules of PSP94 that 
would enable development of serum immunoassays 
for PCa management by utilizing the bound and free 
forms of PSP94. Higher ratio of bound/free forms 
of serum PSP94 (sPSP94) compared to sPSA level 
in pretreatment samples was demonstrated to be a 
significant predictor of relapse post radiotherapy (110). 
Serum PSP94-bound complexes were later considered 
for evaluating the clinical utility of PSP94 as a marker 
for PCa progression. PSP94 interacting protein purified 
from human serum was named as PSP94-binding 
protein (PSPBP), which showed significant amino 
acid sequence similarity to CRISP family of proteins 
harboring the SCP (sperm coating protein) domain 
(111). A specific enzyme-linked immunosorbent assay 
(ELISA) was developed, where bound/free PSP94 and 
PSPBP were ascertained to be independent prognostic 
markers following radical prostatectomy (112).

11.2. Immunoglobulin G (IgG)

Efforts to study the immunoglobulin 
binding proteins from human seminal plasma led 
to the identification of a protein that binds to human 
immunoglobin Fc region and was designated as 
immunoglobulin binding factor (IgBF) (113,114). IgBF 
was considered a soluble form of immunoglobulin (Ig)
Fc binding protein that may be related to the Fc gamma 
receptor type III (FcγRIII/ CD16) and could modulate 
the local immune system (113,114,115,116). Under 
reducing condition, 16 kDa form of IgBF was shown to 
interact with monoclonal natural killer-associated anti-
Leu-11b antibody; whereas the 27 kDa form was found 
to be inactive as determined by Western blot analysis 
(117,118). This protein was presumed to probably be a 
non-glycosylated protein since it failed to interact with 
concanavalin A under reducing condition (114). IgBF 
showed a broad binding activity with immunoglobulins 
obtained from several species and had the greatest 
affinity for human IgG1; but did not interact with human 
IgM or IgA (118).

This 16 kDa protein in seminal plasma with 
IgG binding property was later characterized by mass 

spectrometry and found to be identical to PSP94 
(119). Thus, PSP94 was identified as a member 
of IgBF family found in human seminal plasma that 
specifically suppressed pokeweed mitogen stimulated 
lymphocyte blastogenesis indicative of a role in local 
immunity (120). Further, IgBF was hypothesized to 
suppress activation of B cells in the male and female 
genital tract. Later studies revealed IgBF to be present 
in cervical mucus besides human seminal plasma, 
where this protein interacts with IgG as a monomer 
under reducing conditions (121). This observation led 
to the hypothesis that the conversion of IgBF to the 
active form may play a role in preventing antibody 
production against allogeneic sperms in the female 
reproductive tract.

Our group has reported the binding of native 
PSP94 purified from seminal plasma to IgG in vitro 
(97). Further, the reduction of disulfide bonds of 
PSP94 affected the secondary and tertiary structure, 
but not the IgG binding ability; suggesting involvement 
of sequential epitopes of PSP94 in IgG binding (97). In 
continuance, real time SPR analysis were undertaken 
to understand the kinetics of PSP94 interaction with 
IgG subdomains and it was observed that the Fab 
domains, but not the Fc region interacted with the 
terminal beta-strands of PSP94 and that the disulfide 
linkages within PSP94 are not essential for this 
interaction (133).

11.3. Cysteine rich secretory protein (CRISP)

Extensive studies have shown CRISP-3 to 
be interacting with PSP94 in human seminal plasma 
(122–124). Unlike PSP94, CRISP-3 expression is 
upregulated during prostate tumorigenesis and both 
have been considered for diagnosis and prognosis of 
PCa (88). CRISP-3 belongs to CRISP family of proteins 
that are found in vertebrates, mainly expressed in the 
male reproductive tract in mammals, while homologs of 
CRISP-3 have been identified in many snake venoms 
(125,126). Porcine and human PSP94 which are 
evolutionarily diverse have also been shown to bind to 
snake venom CRISP (126). The interaction between 
the two families appears to be quite general and may 
have functional implications. Also, affinity of snake 
CRISP is less than that of human CRISP-3 for PSP94 
suggesting that PSP94-CRISP interaction affinities 
differ between species. CRISP-3 was first identified in 
human neutrophilic granulocytes as SGP28 (Specific 
Granule protein of 28 kDa). This protein is shown to be 
present in saliva, blood and seminal plasma (127,128). 
CRISP family of proteins consists of two domains 
connected by a short hinge region. The N-terminal 
large globular domain shares sequence similarity to 
the PR-1 (pathogenesis related proteins of group 1) 
domain in plants; suggesting a role in innate immunity 
(129,130). The amino terminal of PSPBP (residues 
6–170) shows sequence similarity with corresponding 
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part of CRISP-3 (residues 19–183) (112), suggestive of 
other proteins possessing SCP domain to be involved in 
binding with PSP94. On the other hand, several snake 
venom CRISPs show ion-channel regulatory activity 
which is associated with the C-terminal cysteine-
rich domain (CRD) known as ion-channel regulatory 
(ICR) domain (130,131). In silico models have also 
displayed the formation of PSP94 heterodimers with 
CRISP3 (106,132) and IgG (133). Recent studies 
from our lab have delineated the specific residues 
involved in PSP94-CRISP3 interaction, where CRISP3 
interacts with PSP94 through the same edge involved 
in PSP94 dimeric interface (123). Using site directed 
mutagenesis, the first alpha-helix of the N-terminal 
domain and the hinge region of the C-terminal CRISP 
domain of CRISP3 have been shown to interact with 
the terminal beta-sheets of PSP94.

The interaction of CRISP-3 and PSP94 was 
earlier hypothesized to inhibit the ICR domain activity 
(130). The NMR model and X-ray crystal structure 
proposed for PSP94-CRISP-3 interaction suggest 
involvement of one of the beta strands in the SCP 
domain of CRISP-3 with the terminal beta-strands of 
PSP94 (106, 132). Recent studies by our group have 
shown the hinge region along with first alpha-helix of 
CRISP-3 as the binding interface for terminal beta-
strands of PSP94 (123). Thus, the involvement of 
hinge region of CRISPs in interaction with PSP94 may 
affect the domain movement of CRISPs regulating 
the ion-channel regulatory activity. A high sequence 
similarity between the first alpha-helix of CRISPs as 
well as the structural similarity in the hinge region due 
to four conserved cysteine residues indicates that other 
CRISP family proteins might be interacting with PSP94 
through the same binding interface. In continuation, 
CRISP-2 was also shown to interact with PSP94 in 
vitro, wherein both proteins were overexpressed in 
PC3 cells (123). CRISP-2, previously referred to as 
testis-specific protein 1 (Tpx-1), is a non-glycosylated 
testis-enriched member that is produced during 
spermatogenesis (134). Interestingly, human CRISP-3 
and CRISP-2 share 71.4. percent sequence identity. 
In this direction, using affinity pull down, we identified 
CRISP-2 as one of the probable binding proteins from 
human sperm to bind to PSP94 (135). Further, we 
pursued the development of indigenous anti-peptide 
antibodies against the least conserved ICR region of 
the CRISP domain in an attempt to distinguish human 
CRISP-2 from CRISP-3. The presence of CRISP-2 on 
human sperm was validated using this anti-peptide 
antibody against peptide 219–231 of CRISP-2. 
CRISP-2 has not only been shown to have a role in 
sperm egg interaction (136), but mammalian CRISPs 
are reported to be involved in sperm maturation, 
gamete fusion and host defense as well (137). 
Therefore, there is a possibility that PSP94 may also 
have a role in sperm function through its interaction 
with CRISP-2.

11.4. Prostatic acid phosphatase (PAP)

Based on the findings so far, it could be 
inferred that PSP94 may exist either as a homodimer 
or heterodimer complexed with its interacting proteins 
in human semen. Also, the concentration of PSP94 
(600–900 mg/L) (21) is many fold higher than CRISP-3 
(3–30 mg/L) in seminal plasma (122), which led our 
group to identify other binding proteins of PSP94 that 
could help in delineating the mechanism of action of 
PSP94. During the isolation and purification of PSP94 
from human seminal plasma (97), it was observed 
that the fractions collected subsequent to PSP94-
containing fraction continued to show detectable levels 
of PSP94 when subjected to SDS-PAGE followed by 
western blotting. This suggested that PSP94 may be 
present in the bound form with other proteins in these 
fractions. Subsequently, one of the binding proteins 
was identified to be PAP and the interaction was 
predicted to be through the terminal beta sheets of 
PSP94. Further, this binding interface was revealed to 
be similar to that of other PSP94 binding partners as 
CRISP-3 and IgG (124).

Human PAP is one of the predominant 
proteins secreted by the epithelial cells of the 
prostate (21,138). PAP has been suggested to have 
a physiological role in fertility facilitating liquefaction 
of semen (139). The serum level of PAP is frequently 
elevated in patients with PCa and the protein is 
correlated with tumor progression (140). Previous 
reports indicate that native PAP exists as a dimer of 
two catalytically inactive subunits, non-covalently 
bound together to form an active enzyme (141,142). 
Further, PAP is known to inactivate lysophosphatidic 
acid (LPA) (143), a protein involved in cell proliferation 
and anti-apoptotic activities (144). Therefore, it could 
be hypothesized that the PSP94-PAP interaction may 
prevent dimerization of PAP (active enzyme) and may 
have a role in PCa progression.

12. PUTATIVE FUNCTIONS OF PSP94

12.1. Sperm motility inhibitor

Some of the early studies reported the in 
vitro agglutination of human spermatozoa using anti-
PSP94 antibodies (145). Further, PSP94 exhibited 
a dose-related suppression of ascorbate-induced 
lipid peroxidation in human spermatozoa and was 
hypothesized to be one of the factors involved in the 
regulation of lipid peroxidation and sperm motility 
(146). In early 1990’s, Jeng et al. purified a protein 
from porcine seminal plasma shown to inhibit sperm 
motility (24). This protein on further characterization 
was found to competitively block Na+/K+-ATPase 
channel and displayed sequence similarity to PSP94 
(25). Later studies showed PSP94 to be localized 
on the human spermatozoa surface, involved in the 
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inhibition of spontaneous acrosome reaction (147). 
PSP94 has also been shown to be released in the 
spent medium post capacitation from macaque and 
porcine sperm (22,26), but was still present in the 
sperm acidic extract in case of porcine sperm (22), 
suggesting intra-acrosomal localization, though this 
property appears to vary from species to species. On 
the basis of the suggested structure of porcine PSP94, 
its interaction with the sperm plasma membrane is 
likely due to the electrostatic interactions between 
PSP94 and integral proteins (103, 147). Thus, PSP94 
attached to the sperm surface in head/tail region might 
have a protective role or affect sperm motility.

12.2. Protection of sperm from female  
immune surveillance

Several anti-sperm antibodies have been 
identified against human alloantigens, causing 
agglutination of spermatozoa and/or inhibiting their 
functions (148). Many studies have demonstrated 
PSP94 as an IgG-binding protein having some 
apparent role in immunity (114,117,133). It was further 
reported that IgG forms a high affinity complex with the 
terminal beta-strands of PSP94 through its Fab domain 
(133). In the female reproductive tract, the acidic 
pH of the vagina may facilitate formation of PSP94 
monomers (106). This interaction of free PSP94 with 
IgG could circumvent the binding of IgG to the sperm. 
Thus, the presence of large quantities of PSP94 in 
seminal plasma could confer immune protection to the 
sperm in the female genital tract, thereby facilitating 
fertilization.

12.3. Fungicidal activity

In 2010, Edström Hägerwall et al. 
demonstrated the fungicidal property of PSP94 in 
post coital seminal plasma and proposed that PSP94 
may improve fertility (149). The activity was attributed 
to an 11 amino acid (residues 66 to 76) peptide 
located on the C-terminus of PSP94. The fungicidal 
activity was demonstrated against Candida albicans 
and other fungi only in the acidic environment of the 
human vagina. The presence of calcium ions was 
shown to inhibit this activity through interaction with 
glutamic acid (E) at position 71. This amino acid 
when substituted with glutamine (Q), maintained 
the fungicidal activity of PSP94, but the activity was 
no longer inhibited by the presence of calcium ions. 
Further experiments revealed that porcine and human 
PSP94 showed similar activity despite having only 51 
percent sequence identity, indicating that PSP94 could 
have an inherent fungicidal property.

12.4. Tumor suppression

PSP94 is secreted by the acinar epithelial 
cells of the prostate (150–152). In BPH, there is a 

simple micronodular hyperplasia, which evolves into a 
macroscopic nodular enlargement that gradually gains 
clinical proportions (153). However, the molecular 
mechanisms underlying development of BPH are still 
not clear (154). PSP94 being a major secretory protein 
of the prostatic epithelium (151),the elevated levels 
of sPSP94 in BPH can be attributed to progressive 
proliferation of the hyperplastic epithelial cells of the 
prostate (155). On the contrary, PCa develops through 
early and late precancerous histologic modifications 
(153). Differential levels of EZH2, which causes gene 
silencing, were shown to be causally related to the 
PSP94 transcript levels (93). The gene for PSP94, 
MSMB is highly expressed in normal and benign tissue 
and can inhibit MMP9 secretion, promoting CD44 
shedding, which leads to apoptosis (156,157). MSMB 
is epigenetically silenced by EZH2 in PCa (93). Thus, 
loss of MSMB during tumorigenesis leads to less 
apoptosis and as a result an increase in cell growth. 
The gradual silencing of the gene is evident from 
several other gene expression profiling and in-situ 
hybridization studies which have demonstrated that 
expression of the MSMB gradually decreases from 
primary PCa to highly invasive, androgen independent 
state (158). Dahlman et al. (2010), found high levels 
of EZH2 and low MSMB expression in metastatic 
lesions (88). On the contrary, in BPH, EZH2 is not 
overexpressed as shown by a recent study and the 
levels are statistically lower than those in PCa (159). 
This fact would aid in the maintenance of high sPSP94 
levels seen in BPH. Conceivably, PSP94 is suggested 
to function as a tumor suppressor protein which holds 
considerable diagnostic as well as prognostic potential.

This anti-tumor activity of this protein has 
been evaluated since many years. A study on the 
potential mechanism of action and effect of PSP94 
on the growth of androgen-independent human PCa 
cells (PC3)was undertaken by Garde et al. (160). They 
observed that PSP94 inhibited the growth of PC3 cells 
in a dose and time dependent manner and suggested 
that PSP94 may represent a novel, apoptosis-based, 
antitumor agent for treatment of hormone-refractory 
human PCa. It has been hypothesized that the 
suppression of PSP94 is necessary for the progression 
of PCa from a low-invasive to an androgen-refractory 
state (93). This could be explained by the ability of 
PSP94 to inhibit the growth of some cancer cells in 
xenografted thymic mice (160) and in vitro in cell lines 
such as LNCaP or WPE1-NB26 (161).

Several studies have demonstrated the 
clinical utility of the varied expression of PSP94 as 
a prognostic marker, wherein the levels of PSP94 
progressively decrease as PCa advances from a 
hormone dependent to independent state in metastatic 
PCa (162–164). PSP94 reduces PCa growth and 
experimental metastases to the skeleton in rat models 
(165). In addition, in animals receiving PSP94 treatment, 
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a significant dose-dependent decrease in primary 
tumor volume was observed along with a decrease 
in plasma calcium and parathyroid hormone-related 
protein (PTHrP) production (166). Plausibly, reduction 
of PSP94 transcript levels in prostatic intraepithelial 
neoplasia (PIN) is an early event and probably a causal 
factor in the development of PCa (48). A synthetic 
peptide corresponding to the N-terminus amino acids 
31 to 45 of PSP94 (named PCK3145), was also shown 
to have tumor suppression properties (166). Thus, it is 
proposed that the increased risk of PCa in individuals 
with low PSP94 levels may be due to their reduced 
capacity to inhibit the growth of cancer cells.

13. PSP94 AS A PROSTATE TUMOR MARKER

The PSP94 mRNA and protein expression 
was shown to be reduced in malignant prostatic 
epithelium compared to benign epithelium and healthy 
prostate tissue (15,48,150,164). Hence, PSP94 was 
proposed to be a useful biomarker for PCa diagnosis 
(167). Further, monitoring the expression of PSP94 in 
androgen-independent conditions was proven to be 
advantageous during androgen ablation therapy of 
PCa patients (163). At the tissue level, the distribution 
of PSP94 has been examined in needle biopsy samples 
of PCa patients to comprehend the utility of this protein 
as a prognostic indicator. Multivariate analysis of 
different parameters like age, clinical stage, histological 
grade, serum PAP, PSP94 immunoreactivity and type 
of initial treatment show that difference in the PSP94 
immunoreactivity was a significant and independent 
prognostic indicator of PCa (168). Similarly, along 
with tissue levels, PSP94 levels in the urine show 
significant decrease in malignant cases as compared 
to benign cases. Likewise, PSP94 was proposed as 
a biomarker of PCa risk, diagnosis and prognosis 
(158). PSP94 has also been proposed to be a strong 
independent tissue marker for decreased risk of PCa 
recurrence after radical prostatectomy (169).

Fusion transcripts of MSMB along with 
an adjacent PCa candidate gene, nuclear receptor 
coactivator 4, NCOA4 (ARA70), known to be 
androgen receptive in nature (170) were found to 
be downregulated in PCa. This transcript correlated 
with the MSMB expression though this was not 
associated with prognosis (89). The MSMB-NCOA4 
fusion transcript could pave the path for new markers 
and new therapeutic targets for PCa (170). Recent 
research focuses on developing multiarray models of 
screening markers for PCa. Many reports involving 
PSP94 as a complementing marker have yielded 
encouraging results. A quadriplex model of urine 
mRNA levels of PCA3 (prostate cancer antigen 3), 
AMACR (alpha-methylacyl-CoA racemase), TRPM8 
(transient receptor potential cation channel, subfamily 
M, member 8) and MSMB could be implemented as 
a sPSA or urine PCA3 adjunct test in patients having 

PSA levels in the diagnostic gray zone (171). Also, 
MALDI MS profiling of urine samples after digital 
rectal examination (DRE) of BPH and PCa patients, 
demonstrated that on combining PSP94 levels to PSA 
in a logistic regression model, PSP94 could improve 
the accuracy of the sPSA test (172).

14. DEVELOPMENT OF DIAGNOSTIC  
ASSAYS FOR PSP94

PSP94 has been evaluated as a possible 
tumor marker. A radioimmunoassay (RIA) was first 
developed by Vaze et al. for the detection of PSP94 
levels in seminal plasma and urine (173). Von der 
Krammer et al. determined the serum concentration 
of PSP94 in PCa patients, prior to any surgical 
intervention; however, no significant differences were 
observed when these serum levels were compared with 
those of control healthy men and BPH patients (174). 
Further, a simple and sensitive ELISA for measuring 
PSP94 in urine and seminal plasma was developed 
by Jose et al., in 1992 (175). They obtained a very 
high correlation between PSP94 values determined 
by ELISA and RIA for urine samples and a moderate 
correlation for semen samples. A two-site binding 
ELISA using two polyclonal antibodies against PSP94 
was developed by Anahí Franchi et al. (147). They 
showed that PSP94 showed a significant rise in levels 
in sub-fertile patients as compared to fertile controls. 
Nam et al. studied the PSP94 levels in a case-control 
study of 1,212 men with no previous history of PCa 
and who underwent a prostate biopsy because of 
an increased PSA or an abnormal DRE (167). The 
median PSP94 levels in cases was significantly lower 
(2.6.0 ng/ml) than among controls (3.4.0 ng/ml). Low 
sPSP94 levels were found to increase the probability 
of detecting PCa at biopsy. These total PSP94 levels 
were also able to identify patients with high grade 
disease among a subset of patients in whom PSA 
was least informative. Notably, PSP94 was found 
to be useful as a serological protein marker for PCa 
diagnosis and to distinguish patients with aggressive 
forms of PCa (167).

In one study, 185 patients with localized PCa 
were followed up for about 4 years for biochemical 
relapse; where total PSP94, free PSP94 and PSPBP 
were quantified in the serum using ELISA (112). 
Another immunoassay was developed by Valtonen-
André et al. to measure PSP94 in serum and seminal 
plasma (100). This specific, competitive, europium-
based immunoassay found a correlation between 
PSP94, PSA and Zn2+ present in the seminal plasma 
as well as between PSP94 found in the serum and 
seminal plasma of 205 healthy young men. Hence, 
even though PSP94 is not secreted solely by the 
prostate, PSP94 in serum can be used as a marker 
of prostate secretion. Further, this assay was used 
in another study to measure PSP94 levels in a 
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sample of 500 prostate cancer-free men from four 
racial/ethnic populations. They observed significant 
differences in PSP94 levels between populations, 
with PSP94 levels highest in African Americans 
and lowest in Japanese Americans (70). In another 
study by the same group, plasma levels of PSP94, 
as measured by the assay, were significantly lower in 
PCa subjects than in cancer-free control subjects in 
all racial and ethnic groups studied. Further, men with 
lower PSP94 levels were at greater risk of developing 
PCa (69).

Since sPSP94 is shown to have diagnostic 
and prognostic utility in PCa, it would have been worth 
investigating the potential of PSP94 in improving 
existing diagnosis of PCa. Towards this goal, 
sandwich ELISA was developed and validated in our 
laboratory to measure sPSP94 concentrations (50) 
using polyclonal antibodies raised in rabbit as well as 
rat. Similar to earlier studies, we observed that the 
sPSP94 concentrations were significantly lower in 
patients with PCa as compared to BPH, suggesting 
the differential expression of PSP94. Additionally, the 
PSP94 mRNA significantly correlated positively with 
the sPSP94 levels in BPH and PCa patients, and 
hence the sPSP94 levels are indicator of the prostatic 
expression of the protein (64).

15. UTILITY OF sPSP94 IN ASSOCIATION 
WITH sPSA FOR DIFFERENTIAL  
DIAGNOSIS OF PCa AND BPH

A recent nested case-control study, carried 
out in multiple populations, reported significantly 
high sPSA levels in patients with PCa as compared 
to healthy men (69). Further, the sPSA levels were 
also found to be highest in PCa than in healthy men 
(72) or BPH patients (176), irrespective of the racial 
diversity. The combined results of three separate 
recent Indian studies also show the sPSA levels to 
be highest in PCa, intermediate in BPH and lowest in 
healthy conditions (50,177,178). Since sPSP94 and 
sPSA are predominantly secreted by the prostate, 
their interrelationship in order to enhance the 
differential diagnosis between PCa and BPH was 
evaluated by our group (50). It was observed that, 
the sPSA increases, whereas sPSP94 decreases 
significantly in PCa patients, as compared to BPH 
patients. This inverse relationship was studied and 
the ratio of sPSP94/sPSA was analyzed. Remarkably, 
this ratio was statistically different among all the 
three study groups; highest in healthy, intermediate 
in benign and lowest in malignant and showed the 
least overlap as compared to the individual markers 
(Figure 4). Further, a more marked demarcation 
between benign and malignant cases was seen with 
the sPSP94/sPSA ratio as compared to sPSA or 
sPSP94 alone.

Figure 4. Scatterplots showing A, sPSP94 (ng/ml); B, sPSA (ng/ml); 
C, sPSP94/sPSA Ratio. One-way ANOVA test for analysis of variance 
with KruskalWallis correction for non-parametric test was carried 
out. P less than0.0.5 was considered statistically significant. Values 
significantly different between healthy, BPH or PCa groups are 
denoted by letters (a, b or c) accompanying brackets connecting 
the significantly different groups. Values are mean ± SEM with 95 
percent CI. CI= Confidence Interval. Reproduced with permission from 
Elsevier (50).



PSP94 in prostate pathophysiology

548 © 1996-2018

Additionally, both sPSP94 and sPSP94/
sPSA ratio had a significant predictive ability for 
BPH as well as PCa. The sPSP94/sPSA also had 
the highest AUC for discriminating BPH from PCa 
patients and offered the best net benefit for identifying 
PCa in patients opting for prostate biopsy. Further, 
the sPSP94/sPSA ratio showed maximum reduction 
in unnecessary biopsies on comparing with sPSA 
or sPSP94, across all biopsy-threshold probabilities 
above 10 percent. Interestingly, the ratio sPSP94/
sPSA at a cutoff value of less than 2.93 had an 
identical sensitivity (90.91 percent) to sPSA (cut-off 
greater than 4 ng/ml) but had increased specificity, 
and could decrease the false positivity by 13.63 
percent in our study cohort (50). Many groups have 
earlier studied the advantages of considering ratios 
of proteins present in the serum like the free/total 
PSA ratio (179), intact-free PSA/free PSA ratio 
(180), chromogranin A/PSA ratio (181) and bound/
free PSP94 (112) for bettering the existing diagnostic 
and prognostic tests for PCa. The clinical utility of 
the sPSP94/sPSA ratio needs to be validated further 
with more number of samples.

16. CONCLUSION

PSP94 has been postulated to be a rapidly 
evolving protein across species, which exists as a 
monomer and could form homo- or heterodimers. 
Interestingly, it is present in highest concentrations 
in the seminal plasma and binds with other proteins 
like PSPBP, IgG, CRISP-3, CRISP-2 and PAP 
in the serum and semen. This emphasizes that 
PSP94 is a regulatory protein. Though PSP94 is 
well characterized structurally, its exact function 
has not been unequivocally established. Postulated 
functions of PSP94 include immunoglobulin binding, 
sperm coating, apoptosis, tumor suppression and 
antifungal action (Figure 5). On the other hand, several 
researchers have demonstrated the clinical potential 
of PSP94 levels in various milieus. Essentially, PSP94 
is observed to be under tight control with the allele 
at -57 position driving the inherent protein levels in 
the prostate and also being the causal variant for 
PCa. Differential splicing to its isoform, MSMB2, 
ensures maintenance of optimal physiological levels 
of PSP94 in the prostate. Furthermore, PSP94 is 

Figure 5. Probable functions of PSP94 in various milieus and its clinico diagnostic potential.
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epigenetically silenced by EZH2 in PCa to curtail 
the tumor suppressing property of the protein. Thus, 
multi-level control of PSP94 protein levels seems to 
be instrumental in the pathophysiology of the prostate.
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