

Dynamic monitoring of monocyte HLA-DR expression for the diagnosis, prognosis, and prediction of sepsis

Yugang Zhuang¹, Hu Peng¹, Yuanzhuo Chen¹, Shuqin Zhou¹, Yanqing Chen¹

¹Emergency Department, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No 301, Mid Yangchang Road, Shanghai, China

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Definition of sepsis and HLA-DR
 - 3.1. Sepsis
 - 3.2. HLA-DR
4. HLA-DR and sepsis
 - 4.1. Predictive value of HLA-DR for sepsis
 - 4.2. Predictive values of HLA-DR for sepsis development and prognosis
 - 4.3. Clinical significance of dynamic HLA-DR monitoring
5. Mechanisms of HLA-DR induced immunosuppression and sepsis
 - 5.1. Mechanism responsible for reduced HLA-DR expression
 - 5.2. Monitoring changes in innate immunity
 - 5.3. Monitoring changes in adaptive immunity
6. Measurements of HLA-DR
 - 6.1. Flow cytometry
 - 6.2. Quantitative reverse transcription–polymerase chain reaction
7. Conclusions
8. Acknowledgements
9. References

1. ABSTRACT

Sepsis, an under-recognized health problem, is a major cause of death. More than 750,000 individuals develop sepsis annually, of whom 215,000 die of the disease. Clinical and experimental evidence indicates that patients with sepsis present with rapid impairment of immune function; biomarkers are therefore needed to enable early detection of this condition. Reduced monocyte human leukocyte antigen-DR (HLA-DR) expression, which is measured by flow cytometry, is currently the most popular biomarker for sepsis detection. In addition, the determination of HLA-DR expression provides valuable information in terms of predicting mortality and risk of secondary infections. HLA-DR levels have been shown to be inversely correlated with the severity of sepsis and immune dysfunction. In this review, we provide an overview of the association between sepsis and HLA-DR expression in terms of the predictive value of the latter in sepsis.

2. INTRODUCTION

Sepsis is among the ten leading causes of death in critically ill patients, and the third leading cause of death among patients in non-cardiac intensive care units (1, 2). More than 750,000 individuals develop sepsis annually, of whom 215,000 die of the disease (3). This high mortality rate has necessitated intensive research efforts aimed at elucidating the complex pathogenesis of sepsis, and applying the acquired knowledge to the development of immunomodulatory therapeutic interventions (4). Sepsis is considered largely an immunosuppressive disorder (5); in the absence of specific clinical symptoms, the diagnosis of immunosuppression currently depends on the assessment of paraclinical parameters. Although C-reactive protein (6), procalcitonin (7), angiopoietins (8), and other factors (9–11) have been used to predict sepsis, most of these lack specificity (12); it is therefore vital to develop reliable and effective biomarkers with higher specificity for the diagnosis of sepsis.

Volk *et al.* (13) were the first to describe immunoparalysis, which is indicated by human leukocyte antigen-DR (HLA-DR) expression on monocytes. HLA-DR has since proven useful for monitoring immunoparalysis, and is accepted as a reliable marker for evaluating immune function (14–17). Downregulation of HLA-DR has been associated with high mortality, and has shown predictive value for prognosis (18, 19) and risk of secondary infection in patients with sepsis (20, 21). Functional immunity, as assessed by HLA-DR expression, may reflect the net sum of pro- and/or anti-inflammatory influences, and therefore the actual immunological phenotype/phase of sepsis. Importantly, as functional immunity involves dynamic processes, HLA-DR expression should not be considered a static index (14, 22–24).

In this review, we discuss the physiological and clinical associations between HLA-DR expression and sepsis, and analyze the significance of HLA-DR as a biomarker for detecting sepsis.

3. SEPSIS AND THE IMMUNE RESPONSE: REDUCED EXPRESSION OF HLA-DR

Sepsis refers to the presence of a serious infection that correlates with systemic and uncontrolled immune activation (25, 26). This condition is characterized by a systemic inflammatory response syndrome (SIRS), which occurs due to injury and/or infectious stimuli, in the presence of a known (or strongly suspected) infection. Patients with sepsis that exhibit evidence of organ dysfunction, including cardiovascular, renal, hepatic, or neurological impairment, are classified as having severe sepsis, while patients with cardiovascular dysfunction unresponsive to fluid are considered to be suffering from septic shock.

Sepsis is a syndrome rather than a disease (27). It often, but not exclusively, occurs in patients with infections. Up to 40% of clinical cases of sepsis occur as a result of sterile tissue injury arising from noninfectious sources such as pancreatitis, ischemia reperfusion injury, cancer, or numerous other disorders. The combination of variables that determines whether a patient with sepsis survives or succumbs is currently poorly understood (28); numerous patients who survive the initial critical phase of septic shock subsequently die as a result of secondary infections caused by pathogens that are normally only harmful in immunocompromised hosts (29, 30). A post-mortem study showed that patients who died in the intensive care unit following sepsis had biochemical, flow cytometric (FCM), and immunohistochemical findings consistent with immunosuppression (31).

The host immune response to sepsis is thought to be characterized by two sequential periods. An initial hyperinflammatory response that results in SIRS, referred to as a “cytokine storm”, is thought to be responsible for the high mortality and multiple organ dysfunction seen in septic syndromes (5, 32). The innate immune system releases proinflammatory cytokines and activates the complement and coagulation cascades to combat infection, whilst also recruiting members of the adaptive system to mount an intense immune response. This initial response is thought to be followed by a compensatory anti-inflammatory response syndrome (CARS), which is defined as a systemic deactivation of the immune system in order to restore homeostasis from an inflammatory state (33). Anti-inflammatory mediators may be released during this second period in an attempt to counteract continual inflammation. However, this process may be dysregulated, leading to persistent immune suppression and an increased risk of recurrent infections (34, 35). Recent data suggest that both the pro- and anti-inflammatory periods of the host immune response to severe injury and/or sepsis often occur concurrently (34).

HLA-DR, which is an HLA class II antigen, is a glycosylated cell-surface transmembrane protein that is expressed on antigen-presenting cells. HLA-DR is additionally constitutively expressed on monocytes such as macrophages, dendritic cells (DCs), and B cells. The expression of HLA-DR on monocytes (mHLA-DR) is essential for the presentation of peptides derived from ingested microbes to CD4- or CD8-positive T cells, thus initiating a specific immune response aimed at eliminating potential pathogens (16, 36). HLA-DR molecules, which are also required to activate helper T lymphocytes, play a central role in the specific immune response to infection.

Extensive research has demonstrated that reduced expression of HLA-DR occurs in patients with sepsis. The loss of mHLA-DR expression is an early event in sepsis, and the persistence of this alteration is associated with severity score, nosocomial infection, and death (37). The downregulation of mHLA-DR surface expression, measured by flow cytometry, has been postulated as a general biomarker of sepsis-induced immunosuppression, and as an independent predictor of nosocomial infection (20). The measurement of mHLA-DR expression has also been successfully applied to monitor the effectiveness of immunomodulatory therapies, including medications such as interferon-gamma (IFN- γ) (38), granulocyte/macrophage colony-stimulating factor (GM-CSF) (39), thymosin alpha 1 (40), and filgrastim (41), as well as extracorporeal immune interventions such as immunoabsorption treatment and continuous hemodiafiltration (42, 43).

4. HLA-DR AS A BIOMARKER FOR SEPSIS

4.1. Evaluation of monocytic HLA-DR expression as a diagnostic and predictive biomarker for sepsis

The pioneering work of Polk and colleagues (44) in 1986 revealed an association between the occurrence of sepsis and low mHLA-DR expression. mHLA-DR expression was subsequently determined to be an effective prognostic marker in sepsis. Both the number of monocytes expressing HLA-DR and the density of HLA-DR expression have been shown to have prognostic value, and previous studies have reported on the accurate predictive use of low HLA-DR expression to identify patients most likely to die of sepsis (45). Cheron *et al.* (46) showed that mHLA-DR expression was decreased at day 1–2 post-trauma in all patients evaluated, with no difference in relation to the development of sepsis. However, a highly significant difference between septic and non-septic patients was observed at days 3–4, with non-septic patients showing increased mHLA-DR levels, whereas septic patients did not. Importantly, multivariate logistic regression analysis, after adjustment for usual clinical confounders, revealed that a slope of mHLA-DR expression, between days 1–2 and days 3–4, of < 1.2 was associated with the development of sepsis. These authors therefore concluded that monitoring immune function by measuring mHLA-DR should enable the identification of trauma patients at high risk of infection, with the slope of mHLA-DR recovery providing a significant predictor of subsequent sepsis. These studies support the notion that the recovery of normal mHLA-DR expression represents a critical point after injury.

Gouel-Cheron *et al.* (47) assessed mHLA-DR expression and IL-6 levels in 100 severely injured patients, and found that IL-6 levels and the slope of mHLA-DR expression between days 1–2 and days 3–4 differed significantly between septic and non-septic patients. Pradhan and colleagues (48) estimated a derived parameter, the “sepsis index” (SI), where $SI = \text{neutrophilic CD64 (nCD64)}/\text{mHLA-DR} \times 100$ for the diagnosis and prognostication of neonatal sepsis. They found that the measurement of nCD64 levels at day 1 were useful for diagnosing neonatal sepsis, whereas measurement of mHLA-DR expression was beneficial for monitoring patients at later time points. The SI, which is a marker of moderate diagnostic sensitivity, supplements the current range of laboratory investigations used to detect neonatal sepsis. As a marker of prognosis, a high SI is associated with greater risk of mortality.

Overall, these studies demonstrate the predictive value of HLA-DR for sepsis, and suggest that the combination of an early marker of inflammation

with mHLA-DR kinetics may provide a better biomarker of sepsis than the use of a single marker.

4.2. Value of monocyte HLA-DR expression as a biomarker for the development and prognosis of sepsis

Decreased mHLA-DR expression is now considered to represent a reliable marker of the development of immunosuppression and/or septic complications after trauma, surgery, pancreatitis, burns, and septic shock in critically ill patients (32, 49, 50). HLA-DR expression may be assessed in clinical practice using standardized tests (51, 52). Importantly, low levels of mHLA-DR have been observed in patients who subsequently developed nosocomial infections (20, 21, 46, 53). In contrast, mHLA-DR levels rapidly returned to normal (generally in < 1 week) in injured patients with uneventful recovery. Reduced mHLA-DR has thus been shown to predict adverse outcomes in various groups of critically ill patients (53). Patients with mHLA-DR expression of < 30% compared with the normal level exhibited a lower survival rate and 30-fold increased risk of mortality (18, 54).

However, not all studies have consistently identified low mHLA-DR as a significant indicator of poor prognosis; it is possible that low mHLA-DR expression may be associated with the CARS phase of sepsis rather than with a poor prognosis as such (55). Perry *et al.* (16) found that low monocyte surface expression and median fluorescence density of HLA-DR expression were not associated with high mortality and high Acute Physiology and Chronic Health Evaluation II (APACHE II) scores. Therefore, these authors consider the value of HLA-DR expression as a useful prognostic marker of outcome in sepsis controversial. The presence of low proportions of monocytes expressing HLA-DR may be indicative of CARS with an associated increased susceptibility to infection (56), rather than a direct indicator of outcome.

These apparently contradictory results highlight the need for a more representative index or system reflecting the connection between immune status of patients with sepsis and outcome of the disease.

4.3. Clinical significance of dynamic HLA-DR monitoring

Immune function changes dynamically during the clinical course of sepsis, suggesting that changes in HLA-DR expression exhibit similar trends. The apparent inconsistent findings with regard to the relationship between reduced HLA-DR expression and mortality in sepsis may be partially explained by the fact that immune function changes during the clinical course of severe sepsis.

Wu *et al.* (14) showed that single measurements of mHLA-DR within the first week after patient admission had no predictive value regarding mortality. In contrast, results expressed as dynamic parameters (i.e., differences between two time points) provided excellent predictive values, especially the difference in mHLA-DR expression between days 0 and 3 or days 0 and 7. Importantly, multivariate analysis showed that these two parameters remained the sole independent predictors of mortality, with a significantly elevated odds ratio. The authors proposed that the dynamic changes in mHLA-DR over time serve as a better predictor of mortality than a single value at any given time point. Gouel-Cheron *et al.* (47) also underlined the utility of daily monitoring of immune function to identify trauma patients at high risk of infection. These results underscore the importance of dynamically monitoring immune function in patients at high risk of sepsis in order to identify those most likely to develop sepsis, assess their severity, and evaluate their prognosis.

5. MECHANISMS OF HLA-DR-INDUCED IMMUNOSUPPRESSION AND SEPSIS

5.1. Mechanisms underlying reduced HLA-DR expression

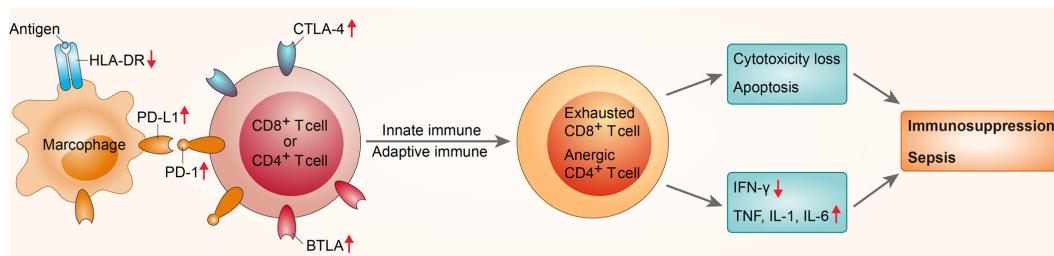
Although numerous researchers have shown that low monocyte surface expression of HLA-DR is a characteristic of sepsis, the mechanisms underlying this phenomenon remain unclear. Possible mechanisms include downregulation of gene transcription resulting in reduced mRNA production, or post-translational modification of HLA-DR, which may affect translocation to the cell surface (57). Alternatively, HLA-DR may be released from the monocyte surface and shed into the circulation in a soluble form (sHLA-DR): increased levels of sHLA-DR have been detected in the plasma and synovial fluid in hyperinflammatory states (58), and *in vitro* experiments have demonstrated that the inflammatory cytokine IFN- γ induces shedding of HLA-DR by human monocytes (59).

The regulation of HLA-DR at the level of gene transcription has been investigated in patients with sepsis. The regulation of HLA-DR is correlated with high cortisol levels, which are thought to downregulate HLA-DR gene transcription by lowering the levels of MHC class II transactivator A (37). In addition, IFN- γ has been shown to regulate HLA-DR gene transcription in melanoma cell lines (60). Re-endocytosis and intracellular sequestration of MHC class II molecules has also been analyzed in relation to decreased HLA-DR surface expression (61). Furthermore, granulocyte macrophage colony-stimulating factor (GM-CSF) has been shown to increase shedding of HLA-DR from the cell surface and increase HLA-DR gene transcription in patients with sepsis (57).

Precise details of the mechanism underlying the downregulation of HLA-DR in sepsis thus remain unclear, and further studies are needed to elucidate this relationship.

5.2. Monitoring changes in innate immunity

Sepsis is accompanied by disorders of both the innate and adaptive immune systems. Changes, such as apoptosis of CD4-lymphocytes and B lymphocytes and immunoparalysis of monocytes, are recognized features in patients with sepsis (62–65).


Innate immune cells represent the first line of defense following infection, and thus play a central role in the control of pathogens and initiation of adaptive immune responses. DCs play a critical role in the initiation and modulation of T-cell responses, and exhibit altered phenotypes and functions in sepsis such as decreased expression of HLA-DR and reduced secretion of pro-inflammatory cytokines upon stimulation by bacterial products (66, 67).

The reduced expression of HLA-DR on circulating monocytes has been proposed as a surrogate marker of failure of the innate immune response (68). Endotoxin tolerance in monocytes and macrophages increases the release of immunosuppressive mediators, mainly IL-10, and decreases antigen presentation through decreased HLA-DR expression. Both of these factors are associated with poorer outcomes in patients with sepsis (69, 70). Continued release of IL-10 may contribute to, or amplify, sepsis-induced immunosuppression, thereby increasing susceptibility to secondary microbial infections. Several studies have demonstrated an association between low mHLA-DR expression and impaired monocyte function, e.g. in terms of reduced secretion of tumor necrosis factor (TNF) and IL-1 β in response to bacterial challenge (71) and decreased lymphocyte proliferation in response to tetanus toxin, presumably as a result of impaired antigen presentation (72).

Therapeutic protocols including the administration of GM-CSF and IFN- γ have been utilized in patients with sepsis, with the aim of stimulating innate immune function, improving myelopoiesis, and limiting lymphocyte apoptosis (73). It has been shown that, along with the recovery of mHLA-DR expression, TNF- α release in stimulated whole blood is restored in response to immunotherapy (74).

5.3. Monitoring changes in adaptive immunity

Since the discovery of the association between loss of delayed-type hypersensitivity response in surgical patients and increased risk of nosocomial infections, T lymphocyte anergy has been shown to represent a hallmark of sepsis-induced

Figure 1. Schematic of immunosuppression in sepsis. Immunosuppression of sepsis is mediated by multiple mechanisms including decreased expression of the cell surface antigen presenting complex HLA-DR, and increased expression of the negative co-stimulatory molecules programmed death 1 (PD-1), cytotoxic T-lymphocyte antigen 4 (CTLA-4), B and T lymphocyte attenuator (BTLA), and their corresponding ligands, such as PD-L1, resulting a compromised innate and adaptive immune system with poorly functional "exhausted" CD8- and anergic CD4-positive T cells, and inducing T cell apoptosis and cytotoxicity loss, decreasing IFN- γ production, and increased pro-inflammatory cytokine (e.g., TNF, IL-1, IL-6) release.

immunodysfunction (75, 76). In particular, markedly decreased cell numbers associated with increased apoptosis are consistently found in patients (77, 78). In addition, functional alterations, such as reduced proliferation as well as decreased pro-inflammatory (IL-2, IL-17, IFN- γ) and increased anti-inflammatory (IL-10) cytokine production, have been observed (31, 79, 80). Phenotypic alterations, such as reduced expression of co-activating receptor CD28 and increased expression of co-inhibitory receptor PD-1 or CTLA4, or reduced diversity of the T-cell receptor repertoire, also represent characteristics of T lymphocytes in sepsis (81-83). Further, an increased percentage of circulating CD4+CD25+ regulatory T cells has been observed in patients with sepsis (84) (Figure 1). However, with the exception of mHLA-DR measurement, no consensus on markers of sepsis-induced lymphocyte alterations has emerged to date. The best currently available test for assessing lymphocyte functionality remains the measurement of proliferation in response to recall antigens or mitogen stimulation (73). Major efforts are therefore needed to develop robust biological tests of lymphocyte function that correlate with objective outcomes of survival in sepsis.

6. MEASUREMENTS OF HLA-DR EXPRESSION

6.1. Flow cytometry

Monocytes strongly express HLA-DR on their surface, thereby enabling facile detection by FCM. HLA-DR expression on monocytes may be measured either as the percentage of cells positive for this marker, or as the mean fluorescence intensity of the marker among all monocytes (85). FCM is of potential utility at each step of management of patients with sepsis, from the diagnosis of infection to the design of targeted individualized therapy and optimization of drug efficacy.

However, FCM has important practical limitations, including variability of results arising from differences in specimen handling, the need for immediate analysis of blood samples without storage,

and the consequent exclusion of samples from health-care units without FCM facilities (86). These limitations of traditional mHLA-DR monitoring techniques clearly hamper their clinical utility, reducing the feasibility of large multi-center studies.

6.2. Quantitative reverse transcription–polymerase chain reaction

The application of quantitative reverse transcription–polymerase chain reaction (qRT–PCR) to measure HLA-DR expression has been suggested as a novel alternative to FCM for identifying immunosuppression in sepsis (86). Patients with sepsis demonstrate reduced surface expression of mHLA-DR as well as reduced mRNA levels. The mRNA levels of HLA-DRA, which encodes the non-polymorphic region of the α -chain of the HLA-DR molecule, in whole blood were shown to correlate highly with surface expression of HLA-DR when monitored by qRT–PCR. This finding indicates that HLA-DRA expression may serve as a useful biomarker for evaluating immunosuppression in sepsis.

However, the evaluation of HLA-DR by qRT–PCR may combine the levels from monocytes, DCs, B lymphocytes, and activated T cells, whereas FCM enables specific measurement of levels from monocytes. qRT–PCR is therefore not yet a suitable replacement for FCM as a means of detecting HLA-DR expression. Further improvements in qRT–PCR technology should be monitored and applied for the development of standardized and automated protocols for the assessment of HLA-DR expression.

7. CONCLUSIONS

Sepsis remains an under-recognized health-care problem and a leading cause of death. There is an urgent need to identify and develop indicators to predict the occurrence, outcome, and prognosis of sepsis. The detection of monocyte expression of HLA-DR by FCM may serve as a good prognostic indicator in most patients with sepsis, and has already been

applied in critically ill patients. Furthermore, dynamic monitoring of HLA-DR, which is representative of changes in immune function, may provide a more accurate predictive tool than static monitoring. Owing to the complex pathophysiology of sepsis, success on the diagnosis of sepsis will be better attained by not just looking at one particular biomarker but more likely a combination of several biomarkers. The combination may help overcome the limitations of sensitivity and specificity that single biomarker readouts have routinely shown.

8. ACKNOWLEDGEMENTS

Yugang Zhuang and Hu Peng are joint first authors and contributed equally to this work. This work was supported by the Natural Science Foundation of China No: 81270133.

9. REFERENCES

1. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. *N Engl J Med* 348(16), 1546-1554 (2003)
DOI: 10.1056/NEJMoa022139
2. Parrillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, Cunnion RE. Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. *Ann Intern Med* 113(3), 227-242 (1990)
DOI: 10.7326/0003-4819-113-3-227
3. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. *Crit Care Med* 29(7), 1303-1310 (2001)
DOI: 10.1097/00003246-200107000-00002
4. Wenzel RP. Treating sepsis. *N Engl J Med* 347(13), 966-967 (2002)
DOI: 10.1056/NEJMp020096
5. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. *N Engl J Med* 348(2), 138-150 (2003)
DOI: 10.1056/NEJMra021333
6. Povoa P. C-reactive protein: a valuable marker of sepsis. *Intensive Care Med* 28(3), 235-243 (2002)
DOI: 10.1007/s00134-002-1209-6
7. Sridharan P, Chamberlain RS. The efficacy of procalcitonin as a biomarker in the management of sepsis: slaying dragons or tilting at windmills? *Surg Infect (Larchmt)* 14(6), 489-511 (2013)
DOI: 10.1089/sur.2012.028
8. Ricciuto DR, dos Santos CC, Hawkes M, Tolli LJ, Conroy AL, Rajwans N. Angiopoietin-1 and angiopoietin-2 as clinically informative prognostic biomarkers of morbidity and mortality in severe sepsis. *Crit Care Med* 39(4), 702-710 (2011)
DOI: 10.1097/CCM.0b013e318206d285
9. Mihajlovic DM, Lendak DF, Brkic SV, Draskovic BG, Mitic GP, Novakovic Mikic AS. Endocan is useful biomarker of survival and severity in sepsis. *Microvasc Res* 93, 92-97 (2014)
DOI: 10.1016/j.mvr.2014.04.004
10. Farias MG, de Lucena NP, Dal Bo S, de Castro SM. Neutrophil CD64 expression as an important diagnostic marker of infection and sepsis in hospital patients. *J Immunol Methods* 414, 65-68 (2014)
DOI: 10.1016/j.jim.2014.07.011
11. Adly AA, Ismail EA, Andrawes NG, El-Saadany MA. Circulating soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) as diagnostic and prognostic marker in neonatal sepsis. *Cytokine* 65(2), 184-91 (2014)
DOI: 10.1016/j.cyto.2013.11.004
12. Biron BM, Ayala A, Lomas-Neira JL. Biomarkers for Sepsis: What Is and What Might Be? *Biomark Insights* 10(Suppl 4), 7-17 (2015)
13. Volk HD, Thieme M, Heym S, Docke WD, Ruppe U, Tausch W. Alterations in function and phenotype of monocytes from patients with septic disease--predictive value and new therapeutic strategies. *Behring Inst-Mitt*(88)208-215 (1991)
14. Wu JF, Ma J, Chen J, Ou-Yang B, Chen MY, Li LF. Changes of monocyte human leukocyte antigen-DR expression as a reliable predictor of mortality in severe sepsis. *Crit Care* 15(5), R220 (2011)
DOI: 10.1186/cc10457
15. Lekkou A, Karakantza M, Mouzaki A, Kalfarentzos F, Gogos CA. Cytokine production and monocyte HLA-DR expression as predictors of outcome for patients with community-acquired severe infections. *Clin Diagn Lab Immunol* 11(1), 161-167 (2004)
DOI: 10.1128/cdli.11.1.161-167.2004

16. Perry SE, Mostafa SM, Wenstone R, Shenkin A, McLaughlin PJ. Is low monocyte HLA-DR expression helpful to predict outcome in severe sepsis? *Intensive Care Med* 29(8), 1245-1252 (2003)
DOI: 10.1007/s00134-003-1686-2

17. Gogos C, Kotsaki A, Pelekanou A, Giannikopoulos G, Vaki I, Maravitsa P. Early alterations of the innate and adaptive immune statuses in sepsis according to the type of underlying infection. *Crit Care* 14(3), R96 (2010)
DOI: 10.1186/cc9031

18. Genel F, Atlihan F, Ozsu E, Ozbek E. Monocyte HLA-DR expression as predictor of poor outcome in neonates with late onset neonatal sepsis. *J Infect* 60(3), 224-248 (2010)
DOI: 10.1016/j.jinf.2009.12.004

19. Flohé S, Scholz M. HLA-DR monitoring in the intensive care unit--more than a tool for the scientist in the laboratory? *Crit Care Med* 37(10), 2849-2850 (2009)
DOI: 10.1097/CCM.0b013e3181ad7ac9

20. Landelle C, Lepape A, Voirin N, Tognet E, Venet F, Bohe J. Low monocyte human leukocyte antigen-DR is independently associated with nosocomial infections after septic shock. *Intensive Care Med* 36(11), 1859-1866 (2010)
DOI: 10.1007/s00134-010-1962-x

21. Lukaszewicz AC, Grienay M, Resche-Rigon M, Pirracchio R, Faivre V, Boval B. Monocytic HLA-DR expression in intensive care patients: interest for prognosis and secondary infection prediction. *Crit Care Med* 37(10), 2746-2752 (2009)
DOI: 10.1097/CCM.0b013e3181ab858a

22. Gouel-Cheron A, Allaouchiche B, Floccard B, Rimmele T, Monneret G. Early daily mHLA-DR monitoring predicts forthcoming sepsis in severe trauma patients. *Intensive Care Med* 41(12), 2229-2230 (2015)
DOI: 10.1007/s00134-015-4045-1

23. Monneret G, Lepape A, Venet F. A dynamic view of mHLA-DR expression in management of severe septic patients. *Crit Care* 15(5), 198 (2011)
DOI: 10.1186/cc10452

24. Schefold JC. Measurement of monocytic HLA-DR (mHLA-DR) expression in patients with severe sepsis and septic shock: assessment of immune organ failure. *Intensive Care Med* 36(11), 1810-1812 (2010)
DOI: 10.1007/s00134-010-1965-7

25. Angus DC, van der Poll T. Severe sepsis and septic shock. *N Engl J Med* 369(9), 840-851 (2013)
DOI: 10.1056/NEJMra1208623

26. Haveman JW, Muller Kobold AC, Tervaert JW, van den Berg AP, Tulleken JE, Kallenberg CG. The central role of monocytes in the pathogenesis of sepsis: consequences for immunomonitoring and treatment. *Neth J Med* 55(3), 132-141 (1999)
DOI: 10.1016/S0300-2977(98)00156-9

27. Vincent JL, Opal SM, Marshall JC, Tracey KJ. Sepsis definitions: time for change. *Lancet* 381(9868), 774-775 (2013)
DOI: 10.1016/S0140-6736(12)61815-7

28. Deutschman CS, Tracey KJ. Sepsis: current dogma and new perspectives. *Immunity* 40(4), 463-475 (2014)
DOI: 10.1016/j.immuni.2014.04.001

29. Otto GP, Sossdorff M, Claus RA, Rodel J, Menge K, Reinhart K. The late phase of sepsis is characterized by an increased microbiological burden and death rate. *Crit Care* 15(4), R183 (2011)
DOI: 10.1186/cc10332

30. Kalil AC, Florescu DF. Prevalence and mortality associated with cytomegalovirus infection in nonimmunosuppressed patients in the intensive care unit. *Crit Care Med* 37(8), 2350-2358 (2009)
DOI: 10.1097/CCM.0b013e3181a3aa43

31. Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH. Immunosuppression in patients who die of sepsis and multiple organ failure. *Jama* 306(23), 2594-2605 (2011)
DOI: 10.1001/jama.2011.1829

32. Monneret G, Venet F, Pachot A, Lepape A. Monitoring immune dysfunctions in the septic patient: a new skin for the old ceremony. *Mol Med* 14(1-2), 64-78 (2008)
DOI: 10.2119/2007-00102.Monneret

33. Ward NS, Casserly B, Ayala A. The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. *Clin Chest Med* 29(4), 617-625, viii (2008)

34. Hotchkiss RS, Monnere G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. *Nat Rev Immunol* 13(12), 862-874 (2013)
DOI: 10.1038/nri3552

35. Hotchkiss RS, Opal S. Immunotherapy for sepsis--a new approach against an ancient foe. *N Engl J Med* 363(1), 87-89 (2010)
DOI: 10.1056/NEJMcibr1004371

36. Cheadle WG. The human leukocyte antigens and their relationship to infection. *Am J Surg* 165(2A Suppl), 75s-81s (1993)

37. Le Tulzo Y, Pangault C, Amiot L, Guilloux V, Tribut O, Arvieux C. Monocyte human leukocyte antigen-DR transcriptional downregulation by cortisol during septic shock. *Am J Respir Crit Care Med* 169(10), 1144-1151 (2004)
DOI: 10.1164/rccm.200309-1329OC

38. Docke WD, Rando F, Syrbe U, Krausch D, Asadullah K, Reinke P. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. *Nat Med* 3(6), 678-681 (1997)
DOI: 10.1038/nm0697-678

39. Meisel C, Schefold JC, Pschowski R, Baumann T, Hetzger K, Gregor J. Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial. *Am J Respir Crit Care Med* 180(7), 640-648 (2009)
DOI: 10.1164/rccm.200903-0363OC

40. Lin HY. (Clinical trial with a new immunomodulatory strategy: treatment of severe sepsis with Ulinastatin and Maipuxin). *Zhonghua Yi Xue Za Zhi* 87(7), 451-457 (2007)

41. Schneider C, von Aulock S, Zedler S, Schinkel C, Hartung T, Faist E. Perioperative recombinant human granulocyte colony-stimulating factor (Filgrastim) treatment prevents immunoinflammatory dysfunction associated with major surgery. *Ann Surg* 239(1), 75-81 (2004)
DOI: 10.1097/01.sla.0000103062.21049.82

42. Schefold JC, von Haehling S, Corsepius M, Pohle C, Kruschke P, Zuckermann H. A novel selective extracorporeal intervention in sepsis: immunoabsorption of endotoxin, interleukin 6, and complement-activating product 5a. *Shock* 28(4), 418-425 (2007)
DOI: 10.1097/shk.0b013e31804f5921

43. Hirasawa H, Oda S, Matsuda K. Continuous hemodiafiltration with cytokine-adsorbing hemofilter in the treatment of severe sepsis and septic shock. *Contrib Nephrol* 156, 365-370 (2007)
DOI: 10.1159/000102127

44. Polk HC Jr, George CD, Wellhausen SR, Cost K, Davidson PR, Regan MP. A systematic study of host defense processes in badly injured patients. *Ann Surg* 204(3), 282-299 (1986)

45. Muller Kobold AC, Tulleken JE, Zijlstra JG, Sluiter W, Hermans J, Kallenberg CG. Leukocyte activation in sepsis; correlations with disease state and mortality. *Intensive Care Med* 26(7), 883-892 (2000)
DOI: 10.1007/s001340051277

46. Cheron A, Floccard B, Allaouchiche B, Guignant C, Poitevin F, Marcus C. Lack of recovery in monocyte human leukocyte antigen-DR expression is independently associated with the development of sepsis after major trauma. *Crit Care* 14(6), R208 (2010)
DOI: 10.1186/cc9331

47. Gouel-Cheron A, Allaouchiche B, Guignant C, Davin F, Floccard B, Monneret G. Early interleukin-6 and slope of monocyte human leukocyte antigen-DR: a powerful association to predict the development of sepsis after major trauma. *PLoS One* 7(3), e33095 (2012)
DOI: 10.1371/journal.pone.0033095

48. Pradhan R, Jain P, Paria A, Saha A, Sahoo J, Sen A. Ratio of neutrophilic CD64 and monocytic HLA-DR: A novel parameter in diagnosis and prognostication of neonatal sepsis. *Cytometry B Clin Cytom* (2015)
DOI: 10.1002/cyto.b.21244

49. Monneret G, Lepape A, Voirin N, Bohe J, Venet F, Debard AL. Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock. *Intensive Care Med* 32(8), 1175-1183 (2006)
DOI: 10.1007/s00134-006-0204-8

50. Caille V, Chiche JD, Nciri N, Berton C, Gibot S, Boval B. Histocompatibility leukocyte antigen-D related expression is specifically altered and predicts mortality in septic shock

but not in other causes of shock. *Shock* 22(6), 521-526 (2004)
DOI: 10.1097/01.shk.0000143410.63698.57

51. Demaret J,Walencik A, Jacob MC,Timsit JF,Venet F,Lepape A. Inter-laboratory assessment of flow cytometric monocyte HLA-DR expression in clinical samples. *Cytometry B ClinCytom* 84(1), 59-62 (2013)
DOI: 10.1002/cyto.b.21043

52. Docke WD,Hoflich C, Davis KA,Rottgers K, Meisel C,Kiefer P. Monitoring temporary immunodepression by flow cytometric measurement of monocytic HLA-DR expression: a multicenter standardized study. *ClinChem* 51(12), 2341-2347 (2005)
DOI: 10.1373/clinchem.2005.052639

53. Venet F,Tissot S, Debard AL,Faudot C,Crampe C,Pachot A. Decreased monocyte human leukocyte antigen-DR expression after severe burn injury: Correlation with severity and secondary septic shock. *Crit Care Med* 35(8), 1910-1917 (2007)
DOI: 10.1097/01.CCM.0000275271.77350.B6

54. Volk HD,Reinke P, Krausch D,Zuckermann H,Asadullah K, Muller JM. Monocyte deactivation--rationale for a new therapeutic strategy in sepsis. *Intensive Care Med* 22 Suppl 4, S474-481 (1996)
DOI: 10.1007/BF01743727

55. Lechner AJ,Lamprecht KE,Potthoff LH,Tredway TL, Matuschak GM. Recombinant GM-CSF reduces lung injury and mortality during neutropenic Candida sepsis. *Am J Physiol* 266(5 Pt 1), L561-568 (1994)

56. Cheadle WG,Hershman MJ,Wellhausen SR, Polk HC Jr.: HLA-DR antigen expression on peripheral blood monocytes correlates with surgical infection. *Am J Surg* 161(6), 639-645 (1991)
DOI: 10.1016/0002-9610(91)91247-G

57. Perry SE,Mostafa SM,Wenstone R, Shenkin A, McLaughlin PJ.HLA-DR regulation and the influence of GM-CSF on transcription, surface expression and shedding. *Int J Med Sci* 1(3), 126-136 (2004)
DOI: 10.7150/ijms.1.126

58. Claus R,Bittorf T,Walzel H,Brock J,Uhde R,Meiske D. High concentration of soluble HLA-DR in the synovial fluid: generation and significance in "rheumatoid-like" inflammatory joint diseases. *Cell Immunol* 206(2), 85-100 (2000)
DOI: 10.1006/cimm.2000.1729

59. Gershon HE,Kuang YD, Scala G,Oppenheim JJ. Effects of recombinant interferon-gamma on HLA-DR antigen shedding by human peripheral blood adherent mononuclear cells. *J LeukocBiol* 38(2), 279-291 (1985)

60. Rosa F,Hatat D,Abadie A,Wallach D,Revel M, Fellous M. Differential regulation of HLA-DR mRNAs and cell surface antigens by interferon. *Embo J* 2(9), 1585-1589 (1983)

61. Fumeaux T, Pugin J. Role of interleukin-10 in the intracellular sequestration of human leukocyte antigen-DR in monocytes during septic shock. *Am J RespirCrit Care Med* 166(11), 1475-1482 (2002)
DOI: 10.1164/rccm.200203-217OC

62. Unsinger J,Herndon JM,Davis CG,Muenzer JT,Hotchkiss RS, Ferguson TA.The role of TCR engagement and activation-induced cell death in sepsis-induced T cell apoptosis. *J Immunol* 177(11), 7968-7973 (2006)
DOI: 10.4049/jimmunol.177.11.7968

63. Pinheiro-da-Silva F, Chiamolera M,Charles N, Kanamaru Y,Velasco IT, Benhamou M. B lymphocytes undergo apoptosis because of Fc γ RIIb stress response to infection: a novel mechanism of cell death in sepsis. *Shock* 25(1), 61-65 (2006)
DOI: 10.1097/01.shk.0000196496.72553.78

64. Hotchkiss RS,Osmon SB,Chang KC,Wagner TH, Coopersmith CM, Karl IE. Accelerated lymphocyte death in sepsis occurs by both the death receptor and mitochondrial pathways. *J Immunol* 174(8), 5110-5118 (2005)
DOI: 10.4049/jimmunol.174.8.5110

65. Tschoeke SK, Moldawer LL. Human leukocyte antigen expression in sepsis: what have we learned? *Crit Care Med* 33(1), 236-237 (2005)
DOI: 10.1097/01.CCM.0000150835.66819.CA

66. Grimaldi D,Louis S,Pene F,Sirgo G,Rousseau C,Claessens YE. Profound and persistent decrease of circulating dendritic cells is associated with ICU-acquired infection in patients with septic shock. *Intensive Care Med* 37(9), 1438-1446 (2011)
DOI: 10.1007/s00134-011-2306-1

67. Poehlmann H,Schefold JC,Zuckermann-Becker H,Volk HD, Meisel C. Phenotype changes and impaired function of dendritic cell subsets in patients with sepsis: a prospective observational analysis. *Crit Care* 13(4), R119 (2009)
DOI: 10.1186/cc7969

68. Wolk K,Docke WD,von Baehr V,Volk HD, Sabat R. Impaired antigen presentation by human monocytes during endotoxin tolerance. *Blood* 96(1), 218-223 (2000)

69. Monneret G,Finck ME, Venet F,Debard AL,Bohe J, Bienvenu J. The anti-inflammatory response dominates after septic shock: association of low monocyte HLA-DR expression and high interleukin-10 concentration. *ImmunolLett* 95(2), 193-198 (2004)
DOI: 10.1016/j.imlet.2004.07.009

70. Hynninen M,Pettila V,Takkunen O,Orko R,Jansson SE,Kuusela P. Predictive value of monocyte histocompatibility leukocyte antigen-DR expression and plasma interleukin-4 and -10 levels in critically ill patients with sepsis. *Shock* 20(1), 1-4 (2003)
DOI: 10.1097/01.shk.0000068322.08268.b4

71. Astiz M,Saha D,Lustbader D,Lin R, Rackow E. Monocyte response to bacterial toxins, expression of cell surface receptors, and release of anti-inflammatory cytokines during sepsis. *J Lab Clin Med* 128(6), 594-600 (1996)
DOI: 10.1016/S0022-2143(96)90132-8

72. Rode HN,Christou NV,Bubenik O,Superina R,Gordon J,Meakins JL.Lymphocyte function in anergic patients. *ClinExpImmunol* 47(1), 155-161 (1982)

73. Venet F,Lukaszewicz AC,Payen D,Hotchkiss R, Monneret G. Monitoring the immune response in sepsis: a rational approach to administration of immunoadjuvant therapies. *CurrOpinImmunol* 25(4), 477-483 (2013)
DOI: 10.1016/j.co.2013.05.006

74. Hall MW,Knatz NL,Vetterly C,Tomarello S,Wewers MD,Volk HD.Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. *Intensive Care Med*37(3), 525-532 (2011)
DOI: 10.1007/s00134-010-2088-x

75. Christou NV, Meakins JL, Gordon J,Yee J,Hassan-Zahraee M,Nohr CW. The delayed hypersensitivity response and host resistance in surgical patients. 20 years later. *Ann Surg* 222(4), 534-546; discussion 546-548 (1995)
DOI: 10.1097/00000658-199522240-00011

76. MacLean LD,Meakins JL,Taguchi K,Duignan JP,Dhillon KS, Gordon J. Host resistance in sepsis and trauma. *Ann Surg* 182(3), 207-217 (1975)
DOI: 10.1097/00000658-197509000-00004

77. Venet F,Davin F,Guignant C,Larue A,Cazalis MA,Darbon R. Early assessment of leukocyte alterations at diagnosis of septic shock. *Shock* 34(4), 358-363 (2010)
DOI: 10.1097/SHK.0b013e3181dc0977

78. Hotchkiss RS,Nicholson DW.Apoptosis and caspases regulate death and inflammation in sepsis. *Nat Rev Immunol* 6(11), 813-822 (2006)
DOI: 10.1038/nri1943

79. van de Veerdonk FL,Mouktaroudi M,Ramakers BP,Pistiki A,Pickkers P,van der Meer JW. Deficient Candida-specific T-helper 17 response during sepsis. *J Infect Dis* 206(11), 1798-1802 (2012)
DOI: 10.1093/infdis/jis596

80. Venet F,Foray AP,Villars-Mechin A,Malcus C, Poitevin-Later F,Lepape A. IL-7 restores lymphocyte functions in septic patients. *J Immunol* 189(10), 5073-5081 (2012)
DOI: 10.4049/jimmunol.1202062

81. Venet F,Filipe-Santos O, Lepape A,Malcus C, Poitevin-Later F, Grives A. Decreased T-cell repertoire diversity in sepsis: a preliminary study. *Crit Care Med* 41(1), 111-119 (2013)
DOI: 10.1097/CCM.0b013e3182657948

82. Boomer JS,Shuherk-Shaffer J,Hotchkiss RS, Green JM.A prospective analysis of lymphocyte phenotype and function over the course of acute sepsis. *Crit Care* 16(3), R112 (2012)
DOI: 10.1186/cc11404

83. Guignant C,Lepape A,Huang X,Kherouf H, Denis L,Poitevin F. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. *Crit Care* 15(2), R99 (2011)
DOI: 10.1186/cc10112

84. Venet F,Chung CS,Monneret G,Huang X,Horner B,Garber M. Regulatory T cell

populations in sepsis and trauma. *J Leukoc Biol* 83(3), 523-535 (2008)
DOI: 10.1189/jlb.0607371

85. Venet F, Lepape A, Monneret G. Clinical review: flow cytometry perspectives in the ICU - from diagnosis of infection to monitoring of injury-induced immune dysfunctions. *Crit Care* 15(5), 231 (2011)
DOI: 10.1186/cc10333
86. Cajander S, Backman A, Tina E, Stralin K, Soderquist B, Kallman J. Preliminary results in quantitation of HLA-DRA by real-time PCR: a promising approach to identify immunosuppression in sepsis. *Crit Care* 17(5), R223 (2013)
DOI: 10.1186/cc13046

Abbreviations: HLA-DR, human leukocyte antigen-DR; PD-1, programmed death-1; PD-L1, programmed death-ligand 1; CTLA-4, cytotoxic T-lymphocyte antigen-4; BTLA, B and T lymphocyte attenuator; IFN- γ , interferon gamma; TNF, tumor necrosis factor; IL, interleukin.

Key Words: Sepsis, Human Leukocyte Antigen DR, HLA-DR, Immunosuppression, Review

Send correspondence to: Yanqing Chen, Emergency department, Shanghai Tenth People's hospital, Tongji University of Medicine, North ZhongshanRoad, Shanghai 200003, China. Tel: 021-66300588; Fax: 021-66300588; E-mail: yanqing_Chen@yeah.net