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1. ABSTRACT

Proteins that contain a motif called a
bromodomain are implicated in both transcriptional
activation and repression. The bromodomain of p/CAF, the
only solution structure of a bromodomain that has been
solved to date, reveals that the motif binds N-acetyl-lysine
groups, presumably to anchor enzymatic functions to
histones and by extension to chromatin. The enzymatic
activities can either be encoded within the same
polypeptide as the bromodomain motif, or associated with a
multiprotein complex. Thus, a wide variety of chromatin-
directed functions, including but not limited to
phosphorylation, acetylation, methylation, transcriptional
co-activation or recruitment, characterize the complexes
that contain bromodomain motifs. Their versatility and
ubiquity ensures diverse, rapid and flexible transcriptional
responses.

2. TRANSCRIPTIONAL ACTIVATION AND
REPRESSION

The field of chromatin structure has experienced
an explosion of interest recently, with almost 2000 Medline
citations on the subject in the last two years. Many
contemporary reports have focused attention on the causal
links between specific modifications of histones, such as N-
lysyl-acetylation or deacetylation, and the resultant
loosening or tightening of nucleosome structure and
consequent transcriptional activation or repression of
genes. These local shifts are connected to global changes in
cell physiology, such as growth and mitosis. The field has
been extensively reviewed of late (1-7). Moreover, the
relationship between different types of histone modification
has garnered notice, particularly the observation that
phosphorylation of serine-10 and acetylation of lysine-14
on histone H3 are coupled processes with important
biological consequences (8, 9). In mammalian cells, histone
H3 phosphorylation has been identified as a key step both
in rapid responses to growth factor stimulation (10,11),
resulting in transactivation of “immediate-early” type genes
such as c-fos and c-myc (12), as well as much later in
chromatin condensation during mitosis (13). An expansive
view of the chromatin landscape has come from
investigation of the genetics and biochemistry of chromatin

remodeling complexes: large, multisubunit catalytic entities
perform the work of histone modification that leads either
to transcriptional activation or repression of target genes.
Here, promoter selectivity for sequence-specific DNA
binding proteins must guide the assembly of these big
chromatin-modifying machines, yet the genetic regulatory
elements must also be able to respond rapidly to changing
transcriptional requirements. Active investigation of
chromatin remodeling continues in many laboratories, from
the level of sequence-specific modification of specific
histones to the level of multiprotein complex assembly.

A particular protein motif called a
“bromodomain” has been noticed in many of the proteins
that compose the chromatin modifying machinery. It was
first identified in 1992 as a 61 - 63 amino acid signature
(14). Although it lacked a known function at the time, it has
subsequently been identified in transcription factors, co-
activators and other proteins that are important in
transcription or chromatin remodeling and its boundaries
have been expanded to about 110 amino acids. The number
of such proteins was about forty at last report (15, 16) and
several important additions to the family have been made
since then. The first described bromodomain protein, yeast
Gcn5 (17), was shown to be necessary for amino acid
metabolism and was characterized as a transcriptional co-
activator (18). It provides a histone acetylation (19)
component of the ADA (Adapter) and SAGA (Spt-Ada-
Gcn5 acetyltransferase) transcription complexes (20),
which is fundamental and essential for viability (21). Gcn5
is also structurally related to the mammalian proteins CBP,
p300 and Hat1 (22). In mammals, CBP and p300 also have
intrinsic HAT activity (23, 24) and interact with many
important transcription factors as co-activators of
transcription. Virtually all of the nuclear histone
acetyltransferases (HATs) contain bromodomains (16), but
not all bromodomain proteins are HATs. For example,
other classes of bromodomain proteins include MLL, a
putative transcription factor (25, 26) that interacts with the
SWI/SNF chromatin remodeling complex (27); Spt7, an
acidic transcriptional activator and component of the
SAGA complex (28); and a helicase superfamily that
includes Snf2, Rsc1/Rsc2 and Sth1, components of the
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SWI/SNF (29) and RSC complexes (30); Brg1, which
binds RB (31, 32); and brahma, which also contacts RB, is
related to Swi2/Snf2 (33, 34) and has homeotic functions in
Drosophila (35 - 37). The role of bromodomains in
transcription complexes has been controversial because
their deletion has widely different consequences: in yeast,
bromodomain deletion of Spt7 has no phenotype, of Snf2
causes slow growth, but of Sth1, Rsc1 and Rsc2 causes
lethality (16). Much of the apparent significance of
bromodomain proteins lies in their either having intrinsic
HAT activity, or being associated with promoter-bound
complexes that contain HAT or histone deacetylase
(HDAC) activity. Bromodomain proteins are thereby
potentially important players in the transcriptional control
of a wide variety of eukaryotic genes, including those that
control growth.

The bromodomain proteins that interact with RB
highlight an important duality in transcriptional control: the
need also to turn promoters off. In particular, the
transcriptional control of E2F-regulated mammalian cell
cycle genes is essential for proper progression through each
stage of the cell cycle. Whereas transcriptional activation of
one set of genes is necessary to enter a stage of the cell
cycle, repression of certain other genes associated with the
previous stage is necessary to exit from that stage. RB (and
its family members p107 and p130) bind to E2F proteins
and block their transcription activation function (38, 39).

 Recent evidence has revealed that in addition to
this direct repression, RB also recruits a histone deacetylase
(40, 41), as do p107 and p130 (42), through cooperation
with mammalian brahma and other proteins in the
SWI/SNF complex (31, 32). Coordinated transcriptional
activation and repression of the key E2F-regulated
mammalian cell cycle genes cyclin E, cyclin A and cdc2
permit proper transitions between G1 and S phases, and S
and G2 phases (43). This dual nature of chromatin
remodeling complexes was first suspected in yeast, where
SWI/SNF complexes, initially associated with
transcriptional activation (44), were later linked to
repression as well: more genes are activated than repressed
by SWI/SNF mutations (45). It now appears that SWI/SNF
function may establish a widely applicable paradigm in
chromatin remodeling complexes, whereby
transcriptionally active euchromatin can be converted to
inactive heterochromatin and vice versa in part through the
exchange of HAT and HDAC enzymes in the complex
(46). This model has been refined lately with the
observation in yeast that several inducible genes active
during interphase can recruit HAT activity independently
of SWI/SNF, whereas mitotic genes require SWI/SNF to
recruit HAT activity (47). This observation emphasizes the
importance of coordinated complex formation for proper
transit of the cell cycle.

A central development in the field of
bromodomain-containing proteins came with a report of
Zhou and colleagues (48), who used nuclear Overhauser
enhancements to solve the solution structure of the
bromodomain of p/CAF in association with N-acetylated
lysine. The highly conserved structure of bromodomain

proteins suggests a hypothesis that many of them will bind
N-acetyl-lysine in histones, however by no means will this
necessarily be true for all. The presence of bromodomains
in many proteins that are known independently to possess
HAT activity strongly supports the Zhou hypothesis. A
looser notion that this motif is present in proteins that are
involved in chromatin modification and transcription
regulation is the best guide to their classification at the
moment. The future discovery of bromodomains in proteins
that are uninvolved in chromatin restructuring will be a test
of the utility of such a classification.

In this special issue, several authors have been
invited to contribute their perspectives on the developing
field of bromodomain proteins and associated chromatin-
modifying activities. Major questions that they address
continue to provoke the development of the field, and
include:

A. What are the number and type of histone
modifications, including phosphorylation, acetylation,
methylation, ADP-ribosylation and ubiquitination, that
could regulate the recruitment of different classes of
chromatin-modifying enzymes and might these represent a
kind of combinatorial “histone code”? How do
modifications of bromodomain-containing proteins
reciprocally affect histone modification activities?

B. Should bromodomain-containing proteins be
thought of as a kind of bridge or platform that recruits
diverse enzymatic activities, such as HATs, HDACs,
kinases or helicases, to chromatin? Why are these activities
present in some bromodomain-containing proteins as
independently-folding domains of a single polypeptide
chain and in other cases as separate proteins? Does the
weak affinity constant for a single bromodomain binding to
N-acetyl-lysine (~0.1 mM) imply that bromodomains can
function only in multiprotein complexes with multiple
interaction sites?

C. Do different bromodomains have different
functions, including those that are present more than once
in a single protein? For example, double bromodomains,
such as those in TAFII250 might provide mutual
cooperativity for protein binding to chromatin or might
interfere with binding instead; or they might confer
differential promoter specificity.

D. Why are some bromodomains essential for
enzymatic function or cell viability whereas deletion of
others has no apparent phenotype? Does this behavior
reflect redundancy within bromodomain-containing
complexes, so that for example SWI/SNF activities on
some promoters can partially substitute for HAT-containing
complexes such as SAGA?

E. What is the significance of the time order of
recruitment of SWI/SNF activities and HAT activities to
certain promoters? Why does SWI/SNF recruitment of
HAT activity impact yeast transcriptional activation during
late mitosis (47), whereas many inducible promoters recruit
HATs independently of SWI/SNF earlier in the cell cycle,
and how widespread is this behavior in eukaryotes?
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