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1. ABSTRACT

Understanding the mechanisms by which T
lymphocytes mediate antitumor activity in vivo may have
important implications for the design of active, adoptive
and combination immunotherapies against neoplastic
progression. The Fas/Fas ligand (FasL) system utilized by
antigen (Ag)-specific T cells has been now demonstrated to
play important roles in lymphocyte-mediated tumor
regression in vivo. However, the process of tumor
eradication by Fas/FasL interactions per se may serve also
as an immune-based selective pressure. Indeed, more recent
studies have illustrated that this same Fas/FasL system may
have negative contributions, perhaps serving as a novel
mechanism  of tumor escape of  Fas-resistant
subpopulations. In addition to Fas-resistance, functional
FasL expression by certain cancer cell types has been
implicated in tumor escape via destruction of infiltrating
Fas-bearing lymphocytes. Thus, the acquisition of Fas--
resistance by advancing neoplastic subpopulations, possibly
in combination with FasL induction may serve as
countermeasures against immune attack and contribute
favorably toward metastatic development. Further
appreciation of the complex nature of this Fas/FasL system,
exploited not only by innate or adaptive elements of the
immune response, but also by a developing neoplasm may
have important implications for the regulation of tumor
progression in favor of clinical regression. Thus, this
review will focus on both positive and negative
consequences of the Fas/FasL system during host/tumor
interactions. Emphasis will be on the importance of the
Fas/FasL pathway for antitumor activity, as well as a
potential selective force influencing the escape of Fas--
resistant aggressive tumor variants.

2. INTRODUCTION

The goal of cancer immunotherapy is clear;
however, efforts to achieve that goal have been much more
elusive. In fact, tumor-specific immune responses often
develop or can be induced in cancer-bearing hosts via
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active or adoptive immunotherapy, yet complete tumor
eradication occurs infrequently (1-9). The inability of the
immune system to more consistently and effectively
eradicate neoplastic disease in immune competent hosts is
not fully understood and has remained a fundamental
paradox in tumor immunology and immunotherapy. It is
now generally well acknowledged, however, that cancerous
cells exploit diverse mechanisms to counterattack the
immune response (10-14). Preclinical and clinical studies
now strongly support the contention that neoplastic cells
can evade cell-mediated immunity at multiple levels of the
effector/target interaction, including events associated with
antigen (Ag) recognition, cell-cell contact, costimulation
and, perhaps, induction of cell death.

Therefore, although a variety of molecular
alterations have been observed in neoplasms as they
become more progressive and better equipped to evade or
inhibit host defenses, it still remains to be fully understood
how such changes in cancer cells occur initially and
whether immunologically driven events also may
contribute to the generation of tumor escape variants
expressing those more malignantly proficient phenotypes.
One interesting hypothesis is that neoplastic subpopulations
expressing these more aggressive genetic or epigenetic
traits emerge as a result of an endogenous immune-based
selection process (9). This phenomenon is conceptually
akin to the generation of radioresistant or chemoresistant
neoplastic clones.

The Fas/Fas ligand (FasL) system has been
characterized as an integral process for the maintenance of
immune privilege, and the regulation of immune
homeostasis of peripheral lymphoid interactions under both
normal and pathologic conditions (15-20). It is a death
receptor-initiated pathway mediated by FasL expressed by
a number of cell types, including activated T and B cells,
natural killer (NK) cells and macrophages, as well as
certain tissues and organs that constitutively express it,
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namely cells of the eye and testis which have been
implicated in the preservation of immune privilege at those
sites. So, why is this system of homeostasis also important
for the regulation of host/tumor immune interactions in
vivo? The Fas/FasL system has also been considered one of
two major pathways of cell-mediated cytotoxicity that
induces apoptotic or programmed cell death of susceptible
targets (21-23). In responsive tumor cells, ligation of cell
surface Fas by FasL expressed by the effector cell
population engages the caspase signaling pathway in those
targets, which ultimately contributes to DNA fragmentation
and cell death (15-20, 22, 24).

Cellular components of both the innate and
adaptive immune responses, namely NK cells and CD8" T
lymphocytes, respectively, engage the perforin/granzyme
and Fas pathways as the principal effector mechanisms to
mediate cellular cytotoxicity (21-23). Furthermore, the
production of interferon-gamma (IFN-gamma) by these
activated lymphocytes, for example, has been shown to
contribute significantly to antitumor reactivity via a number
of mechanisms. Some of these IFN-gamma-mediated
effects include phenotypic or functional modification of
neoplastic cells rendering them more amenable to immune
recognition and attack via Fas-dependent and Fas-independent
pathways (2, 25-30). Indeed, earlier studies had pointed toward
the perforin pathway as a major force regulating tumor
development and progression (21-23, 31-33). Recent studies in
mice have demonstrated that the Fas pathway also plays a
crucial role against localized tumor growth or tumor
progression, including those models reflecting spontaneous or
experimental lung metastasis (34-40). Therefore, both the
perforin and Fas pathways constitute significant or dominant
barriers against tumor growth and spread. In addition to these
two pathways, other members of the tumor necrosis factor
(TNF) family also may be involved in mediating tumor
regression, such as TNF-alpha, TNF-beta (lymphotoxin-alpha)
and TRAIL (TNF-related apoptosis-inducing ligand) (41-44).

The fact that multiple cytolytic effector mechanisms
exert positive antitumor properties also raises the opposing
hypothesis that if neoplastic subpopulations develop resistance
to either one or more pathways, this may facilitate tumor
escape, which in turn, may influence metastatic formation.
Indeed, it is also now known that the downregulation or loss of
Fas expression and function is frequently found in the
progression of a number of human malignancies, including
carcinomas of the colon, breast and lung (45-48). Thus, it is
conceivable that an antitumor response, during the process of
mediating tumor cell destruction, may unintentionally impose
a “selective pressure,” which influences the outgrowth of
neoplastic clones bearing heightened apoptotic-resistant,
malignant characteristics. The goal of this review, therefore, is
to focus on positive and negative consequences of an antitumor
immune response, with emphasis on the role of the Fas/FasL
system.

3. T CELL SUBSETS AND THEIR EFFECTOR
MECHANISMS

CD4" and CD8" T cells have been classified as
the two major subpopulations of peripheral T lymphocytes.
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Subset dichotomy, in part, reflects intrinsic differences in
major  histocompatibility  complex  (MHC)/peptide
recognition requirements and the nature of the resulting
cellular immune responses (49, 50). CD4" lymphocytes
have been shown to play an important and central role in
immunoregulation through the production and action of
lymphokines, while CD8" lymphocytes have been
described as cytotoxic T lymphocytes (CTL) that mediate
the destruction of Ag-bearing targets. Although both CD4"
and CD8" T cells independently recognize antigenic
determinants expressed by an antigen-presenting cell
(APC), optimal development and regulation of the cellular
immune response typically require the cellular cooperation
between these two subpopulations (49, 51-53). It is
becoming clearer, however, that the seemingly simple
division of T cells into CD4" and CD8" T cell subsets is
actually more complex. In fact, multiple functional
subtypes of CD4" and CD8" T cells have been described.
These subtypes have been termed type 1 (i.e., CD4" Thl;
CD8" Tcl) and type 2 (i.e., CD4" Th2; CD8" Tc2), which
predominantly reflect differences in their cytokine secretion
patterns following T cell receptor (TCR) stimulation (42,
54-56).

The TCR of the CD8" CTL recognizes antigenic
peptides (epitopes) displayed on the cell surface of the
APC/target cell in the context of self-MHC class I
molecules. The resulting effector cell response, whether it
reflects a Tcl or Tc2 phenotype, is the death of the Ag-
bearing target cell via Fas-dependent and/or Fas-
independent pathways, as described in detail below (Figure
1). The TCR of CD4" T cells recognize antigenic peptides
displayed on the cell surface of the APC/target cell in the
context of self-MHC class II molecules. CD4" T cells,
chiefly the Thl subtype, have been shown to exert
antitumor effects in vivo in various models of active or
adoptive immunotherapy (57, 58). Antitumor reactivity
may result from cytokines that modify tumor-cell viability
directly (TNF-alpha or TNF-beta) or indirectly
(interleukins, IFN-gamma, granulocyte/macrophage-colony
stimulating factor; GM-CSF) by recruitment and further
activation of other cytotoxic effector cells, such as CD8" T
cells, macrophages, neutrophils or NK cells.

In general, the precise mechanisms leading to CTL-
mediated tumor regression in vivo may reflect both cell
contact-dependent and cell contact-independent,
lymphokine-based (e.g., IFN-gamma, TNF-alpha or TNF-
beta) pathways (21, 22, 27, 29, 33, 41, 42, 59). If CTL do
mediate tumor regression in vivo by direct cell contact, then
this may occur via two major effector mechanisms
involving the secretion of perforin/granzymes and/or
ligation of Fas by FasL expressed by the Ag-activated CTL
(Figure 1). The extent of contribution of each effector
mechanism to the overall lytic response likely depends
upon intrinsic characteristics of the given target cell
population. Although the prevailing view has been that
perforin/granzyme-mediated lysis is a dominant pathway
(21-23, 31-33, 59), it recently has been shown in preclinical
models that FasL-mediated cytotoxicity is additionally
required for optimal tumor regression in vivo (30).
Interestingly, some studies even have challenged the
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Figure 1. Mechanisms of Lymphocyte-Mediated Cytotoxicity. Lysis of Ag-bearing tumor cells by cytotoxic lymphocytes may
occur principally via two major effector mechanisms, generally referred to as the Fas-independent or the perforin/granzyme
pathway, and the Fas-dependent pathway. Execution of both pathways requires TCR recognition of MHC/peptide complexes.
Ag-independent interactions involving LFA-1-ICAM-1 and/or CD2-LFA-3 serve to enhance conjugate formation between
effectors and targets and, consequently, the strength of signaling through the TCR. The degranulation of perforin/granzyme
contents results in target cell death via caspase-dependent and caspase-independent events. The Fas-dependent pathway involves
ligation of cell surface Fas on the target cell surface by membrane-bound FasL (or soluble FasL) expressed by the TCR-activated
lymphocyte. Productive Fas/FasL interactions then initiate caspase signaling, which ultimately leads to DNA fragmentation and
cell death (see Figure 2 for further details). The extent of contribution of each effector mechanism to the overall lytic response
likely depends upon intrinsic characteristics of the given target cell population. Because of that biologic caveat, tumor cell
subpopulations that acquire Fas-resistance, for example, may escape immune attack (see Figure 3). Reprinted with permission
from Landes Bioscience. Figure 2, Page 144. Abrams SI. Regulation of Tumor Progression by Anti-Neoplastic T Cell Responses.
Cancer Biology & Therapy 3:140-146 (2004).

APOPTOTIC
CELL DEATH

importance of the perforin pathway in CTL-mediated tumor irradiation or certain chemotherapeutic agents, such as 5-
rejection in vivo (29, 41, 42, 59). Studies in mice also fluorouracil (5-FU), doxorubicin, cisplatin or anthracenes,
sustain the idea that the host Fas/FasL system may be they may exhibit cross-resistance to Fas-dependent lysis
important for the regulation of local tumor growth. For (66-69). Furthermore, other work has demonstrated an
example, transfection of the cFLIP (cellular-derived important role for Fas-dependent interactions in human
FLICE-inhibitory protein) gene, an inhibitor of Fas- CD8" CTL-mediated lysis of human colon carcinoma cells
mediated signaling (60), into syngeneic tumor cells in vitro (25, 26, 28). Thus, the relative participation of
enhances the frequency and decreases the latency of Fas/FasL interactions in tumor immunity in vivo, whether
subcutaneous (sc) tumor growth (35, 36). in mouse or human systems, is intimately linked to the
functional status of Fas on the neoplastic cell, which in
Several studies in humans (25, 26, 45-47) also some instances can be further modulated by pro-
support the notion that loss of Fas expression or function by inflammatory cytokines such as IFN-gamma and/or TNF-
diverse neoplasms associates with a more malignant alpha (26, 29, 61, 62, 70).
phenotype. Furthermore, the notion that loss of sensitivity
to Fas-mediated apoptosis may play an important role in 4. FAS/FAS LIGAND SYSTEM AND APOPTOTIC
the progression of malignant behavior in human cancer is SIGNALING
supported by the observations that as hematopoietic or non-
hematopoietic malignancies: (a) acquire a more malignant Fas also known as CD95 or APO-1, is a member
phenotype, they downregulate Fas expression or function of the TNF/NGF receptor superfamily (15, 17, 18, 47, 71,
(25, 45-47, 6165) and (b) develop resistance to gamma- 72). The Fas gene encodes a 45-kDa type 1 transmembrane
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Figure 2. Fas-Mediated Signaling. The process of Fas-mediated apoptosis is triggered by cross-linking (trimerization) cell
surface Fas by its cognate ligand (FasL) or a surrogate agonistic anti-Fas stimulus. Once engaged, Fas recruits FADD, which, in
turn, interacts with procaspase-8 molecules forming the DISC. In a cascade-type reaction, activation of caspase-8 leads to the
activation of downstream effector caspases, such as caspases-3, -6 or -7, resulting in DNA fragmentation and cell death. A
second major pathway involves damage to the mitochondria induced by other types of stimuli, such as [Jamma-irradation, anti-
neoplastic agents and the perforin/granzyme pathway of cytotoxic lymphocytes. Bel-2 family members have either pro-apoptotic
(Bax, Bak, Bid) or anti-apoptotic (Bcl-2, Bcl-X)) functions. Pro-apoptotic Bcl-2 members stimulate the mitochondria to release
cytochrome C, which then forms a complex with Apaf-1 and procaspase-9. Activation of caspase-9 then activates caspase-3,
ultimately leading to nuclear degradation. Endogenous inhibitors of the Fas pathway (which are illustrated in boxes alongside the
flat-head arrows), downregulate the amount of signaling and resulting cell death. Aberrant expression of some of these inhibitory
mechanisms in neoplastic cells may contribute to increased Fas-resistance and, consequently, tumor escape from Fas-dependent
cytotoxicity.

protein that is constitutively expressed on the surface of a the aggregation of the receptor, which enables the adapter
broad range of cells or tissues, including those of lymphoid molecule, Fas-associated death domain (FADD) protein, to
and non-lymphoid lineages. FasL, also known as CD95L, is bind to the cytosolic domain of Fas (15, 17, 18, 47, 71, 77).
a member of the TNF/NGF superfamily (15, 17, 18, 71, FADD, a multimeric protein, then recruits and interacts
73). FasL is a 40-kDa type II transmembrane protein that is with multiple procaspase-8 molecules forming the death-
expressed by lymphocytes, mainly by type 1 CD4" and inducing signaling complex (DISC). The oligomerization
CD8' T cells, and B cells, after engagement of the Ag- of procaspase-8 within the DISC leads to its proteolytic
specific T or B cell receptor. NK cells and macrophages activation, which initiates activation of the caspase
also express FasL. FasL is constitutively expressed by cells pathway. Caspase-8 then cleaves procaspases-3, which is
of the eye, reproductive organs (testis, uterus), lung and thought to be an integral downstream effector element
small intestine in addition to cells of the immune system. ultimately contributing to the disintegration of the cellular
FasL is functionally active in a membrane-bound form and, genome. Effector caspases, such as caspases-3, -6 or -7,
as reported for activated human T cells, a secreted, soluble cleave numerous target substrates, including structural
form as well (74-76). Soluble FasL (sFasL) is generated as proteins and those involved in cellular signaling, cell cycle
a 26-kDa protein fragment lacking the transmembrane and and DNA repair.

cytosolic domains by matrix metalloproteinases (74).
A second major pathway is independent of Fas

Briefly, the apoptotic pathway is initiated by engagement, but still caspase-dependent, and it involves
cross-linking (trimerization) cell surface Fas by FasL or an damage to the mitochondria induced by other types of
anti-Fas stimulus (Figure 2). Engagement of Fas leads to stimuli, such as gamma-irradation, anti-neoplastic agents
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and the perforin/granzyme pathway of cytotoxic
lymphocytes (46, 66, 78-80). Members of the Bcl-2 family
are crucial regulators of this process, and either have pro-
apoptotic (Bax, Bak, Bid) or anti-apoptotic (Bcl-2, Bel-X;)
functions (81). Pro-apoptotic Bcl-2 members stimulate the
mitochondria to release cytochrome C, which then forms a
complex with Apaf-1 (apoptotic protease activating factor-
1). The ultimate effectors of apoptosis, as with the Fas
pathway, are the caspases. In this case, procaspase-9,
instead of procaspase-8, is thought to be the principal
initiator, which is activated by the cytochrome C/Apaf-1
apoptosome complex. Caspase-9 then activates procaspase-
3, ultimately leading to nuclear degradation. Thus, both
Fas-dependent and -independent pathways converge at the
level of caspase-3, suggesting a potentially crucial role of
that component in the regulation of apoptosis by multiple
types of death-inducing stimuli.

Endogenous inhibitors of the Fas pathway regulate
the extent of signaling, including caspase activation, and
resultant cell death. These include molecules that affect
signaling, namely FLIP (FLICE/caspase-8 inhibitory protein)
(60), FAP-1 (Fasassociated phosphatase-1) (82), Bcl-2-related
proteins (81, 83) or inhibitors of apoptosis proteins (IAP-1,
IAP-2, XIAP; survivin) (71, 84, 85). FLIP structurally
resembles caspase-8, but lacks proteolytic activity and
competes with it for binding to the DISC via FADD, thus
blocking its activation. High levels of FLIP have been linked to
resistance to Fas-mediated apoptosis in naive peripheral T cells
(86) and in human melanoma cell lines (87, 88), as well as in
experimentally engineered murine tumors (36). FAP-1, which
associates with a negative regulatory domain of the C-terminus
of Fas, similarly has been found to inhibit Fas-mediated
signaling in T cells (82, 89). IAPs inactivate the function of
caspases-3, -7 or -9 via direct interactions, while Bcl-2 or Bcl-
Xy inhibits the redistribution of cytochrome C from the
mitochondria into the cytosol or the binding of cytochrome C
to Apaf-1 (71, 81, 84). The expression of the IAP is regulated
by NF-kB, a nuclear transcription factor (71, 90). Although
under normal conditions the Fas/FasL system is a tightly
regulated pathway, aberrant expression of one or more
inhibitory mechanisms in neoplastic cells can contribute to
apoptotic resistance in response to a wide range of death-
inducing stimuli, including ionizing radiation,
chemotherapeutic agents and even cytotoxic lymphocytes.

5. MECHANISMS OF TUMOR ESCAPE

Although the fundamental basis for the failure to
initiate effective T cell responses in unimmunized tumor-
bearing hosts may be linked to poor tumor immunogenicity
(14, 91), a variety of mechanisms have been presented to
account for tumor escape, reflecting multiple levels of the
effector/target interaction, including: TCR-MHC/peptide
ligand recognition, cellular adhesion (conjugate formation)
or the cytotoxic mechanism. (Reviewed in refs. 10-13). For
example, it has been proposed that tumor cells may escape
as a consequence of (a) reduced expression of MHC alleles,
beta-2-microglobulin protein or adhesion (e.g., ICAM-1)
molecules; (b) suboptimal expression of the relevant
rejection epitope(s), which may reflect intracellular defects
in endogenous Ag processing and presentation pathways;
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(c) production of tumor-derived inhibitory factors, such as
interleukin-10 (IL-10), vascular endothelial growth factor
(VEGF), transforming growth factor-beta (TGF-beta) and
prostaglandins, which directly or indirectly downregulate
cell-mediated immune reactions; (d) failure to activate Ag-
specific T cell responses because of tumor-induced
alterations affecting TCR structure, signaling or function
(92-94); (e) resistance to cell-mediated cytotoxicity, due to
the inability of effector T cells to efficiently mediate Fas-
dependent apoptosis (25, 35, 36); (f) cell surface expression
of FasL, which has been suggested to eliminate infiltrating
Fas-bearing CD4" or CD8" T lymphocytes, although this
latter possibility remains unsettled (13, 95, 96); (g) tumor--
induced alterations in T cell subtype cytokine profiles (97,
98) or “suppressor” T cell subpopulations that bear a
unique CD4'CD25" phenotype (99), which may exist in
lymphoid compartments and at sites of tumor growth (100-
102), that might downregulate productive antitumor
immune responses; and (h) inefficient tumor penetrance of
Ag-specific T cells, particularly in the treatment of large
tumor masses (103).

Although a variety of molecular or biologic
alterations have been observed in tumors as they become
more progressive, such as those described above, it remains
to be fully understood how such changes are thought to
occur initially and whether immunologically driven events,
in addition to genetic and epigenetic determinants,
contribute to the generation of tumor escape variants
expressing those aggressive phenotypes. Studies by
Schreiber and colleagues (2, 4, 9) have now provided key
insights into a mechanistic basis for tumor progression, and a
critical role of host T cells in an immune-based selective
process. Consequently, the concept of “cancer immunoediting”
was advanced (9), which constituted a refinement of the
original concept of “cancer immunosurveillance” proposed by
Burnet and Thomas almost five decades ago (104). The
concept of cancer immunoediting encompasses the process of
immune surveillance, but goes beyond to predict that the
antitumor immune reaction during the act of surveillance
concurrently imposes a selective pressure toward developing
neoplasms, resulting in the potential outgrowth of immune-
resistant malignant variants. The production of IFN-gamma
turns out to be a critical determinant of this selective pressure.
Ordinarily, IFN-gamma, secreted primarily by activated T cells
and NK cells after receptor engagement, is thought to
modulate antigenic properties of the tumor rendering it more
susceptible to Ag-specific immune attack. In so doing, those
tumor cells that are most responsive to IFN-gamma-mediated
effects are eliminated by such effector cells, whereas those
tumor cells that are least responsive are potentially less
immunogenic. Consequently, this immune/I[FN-gamma
selective pressure, at least in certain models, has led to an
antigenic or immunogenic reshaping of the reemerging tumor
population possessing enhanced malignant properties.

6. REGULATION OF FAS EXPRESSION IN
NEOPLASIA

Thus, it is now generally well established that a
functional innate and adaptive immune system is crucial for
the control of tumor development and growth (2, 5, 9, 14,
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105). This introduces the opposing notion that if the
immune system becomes functionally impaired or if
neoplastic cells develop resistance to host defense
mechanisms, then the outcome is progressive tumor
development and growth. Therefore, understanding the
nature and molecular bases of tumor escape in the face of
intact immune defense mechanisms is critical to the control
of the neoplastic process.

Although alterations in the genetic or epigenetic
program of the evolving neoplastic population are undoubtedly
crucial for tumor progression and metastatic development (78,
106), immune-mediated selective pressures may help drive the
emergence of such aggressive neoplastic subpopulations
possessing those tumorigenic characteristics (2, 4, 9, 39, 40). If
that were the case, then a T cell response directed against a
parental or primary tumor mass will have not only positive, but
also negative consequences affecting neoplastic formation.
One would predict, therefore, that an antitumor T cell response
would mediate meaningful levels of tumor regression initially.
However, if tumor regression is incomplete, this may reflect
the survival of neoplastic subpopulations resistant to T cell
attack. Thus, an anti-neoplastic T cell response may alter the
composition of the resulting mass or lesion such that it may be
enriched for a more malignantly proficient or aggressive

phenotype.

The possibility that aggressive tumor variants
emerge in response to NK cell or Ag-specific CTL
interactions in vivo is supported by several studies, which
reveal the outgrowth of Ag loss variants (107-110) or Fas-
resistant subpopulations expressing heightened malignant
or metastatic properties (34-40). For example, in a mouse
model of experimental lung metastasis, the relationship
between Fas expression and metastasis was examined in
three groups of cells: the parental line (CMS4), the in vivo-
selected metastatic subline (CMS4-met) and a CMS4
subline biologically selected in vitro from the parental
population by serial culture with agonistic anti-Fas stimuli
(CMS4.sel) (39). These studies revealed an inverse
correlation between Fas expression and metastatic
phenotype. Moreover, in a transgenic mouse model of
spontaneously arising primary and metastatic mammary
carcinoma, tissue sections from both primary (mammary)
and metastatic (lungs) sites of tumor growth were analyzed
for Fas expression by immunohistochemistry. It was found
that Fas was highly expressed in mammary gland tumors.
In contrast, Fas expression was considerably less in
metastatic foci in the lung when compared with primary
mammary gland carcinoma. As with the experimental lung
metastasis model, these observations revealed an inverse
correlation between Fas expression and metastatic
phenotype in vivo. In other work, it was reported that Fas-
sensitive, non- or poorly metastatic murine melanoma
clones spontaneously form lung metastases in gld mice as
efficiently as their Fas-insensitive metastatic clonal
counterparts in wild-type mice (34). These data suggested
that endogenous Fas/FasL interactions in the host played a
direct role in the regulation of metastatic formation. Loss of
Fas function alone, therefore, was characterized as both
necessary and sufficient for tumor progression in that
model.
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Similarly, in human colon tumorigenesis,
immunohistochemical evidence suggests that diminished
Fas expression is a common occurrence of an advancing
neoplastic phenotype (46, 61). However, the biologic
significance of loss of Fas expression and the mechanisms
underlying these phenomena have remained unclear. To
better explore the link between functional Fas status and
malignant phenotype in human colon carcinoma, several
studies took advantage of two naturally occurring primary
and metastatic cell lines, termed SW480 and SW620 (25,
40, 111). The SW480 and SW620 tumor cell lines have
been previously characterized as primary and metastatic
colon adenocarcinoma cell lines, respectively, established
from the same patient (112). The SW620 cell line was
derived as a lymph node-metastasis identified six months
later during disease recurrence. Furthermore, both cell lines
were isolated from the patient without any prior
chemotherapy (113).

It was first demonstrated that SW480 cells
displayed an  IFN-gamma-inducible = Fas-responsive
phenotype, whereas SW620 cells remained Fas-resistant
under these experimental conditions (25, 26, 40, 111).
Next, it was examined whether such differences in
functional Fas status influenced tumor progression toward a
more metastatic phenotype (40). The approach taken was to
produce sublines from the primary tumor in vitro for Fas
resistance using an agonistic anti-Fas stimulus to deplete
the Fassensitive subpopulations. Conversely, sublines were
produced from the primary tumor in vivo (in nude mice)
from sites of spontaneous distal splenic metastases
(following a sc tumor transplant). In so doing, several
SW480 sublines were established by these two approaches.
Thus, any functional and/or molecular differences observed
with such SW480-derived sublines were compared with the
naturally occurring primary and metastatic tumor cell lines.
Overall, those findings revealed that such SW480-derived
sublines were Fas-resistant, and that they morphologically,
functionally and molecularly resembled the naturally
occurring metastatic SW620 cell line. These data supported
the hypothesis that metastatic subpopulations possessing a
Fas-resistant “SW620-like” phenotype already preexisted
within the primary tumor population (Figure 3).

Taken collectively from both mouse and human
studies (34-40), these findings revealed a novel
contribution of the Fas pathway in tumor progression, and
suggested that Fas-based interactions mechanistically
imposed an immunologic or biologic selective pressure
favoring the emergence of such preexistent metastatic
subpopulations (Figure 3). These observations are
consistent with the “cancer immunoediting” hypothesis (9),
but extend it further to implicate the Fas/FasL system as a
potentially important element of the selective process.
Thus, in addition to the diversity of tumor escape
mechanisms already reported (see Section 5), these data
lend strong support to the identification of Fas-resistance as
a novel tumor escape mechanism from immune attack.
Further molecular characterization of such tumor escape
variants will improve not only an understanding of the
neoplastic process, but perhaps may also aid in the design
of more effective therapies.
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Figure 3. Model of Fas-based interactions in tumor
progression in a human colon carcinoma system. The
SW480 primary tumor population appears to comprise
multiple subpopulations, embracing the gamut of both Fas-
sensitive (Fass) and Fas-resistant (Fas®) cells, including
those that are metastatic-incompetent (Met') and metastatic-
competent (Metc), illustrated by the dashed line. In
contrast, the SW620 metastatic tumor population appears to
be more homogeneous in terms of expressing a FasfMet®
phenotype. Fas®Met® cells were identified within the
parental SW480 population, based on the isolation of both
in vitro- and in vivo-derived SW480 sublines. The
observation that such SW480 sublines harboring a
Fas®Met® phenotype morphologically and molecularly
resembled the naturally occurring SW620 population
suggests that such metastatic subsets already pre-existed
within the primary tumor and that anti-Fas interactions
served as a biologic selective pressure for their outgrowth.
However, the idea that Fas status alone was sufficient for
this biologic outcome is unlikely, since parental SW480
cells engineered to express a Fas®Met' phenotype (via FLIP
transfection) did not display detectable metastatic behavior
under these experimental conditions. Thus, these data
supported the idea that a Fas®Met“ phenotype likely
reflected Fas-resistant neoplastic subpopulations that also
co-possessed additional malignant/metastatic-associated
genes and properties. Reprinted with permission from The
Journal of Immunology (Copyright 2003, The American
Association of Immunologists, Inc.) Figure 8, Page 4173.
Liu K, McDuffie E, and Abrams SI. Exposure of Human
Primary Colon Carcinoma Cells to Anti-Fas Interactions
Influences the Emergence of Pre-existing Fas-resistant
Metastatic  Subpopulations. J Immunoll71:4164-4174
(2003). Similar conclusions were derived in a mouse model
of experimental metastasis (39).

Although an antitumor immune reaction may
influence the outgrowth of developing or preexisting Fas-
resistant clones, the precise mechanisms underlying Fas--
loss-of function initially in malignant cells remain to be
fully understood. Loss of Fas function has been reported to
occur at three major levels: (a) downregulation of fas gene
transcription, perhaps mediated by activated or oncogenic
ras or a loss of wild-type p53 function causing repression
(47, 114-116); (b) production of soluble forms of the Fas
receptor (117) which may compete with membrane-bound
Fas for binding to functional FasL or expression of a Fas
decoy receptor that lacks bioactivity (118); and (c)
inhibition of Fas-mediated signaling as a consequence of
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aberrant expression of anti-apoptotic mechanisms, such as
FLIP, FAP-1, IAP or Bcl-2, as described in Section 4.

In addition to the acquisition of Fas-resistance,
appreciable interest has surrounded the “tumor
counterattack model”, which theorizes that FasL expression
by malignant cells contributes to tumor escape as a
consequence of inducing apoptosis of infiltrating Fas-
bearing effector cells (10, 119, 120). Despite the molecular
basis for FasL expression or production (i.e., cell surface or
secreted), this model has been recently challenged given
the findings that FasL-bearing tumor cells are more easily
rejected as compared to Fas-negative parental cells via a
pro-inflammatory-based, neutrophil-mediated antitumor
mechanism (48, 96). Because considerable debate still
surrounds the soundness of the FasL counterattack model,
it remains unresolved whether this phenomenon indeed
serves as a viable mechanism driving tumor escape and
progression in vivo. Therefore, additional investigations are
necessary to elucidate the molecular basis by which FasL-
bearing cancer cells promote an anti-inflammatory
(immune cell destruction) versus a pro-inflammatory
(tumor cell destruction) outcome in vivo.

7. PARADIGM FOR T CELL-TUMOR CELL
INTERACTIONS IN VIVO

The following paradigm can be envisioned for
how an immune response may have both positive and
negative consequences during host-tumor interactions in
vivo. Active immunization of the tumor-bearing host with
tumor-derived antigenic materials reflecting CD4" and/or
CD8" T cell epitopes leads to the in vivo priming and
expansion of the Ag-specific T cell precursor pools. In vivo
sensitized CD4" and/or CD8" T cell subpopulations may
also be then isolated ex vivo from immunized hosts and
expanded in vitro to achieve larger quantities of immune
effector cells for adoptive transfer. Thus, the combination
of both active and passive immunotherapies may have a
more comprehensive impact on the control of metastatic
development. This notion is supported by recent preclinical
studies in a mouse model of melanoma which demonstrated
that the combination of both active and adoptive
immunotherapies, under conditions of extensive disease,
led to dramatic antitumor responses significantly more so
than either modality administered separately (121).

The Ag-specific CD4" T lymphocyte may be a
central player important for the optimal induction and
development of adaptive and antitumor immunity (57,
122). At the tumor site, or more likely within lymph nodes
draining the tumor site, Ag-specific CD4" T cells may be
stimulated by specialized APC populations, such as
dendritic cells, macrophages or activated B cells that have
infiltrated these metastatic lesions. Such APC populations,
expressing a spectrum of adhesion and costimulatory
molecules, may exogenously process tumor-associated Ag
(supplied via the vaccine strategy or tumor cell themselves)
and present them as antigenic peptides in association with
self-MHC class II or class I alleles via cross-priming
pathways for initiation of the cellular immune response by
both CD4" and CDS8' subpopulations, respectively.
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Lymphokines produced by the Ag-primed CD4" T cell
response, such as IL-2, may further intensify clonal
expansion of both Ag-sensitized CD4" and CD8" T cell
populations.

During the effector phase of the immune
response, de novo activated or adoptively transferred CD8"
CTL may lyse susceptible target populations directly, if
displaying the relevant MHC/peptide ligand complexes via
Fas-dependent and/or independent (i.e.,
perforin/granzymes) mechanisms. IFN-gamma, perhaps in
concert with other pro-inflammatory cytokines such as
tumor necrosis factor-alpha (TNF-alpha) may be important
components for improving the overall efficacy of cancer
immunotherapy. IFN-gamma-induced augmentation of
MHC and adhesion molecules may thus serve to facilitate
and strengthen both specific (i.e., TCR-MHC/peptide) and
nonspecific (i.e., LFA-1-ICAM-1) aspects of the
effector/target interaction, leading to enhanced T cell
activation and triggering of the cytolytic pathways. In the
context of the metastatic tumor microenvironment, IFN-
gamma and other potentially relevant cytokines may be
provided endogenously by immune system interactions,
most notably by a subclass of Ag-activated CD4" T cells,
termed Th1, following interaction with MHC class IT" Ag-
bearing APC. In addition to IFN-gamma, CD4" Thl-
derived cytokines such as IL-2 and GM-CSF may further
influence the recruitment, activation and expansion of
various other cytotoxic effector cells of the innate immune
response, including granulocyte subpopulations,
macrophages and NK (or lymphokine-activated
killer/LAK) cells. Furthermore, CD8" CTL or CD4" Thl
cells may lyse susceptible tumor cells indirectly through the
release of cytotoxic lymphokines, such as TNF-alpha or
soluble FasL (39, 75, 111) following Ag-specific immune
stimulation. In this context, the initiation of the immune
response remains Ag-specific, while the effector
mechanisms become Ag-independent and bystander in
nature. These cell contact-independent mechanisms as well
as any additional or alternative innate immune effector
elements may represent biologically significant pathways
for the elimination of low MHC- and/or low Ag-expressing
tumor cells thus circumventing, at least in part, tumor
antigenic heterogeneity associated with the loss or
downregulation of MHC/peptide ligand expression.

Although this paradigm clearly has positive
implications for tumor immunotherapy, it also may have
potential negative consequences, as discussed earlier in
Sections 5 & 6. Persistent exposure to an
immunotherapeutic procedure or agent over time may
unintentionally impose a selective pressure favoring tumor
escape of immune-resistant neoplastic subclones and may
account, at least in some way, for the failure of a given
immunotherapy to sustain long-term antitumor effects. Of
course, it remains to be fully understood whether this
immunologic phenomenon naturally occurs in cancer
patients, and whether T cell-based immunotherapies can
circumvent effectively such barriers of tumor self-
protection and escape or, for that matter, unintentionally
influence the process of neoplastic progression.
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8. PERSPECTIVES

An understanding of tumor rejection mechanisms
in vivo may help design or improve immunotherapies
against metastatic disease in clinical settings. Indeed, a
number of studies have now demonstrated that the
Fas/FasL system utilized by both innate and adaptive forces
of the immune system plays an important role in the
regulation of tumor growth and spread. The Fas/FasL
system, however, constitutes one of several host defense
mechanisms, and collectively with perforin and other TNF
family members optimally control neoplastic development
in an immune competent host. The contributions of FasL-
dependent interactions to tumor immunity, or other
cytotoxic moieties, depend upon the intrinsic susceptibility
of the aberrant target population to a given effector
mechanism. Many variables likely determine tumor-cell
responsiveness to immune attack, and may be related, at
least in part, to tumor heterogeneity and the composition of
neoplastic clones reflecting diverse stages of malignant
proficiency. In both mouse tumor models and human
neoplasia, Fas expression or function has been inversely
related to metastatic phenotype. Furthermore, in some
studies, loss of Fas function has been causally linked to
tumor progression. Thus, the Fas/FasL system may serve as
a novel biologic selective pressure against a progressing
mass or lesion, causing an elimination of the Fas-bearing
clones with a reciprocal enrichment of potentially lower
frequencies of the Fas-resistant ones. Consequently, this
phenomenon is consistent with the concepts of
“immunoselection” and “cancer immunoediting” (9), but
extends it to implicate the Fas/FasL system as an
underlying component of the selective process. Although
preclinical data support this “Fas selection hypothesis”, it
remains to be formally demonstrated in human neoplasia.

So, how can the Fas/FasL system be exploited to
favor tumor regression over tumor progression? One
possibility is to integrate or implement combination
therapies, attacking the neoplastic process from multiple
vantage points. For example, combination therapies
involving vaccination or adoptive transfer with other
oncological treatments, such as radiation (123, 124),
chemotherapy (5, 125), cytokines (e.g., IL-2, IL-12, IL-15)
(126-128), passive administration of tumor-specific
monoclonal antibodies (129), angiogenic inhibitors (130),
or non-steroidal  anti-inflammatory  drugs (e.g.,
cyclooxygenase-2 inhibitors) (131) may prove even more
beneficial to facilitate long-term clinical regressions
concomitant with a lower risk toward the generation of
potential aggressive tumor escape variants. The intention is
that such combinatorial therapies may sufficiently enhance
or restore the capacity of tumor cells to undergo cell death
through Fas-dependent, as well as Fas-independent
mechanisms. Clearly, these and other factors represent
potentially significant challenges confronting effective
cancer immunotherapy. Continued investigations likely will
not only shed light into a potential explanation of tumor
development in the face of a competent immune system or
tumor recurrence in the face of immunotherapy, but also
eventually will aid improvement into the nature, breadth
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and effectiveness of combination

strategies.

immunotherapy
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