

Somatostatin receptor expression in thymic tumors

Diego Ferone¹, Liliana Montella², Annarosaria De Chiara³, Leo J Hofland⁴, Steven WJ Lamberts⁴, Giovannella Palmieri^{5,6}

¹Department of Endocrinology and Medical Sciences and Center of Excellence for Biomedical Research, University of Genova, viale Benedetto XV, 6, Genova; ²Medical Oncology, n.3 Naples Local Health Unit, "S.Giovanni di Dio" Hospital, Frattamaggiore, Naples, Italy; ³Unit of Pathology, National Cancer Institute "Fondazione G. Pascale", via M. Semmola, Naples; ⁴Department of Internal Medicine, Section Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands;

⁵Department of Molecular and Clinical Endocrinology & Oncology, University "Federico II", Naples, and ⁶Casa di Cura "Villa Maria", Mirabella Eclano, Avellino, Italy

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Materials and Methods
 - 3.1. Patients
 - 3.2. Scintigraphic studies
 - 3.3. Tissue samples
 - 3.4. Immunohistochemical localization of *sst2* and *sst3* receptors
4. Results
 - 4.1. Somatostatin receptor scintigraphy
 - 4.2. Immunohistochemical detection of *sst2* and *sst3* receptors
 - 4.3. Comparative analysis of *in vitro* and *in vivo* results
5. Discussion
6. Acknowledgement
7. References

1. ABSTRACT

Detection of thymic tumors by [¹¹¹In-DTPA⁰]octreotide scintigraphy and the antitumor effect exerted by somatostatin (SS) analogs suggest significant expression of SS receptors (SSRs) in these tumors. We measured SSR subtype (*sst*_{2A}) and *sst*₃ expression by immunohistochemistry (IHC) in 14 thymic tumors previously studied by SSR scintigraphy (SRS). Scintigraphy showed significant [¹¹¹In-DTPA⁰]octreotide uptake in 13/14 tumors (tumor-to-background ratios: 1.4- to 6-fold). By IHC, 4 tumors were positive for *sst*_{2A} and *sst*₃; two for *sst*_{2A} and five tumors for *sst*₃. Three tumors were completely negative. Overall, 11/14 (approximately 78% of cases) expressed at least one SSR subtype. Staining was highly heterogeneous: *sst*_{2A} was confined to malignant epithelial cells or within stromal structures, and *sst*₃ was predominantly associated with thymocytes. SRS provides immediate visualization of primary and metastatic lesions, while IHC reveals SSR subtype expression. This joined approach could help to select SS analogs beneficial for therapy.

2. INTRODUCTION

High somatostatin receptors (SSRs) expression have great relevance in neuroendocrine human tumors (1-3). Imaging by [¹¹¹In-DTPA⁰]octreotide scintigraphy is a well established *in vivo* method used to detect SSR-expressing tumors (4), whereas therapy with SS analogs (SSAs) is effective in selected SSR-positive neuroendocrine tumors (3,5). Thus, *in vivo* and *in vitro* identification of SSR provides the rationale for the therapeutic use of SSAs. Five different SSRs have been identified so far, of which *sst*₂ is the most widely expressed. Moreover, *sst*₂ has the highest affinity for the SSA octreotide compared with the other SSAs, and high tissue *sst*₂ expression is mostly responsible for *in vivo* visualization of SSRs with SSR scintigraphy (SRS) and for the clinical response to octreotide. Therefore, *in vitro* identification of SSRs is clinically relevant. After *in vitro* identification of SSR in tumor tissue by ligand-binding techniques and RT-PCR, SSA can be used for diagnosis and therapy (6-8). Thanks to the development of antibodies specific for the different SSR subtypes, SSR expression can

Table 1. Comprehensive view of patients' characteristics and related somatostatin receptor scintigraphy and immunohistochemical findings

N.	Sex/Age	Surgery	Histotype	Stage	Associated syndrome	SRS		IHC	
						Sites of uptake	T-to-B ratios	sst _{2A}	sst ₃
1	f/57	B	B2	IVB	PRCA	Med	3.1	Scattered TE	+ TH, + TE
2	m/27	Thy	B2	II		Med	1.4	+ TE	+ TH, ± TE
3	f/48	Thy	C	IVA		Med, lung	6.3	+ TE	+ TH, ± TE
4	M/59	B	B2	IVB		Med, pleura	2.1/1.4	+ TE	+ TH, ± TE
5	f/56	Thy	B2+B3	IVA		Med	6.2	-	+ TH, ± TE
6	m/52	Thy	B2	IVA	MG	Med	3.3	-	+ TH, ± TE
7	m/53	Thy	B2	IVA		Med	3.2/1.7	-	+ TH, ± TE
8	m/23	B	SCNC	IVB		Med, cervical lymph	1.5/1.5	-	+ TH, ± TE
9	m/72	Thy	B2	III		Med	1.4	n.e.	+ TH, + TE
10	f/68	B	C	III	My	Med, lung	4.2/3.3	Scattered TE	-
11	f/67	B	SCNC	IVA		Med	3.4	+ TE	n.e.
12	m/48	Thy	B3	IVA		None	-	-	-
13	f/74	Thy	B1	IVA	MG	Med	2.6	-	-
14	f/60	B	C	IVB		Med	2.1	-	-

Abbreviations: f, female; m, male; B, biopsy, Thy, thymectomy; SCNC, small cell neuroendocrine carcinoma; PRCA, Pure Red Cell Aplasia; MG, Myasthenia Gravis; My, Myeloradiculopathy; Med, mediastinum lymph lymphnode; T-to-B, Tumor to Background ratio; n.e., not evaluated; TE, tumor epithelial cells; TH, thymocytes.

be studied by immunohistochemistry (IHC) on paraffin-embedded tissues (9,10). Preliminary reports indicated that IHC is a reliable method with which to evaluate SSR expression in carcinoids and other SSR-positive tumors (11-14). IHC is easier to perform and more practical for clinical use than RT-PCR or *in situ* hybridization methods. Furthermore, IHC reveals the exact cell localization of a given antigen-protein and can be applied on fixed material.

SSRs are differentially, but widely, expressed in normal and abnormal lymphoid tissue and immune cells, including thymic tumors (15,16). Moreover, SSR expression in thymic epithelial tumors could indicate a neoplasm originating from an organ characterized by neuroendocrine cells.

We previously demonstrated that thymic tumors can be visualized *in vivo* by SRS and have very high tumor-to-background (T-to-B) ratios (17). Moreover, patients with thymic tumors have been reported to respond to SSA-based therapies (18-20). SSR expression was not found in thymic tumors by *in vitro* autoradiographic techniques using [¹²⁵I-Tyr³]octreotide and [¹²⁵I-[Leu⁸, D-Trp²², Tyr²⁵]-SS-28, although high expression was found in thymic carcinoids and in normal thymuses (21). However, more recently, evaluation with a combination of *in vitro* techniques demonstrated the expression of sst₁, sst₂ and sst₃ in a B1 (cortical) thymoma, which was previously detected by SRS (22), and of sst₂ and sst₃ in an A (medullary) thymoma also previously imaged with SRS (23).

The aim of the present study was to verify sst_{2A} and sst₃ expression in a series of 14 thymic tumors previously imaged with SRS to verify the concordance, if any, between *in vitro* and *in vivo* results.

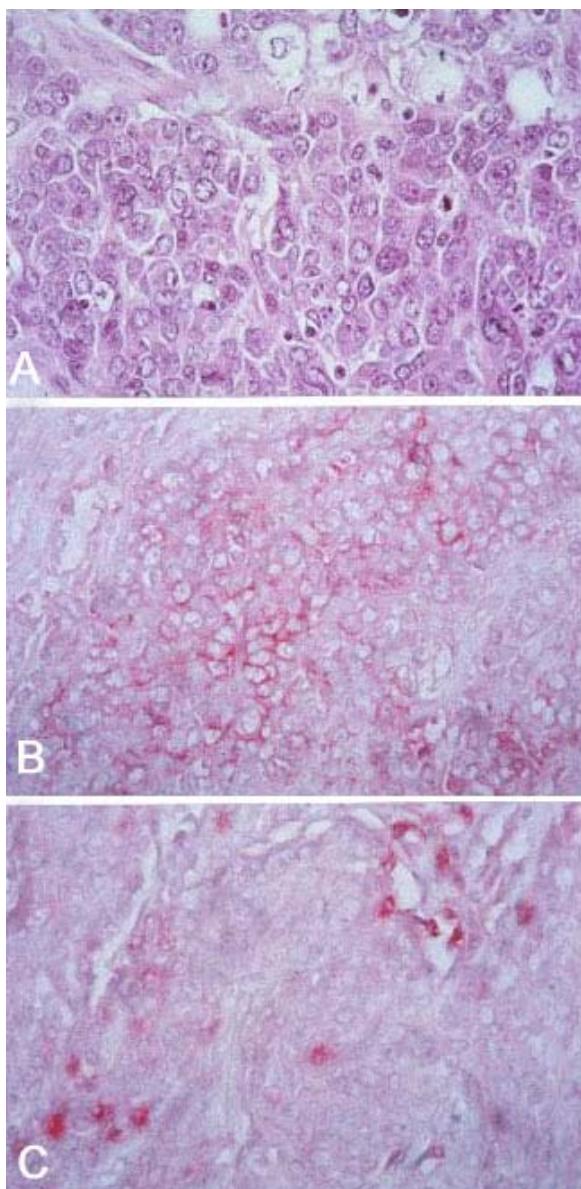
3. MATERIALS AND METHODS

3.1 Patients

Fourteen patients (7 f and 7 m, age-range: 23-74 yrs) with a diagnosis of thymic tumors were evaluated. According to the Masaoka *et al* classification (24), 1 patient was at stage II, 2 patients at stage III, 7 patients were at stage IVA and 4

patients were at stage IVB. Myasthenia gravis was the most common associated paraneoplastic syndrome in this series, whereas pure red cell aplasia was present in only one patient. One patient had also myeloradiculopathy. Six patients underwent only biopsy because of unresectable primitive tumor at presentation, whereas the others underwent thymectomy. Tumors were classified according to the 1999 WHO classification (25): 1 B1 thymoma, 6 B2 thymomas, 1 B3 thymoma, 1 combined B2+B3 thymoma, 3 C thymoma, 2 small cell neuroendocrine carcinoma (SCNC). The patients' profiles are shown in Table 1. Ethical committee approved the study and all patients gave their informed consent.

3.2. Scintigraphic studies


Scintigraphy with [¹¹¹In-DTPA]⁰octreotide (Mallinkrodt, Petten, The Netherlands) was performed as previously reported (17). Briefly, planar and tomographic images were collected 24 hrs after the i.v. injection of 180-222 MBq of radioligand. Labeling was performed according to the manufacturer's instructions; injected preparations had <2% of uncoupled ¹¹¹In. Images were obtained with a γ -camera (Siemens, Erlangen, Germany) equipped with a medium energy collimator (Photopeaks were set at 172 and 242 keV, 10% window). Tumor-to-background ratios were obtained with the regions of interest (ROIs) method. A ROI was manually drawn around the area/s of radioligand uptake; a similar ROI was placed on the patient's chest where no uptake was detectable. In each patient, the T-to-B ratio was obtained in the planar or tomographic images of the chest 24 hrs after the injection of the radioligand by dividing the counts in the thymic tumor by those in the background area.

3.3. Tissue samples

The samples of 14 histologically proven thymomas were collected and used for IHC. All samples were formalin-fixed, paraffin-embedded. Fixation was performed for 24-36 hours.

3.4. Immunohistochemical localization of sst₂ and sst₃ receptors

IHC was performed on 5- μ m paraffin-embedded sections as previously reported (22). Negative controls for

Figure 1. *In vitro* expression of somatostatin receptors in the same patient (n. 3, Table 1): a) hematoxylin-eosin staining of tumor section (magnification 400X); b) immunohistochemistry for sst_2 shows clear membrane staining (magnification 200X); c) immunohistochemistry for sst_3 shows intense focal staining (magnification 200X). Sections developed with New Fucsin/Naphtol AS-MX. The sections are slightly counterstained with haematoxylin.

IHC included omission of the primary antibody and preabsorption of the antibodies with the respective immunizing receptor peptides (at a concentration of 100 nm). A tissue was considered positive when the immunostaining was abolished by preabsorption of the antibody with the respective peptide antigen. A standard streptavidin-biotinylated-alkaline phosphatase (ABC kit, Biogenic, San Ramon, CA, USA) was used according to the manufacturer's recommendations to visualize the bound

antibodies. Sections from normal human pancreas (islets) served as positive controls. Stained slides were evaluated by three different observers, including a pathologist, unaware of the clinical study.

4. RESULTS

4.1. Somatostatin receptor scintigraphy

SRS was positive in 13 out of 14 patients. In 4 cases, there were at least two sites of abnormal radioligand uptake in the chest, whereas in the other 9 patients there was a single area of uptake. The degree of [^{111}In -DTPA 0]octreotide uptake varied greatly among the patients. The SRS results and T-to-B ratios are shown in Table 1.

4.2. Immunohistochemical detection of sst_2 and sst_3 receptors

Expression of sst_{2A} and sst_3 or their co-expression was clearly detectable by IHC in 11 out of 14 thymic tumors, whereas 3 tumors were completely negative. Immunostaining was possible for both SSR subtypes in 12 cases, and for only one subtype in 2 cases because of a limited amount of tissue and antibody. sst_3 was expressed in more than half the patients studied (9/14) while sst_{2A} was clearly detectable in 4 cases and on scattered cells in other 2 cases. The results are reported in Table 1. The B1 tumor had no SSR staining; 3/5 B2 tumors were positive for sst_{2A} and all were positive for sst_3 . The B2/3 tumor was positive only for sst_3 , whereas the B3 tumor was positive only for sst_{2A} . One C tumor was negative for both receptors, one was positive only for sst_{2A} , one was positive for both, and one SCNC was positive for sst_{2A} whereas the other was positive for sst_3 . The immunostaining was weak to moderate. However, the distribution of both subtypes was highly heterogeneous.

IHC revealed the exact location the cellular distribution of SSR within these thymic tumors. The sst_{2A} was homogenously expressed throughout the tumor in only 2 cases (n. 3 and 11) whereas immunoreactivity was highly heterogeneous in the remaining sections and was confined to limited areas in the tissue samples (n. 2 and 4), or on scattered cells (n. 1 and 10). sst_3 was expressed throughout the tumor in both cell types, but was mainly associated with thymocytes. After absorption with specific peptide antigen, the binding of these antisera was completely prevented on adjacent sections taken from all patients, which demonstrates the specificity of sst_{2A} and sst_3 immunostaining.

The expression of sst_{2A} was predominantly associated to neoplastic epithelial cells, whereas the expression of sst_3 was found mainly associated to normal reactive thymocytes. In 4 thymic tumor biopsies (n. 1-4), both sst_{2A} and sst_3 were localized. In detail, in 2 cases (n. 3 and 4) sst_{2A} immunoreactivity was present on tumor cells, whereas in the other 2 (n. 1 and *in vivo* 2) immunoreactivity was detected on few scattered cells in 1 (n. 1), and on the stromal compartment of the medullary region in the remaining case (n. 2). One of the 2 cases with immunohistochemical co-expression of sst_{2A} and sst_3 (case

3) had the highest level of [¹¹¹In-DTPA⁰]octreotide uptake *in vivo*. Figure 1 shows the co-expression of sst₂ and sst₃ in case 3. In 5 cases (n. 5-9), only sst₃ was detectable. The sst_{2A} receptor was not co-expressed in 4 of these biopsies and not measurable in the remaining one (n. 9) due to the limited amount of sample available. In 2 cases (n. 10 and 11), only sst_{2A} was expressed. sst₃ was undetectable in one of these cases and not measurable in the other case (see above). In 3 cases (n.12-14) neither sst_{2A} nor sst₃ were detectable.

4.3. Comparative analysis of *in vitro* and *in vivo* results

We next compared the results of immunostaining with the T-to-B ratios measured at SRS. The higher T-to-B ratios *in vivo* corresponded to the expression of at least one of the two SSR subtypes *in vitro*. In particular, the highest ratio was found in a patient with widespread sst_{2A} and sst₃ co-expression. The expression of both subtypes and sst_{2A} alone occurred within tumors with a high T-to-B ratio.

5. DISCUSSION

In normal thymuses, sst₁ and sst_{2A} mRNAs have been identified in thymic tissue and isolated thymic epithelial cells, whereas sst₃ mRNA has been demonstrated in thymic tissue only and in mature isolated thymocytes (26,27). However, the evidence that thymic tumors may express SSRs is poor (23). Reubi *et al* demonstrated SSRs in normal thymuses using autoradiography, and a lack of binding sites in 4 epithelial thymic tumors using autoradiography with radiolabeled SSAs (21). However, this finding appeared to be in contrast with the evidence that tumors originating from SSR-positive tissues generally express SSRs. The identification by IHC of sst_{2A} and/or sst₃ in most of our 14 thymic tumors provides the first confirmation, and in a larger series, that SSRs are expressed in this rare human malignancy.

We were unable to identify correlation between tumor histotype and SSR pattern probably because of the relatively small number of cases and of their considerable heterogeneity. However, B2 thymomas, which was the most represented in this series of tumors, expressed at least one SSR subtype. Despite their "classical" neuroendocrine phenotype, SCNC expressed only one SSR. This pattern of SSR expression supports the concept of that thymic tumors share a common neuroendocrine phenotype (28,29).

Expression of sst₃ was predominantly associated to thymocytes, whereas sst_{2A} expression was confined to malignant epithelial cells and/or within the thymic stroma (endothelium, accessory bone marrow-derived cells). Indeed, thymomas are prevalently constituted by thymic epithelial cells mixed with benign thymocytes (T lymphocyte precursors) and stromal cells (30). There are architectural differences, i.e. prevalence of cortical areas and deficiency of medullary areas, between thymic tumors and normal thymus (31). There is a strong compartmentalization in the distribution of SSRs within the normal thymus (21,26). The same was reported for other neuropeptide receptors within thymus (32). This not casually determined distribution of receptors could be

particularly important in modulating the physiological processes occurring in this organ. Different SSRs are selectively expressed in different regions and perhaps on specific epithelial cell types in the human thymus (26). Our results indicate that this complex distribution of SSR is preserved also in thymic tumors. If confirmed, this differential expression might indicate that the SS/SSR system plays a role in thymic disturbances and their relative clinical syndromes.

Although we did not find a clear correlation between histotype and SSR expression, a comparison of the scintigraphic results and immunohistochemical findings indicates that the higher T-to-B ratios *in vivo* correspond to the expression of at least one of the two SSR subtypes *in vitro*. In particular, the highest ratio occurred in one of the two patients with widespread co-expression of sst_{2A} and sst₃. sst₃ has recently been implicated in the uptake of [¹¹¹In-DTPA⁰]octreotide *in vivo* in pheochromocytomas not expressing sst_{2A} (33). We found a link between histotype and SSR expression also in one of our cases with negative SRS, in which IHC failed to detect SSR in the tumor tissue. However, T-to-B ratios were high in other two patients with tumor lacking SSR expression *in vitro*. Although the sensitivity of this technique or the sample fixation procedures might account for this discrepancy, the presence of another SSR subtype, namely sst₃, cannot be ruled out. Moreover, the *in vivo* visualization of cases found to be sst₂/sst₃-negative might also result from aspecific or specific uptake in other adjacent tissues (i.e. inflammatory tissues).

[¹¹¹In-DTPA⁰]octreotide binds with high affinity to sst₂ and with lower affinity to sst₃ and sst₅. We have evaluated 2 of these SSRs and both receptors appear to be involved in the uptake of the radiopharmaceutical. In 3 cases a high uptake *in vivo* corresponded to the selective expression of sst₃ within the tumor, confirming that, despite the lower affinity for [¹¹¹In-DTPA⁰]octreotide, sst₃ may play a role or be directly involved in the uptake of the radiotracer (26,33). Apart from the affinity, additional biological events related to membrane receptor turnover or receptor cross-talk might play a role in determining the *in vivo* uptake of radiolabeled SSAs. In fact, given the high rate of agonist-dependent internalization described in cells transfected with this receptor subtype (34), sst₃ may be involved in this process. This hypothesis is in line with recent data about neuropeptide receptor trafficking and cross talk in cells co-expressing different SSR subtypes that derive from receptor dimerization (35,36).

In conclusion, sst₂ and sst₃ appear to be highly and heterogeneously expressed in thymic tumors, without correlation with epithelial rather than neuroendocrine histotype. The immunohistochemical detection of these SSR subtypes concords with scintigraphic results obtained with [¹¹¹In-DTPA⁰]octreotide. Thus, SRS provides immediate visualization of primary and metastatic sites of tumor, whereas IHC can be used to define more precisely the pattern of SSR subtype expression. This combined approach provides diagnostic information and the results

may be useful in deciding which SSA is the most appropriate for the treatment of a given patient.

6. ACKNOWLEDGMENTS

We thank Dr. Secondo Lastoria for performing somatostatin receptor scintigraphies and for his critical review of the scintigraphic data. The outstanding collaboration of the patients who participated in this study is also acknowledged. We are grateful to Jean Ann Gilder for text revision and editing.

7. REFERENCES

1. Krenning EP, Bakker WH, Breeman WH, Koper JW, Kooij PP, Ausema L, Lameris JS, Reubi JC, Lamberts SW. Localization of endocrine-related tumors with radioiodinated analogue of somatostatin. *Lancet*, 4:242-4, (1989)
2. Lamberts SW, Bakker WH, Reubi JC, Krenning EP. Somatostatin-receptor imaging in the localization of endocrine tumors. *N Engl J Med*, 323:1246-9, (1990)
3. Lamberts SWJ, Krenning EP, Reubi JC. The role of somatostatin and its analogs in the diagnosis and treatment of tumors. *Endocr Rev*, 12:450-82, (1991)
4. Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, van Hagen M, Postema PT, de Jong M, Reubi JC. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide experience with more than 1000 patients. *Eur J Nucl Med*, 20:716-31, (1993)
5. Lamberts SWJ, van der Lely A-J, de Herder WW, Hofland LJ. Octreotide. *N Engl J Med*, 334:246-54, (1996)
6. Reubi JC, Maurer R, von Werder K, Torhorst J, Klijn GM, Lamberts SWJ. Somatostatin receptors in human endocrine tumors. *Cancer Res*, 47:551-8, (1987)
7. Reubi JC, Krenning E, Lamberts SWJ, Kvols L. Somatostatin receptors in malignant tissues. *J Steroid Biochem Mol Biol*, 37:1073-7, (1990)
8. Hofland LJ, Lamberts SWJ. Somatostatin analogs and receptors: diagnostic and therapeutic applications. In: Arnold A. Endocrine Neoplasms, Norwell, MA:Kluwer Academic Publishers, 365-82p.(1997)
9. Gu Y-Z, Brown PJ, Loose-Mitchell DS, Stork PJS, Schonbrunn A. Development and use of a receptor antibody to characterize the interaction between somatostatin receptor subtype 1 and G proteins. *Mol Pharmacol*, 58:1004-14, (1995)
10. Dornaud P, GU Y-Z, Schonbrunn A, Mazella J, Tannenbaum GS, Beaudet A. Localization of the somatostatin receptor sst2A in rat brain using a specific antipeptide antibody. *J Neurosci*, 16:4468-78, (1996)
11. Reubi JC, Kappeler A, Waser B, Laissue J, Hipkin RW, Schonbrunn A. Immunohistochemical localization of somatostatin receptors sst2A in human tumors. *Am J Pathol*, 153:233-45, (1998)
12. Hofland LJ, Liu Q, van Koetsveld PM, Zuiderveld J, van der Harn F, de Krijger RR, Schonbrunn A, Lamberts SWJ. Immunohistochemical detection of somatostatin receptor subtypes sst1 and sst2A in human somatostatin receptor positive tumors. *J Clin Endocrinol Metab*, 84:775-80, (1999)
13. Janson ET, Stridsberg M, Gobl A, Westlin J-E, Oberg K. Determination of somatostatin receptor subtype 2 in carcinoid tumors by immunohistochemical investigation with somatostatin receptor subtype 2 antibodies. *Cancer Res*, 58:2375-8, (1998)
14. Schulz S, Schulz S, Schmitt J, Wiborny D, Schmidt H, Olbricht S, Weise W, Roessner A, Gramsch C, Hollt V. Immunocytochemical detection of somatostatin receptors sst1, sst2A, sst3 in paraffin-embedded breast cancer tissue using subtype-specific antibodies. *Clin Cancer Res*, 4:2047-52, (1998)
15. Krantic S. Peptides as regulators of the immune system: emphasis on somatostatin. *Peptides*, 21:1941-64, (2000)
16. Ferone D, Resmini E, Boschetti M, Arvigo M, Albanese V, Ceresola E, Pivonello R, Albertelli M, Bianchi F, Giusti M, Minuto F. Potential indications for somatostatin analogues: immune system and lymphoproliferative disorders. *J Endocrinol Invest*, 28(Suppl 11):111-7, (2005)
17. Lastoria S, Vergara E, Palmieri G, Acampa W, Varrella P, Caraco C, Bianco AR, Muto P, Salvatore M. In vivo detection of malignant thymic masses by [111In-DTPA-D-Phe1]-octreotide scintigraphy. *J Nucl Med*, 39:634-9, (1998)
18. Palmieri G, Lastoria S, Colao A, Vergara E, Varrella P, Biondi E, Selleri C, Catalano L, Lombardi G, Bianco AR, Salvatore M. Successful treatment of a patient with thymoma and pure red cell aplasia with octreotide and prednisone. *N Engl J Med*, 336:263-5, (1997)
19. Palmieri G, Montella L, Martignetti A, Muto P, Di Vizio D, De Chiara A, Lastoria S. Somatostatin analogs and prednisone in advanced refractory thymic tumors. *Cancer*, 94:1414-20, (2002)
20. Palmieri G, Lastoria S, Montella L, Martignetti A, Lombardi G, Salvatore M, Bianco AR. Role of somatostatin analogue-based therapy in unresponsive malignant thymomas. *Ann Med*, 31Suppl2:80-5, (1999)
22. Reubi JC, Waser B, Horisberger U, Krenning E, Lamberts SW, Gebbers JO, Gersbach P, Laissue JA. In vitro and in vivo scintigraphic localization of somatostatin receptors in human lymphatic tissue. *Blood*, 82:2143-51, (1993)

23. Ferone D, van Hagen PM, Kweekkelboom DJ, van Koetsveld PM, Mooy DM, Lichtenauer-Kaligis E, Schonbrunn A, Colao A, Lamberts SW, Hofland LJ. Somatostatin receptor subtypes in human thymoma and inhibition of cell proliferation by octreotide in vitro. *J Clin Endocrinol Metab*, 85: 1719-26, (2000)

24. Ferone D, Kweekkelboom DJ, Pivonello R, Bogers AD, Colao A, Lamberts SW, van Hagen PM, Hofland LJ. In vivo and in vitro expression of somatostatin receptors in two human thymomas with similar clinical presentation and different histological features. *J Endocrinol Invest*, 24:522-8, (2001)

25. Masaoka A, Monden Y, Nakahara K, Tanioka T. Follow-up study of thymomas with special reference to their clinical stages. *Cancer*, 48:2485-92, (1981)

26. Rosai J, Sabin LH. Histological typing of tumor of the thymus. In: World Health Organization, International Histological Classification of Tumors. 2nd ed. Heidelberg, Berlin, New York, Springer-Verlag, (1999)

27. Ferone D, van Hagen PM, van Koetsveld PM, Zuiderveld J, Mooy DM, Lichtenauer-Kaligis EG, Colao A, Bogers AJ, Lombardi G, Lamberts SW, Hofland LJ. In vivo characterization of somatostatin receptors in human thymus and effects of somatostatin and octreotide on cultured thymic epithelial cells. *Endocrinology*, 140:373-80, (1999)

28. Ferone D, Pivonello R, Van Hagen PM, Dalm VA, Lichtenauer-Kaligis EG, Waaijers M, Van Koetsveld PM, Mooy DM, Colao A, Minuto F, Lamberts SW, Hofland LJ. Quantitative and functional expression of somatostatin receptor subtypes in human thymocytes. *Am J Physiol Endocrinol Metab*, 283:E1056-66, (2002)

29. Lauriola L, Erlanson RA, Rosai J. Neuroendocrine differentiation is a common feature of thymic carcinoma. *Am J Surg Pathol*, 22:1059-65, (1998)

30. Hishima T, Fukayama M, Hayashi Y, Fuji T, Arai K, Shiozawa Y, Funata N, Koike M. Neuroendocrine differentiation in thymic epithelial tumors with special reference to thymic carcinoma and atypical thymoma. *Hum Pathol*, 28:330-8, (1998)

31. Lewis JE, Wick MR, Scheithauer BW, Bernatz PE, Taylor WF. Thymoma: A clinicopathological review. *Cancer* 60:2727-43, (1987)

32. Chilosi M, Iannucci A, Menestrina F, Lestani M, Scarpa A, Bonetti F, Fiore-Donati L, DiPasquale B, Pizzolo G, Palestro G. Immunohistochemical evidence of active thymocyte proliferation in thymoma. Its possible role in the pathogenesis of autoimmune diseases. *Am J Pathol*, 128:464-70, (1987)

33. Reubi JC, Horisberger U, Kappeler A, Laissue JA. Localization of receptors for vasoactive intestinal peptide, somatostatin, and substance P in distinct compartments of human lymphoid organs. *Blood*, 92:191-7, (1998)

34. Mundschenk J, Unger N, Schulz S, Hölt V, Schulz S, Steinke R, Lehner H. Somatostatin receptor subtypes in human pheochromocytoma: subcellular expression pattern and functional relevance for octreotide scintigraphy. *J Clin Endocrinol Metab*, 88:5150-7, (2003)

35. Sharma K, Patel YC, Srikant CB. Subtype-selective induction of wild-type p53 and apoptosis, but not cell cycle arrest by human somatostatin receptor 3. *Mol Endocrinol*, 10:1688-96, (1998)

36. Pfeiffer M, Koch T, Schroder H, Klutzny M, Kirscht S, Kreienkamp HJ, Hollt V, Schulz S. Homo- and heterodimerization of somatostatin receptor subtypes. Inactivation of sst(3) receptor function by heterodimerization with sst(2A). *J Biol Chem*, 276:14027-36, (2001)

37. Pfeiffer M, Koch T, Schroder H, Laugsch M, Hollt V, Schulz S. Heterodimerization of somatostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensitization. *J Biol Chem*, 277:19762-72, (2002)

Key Words: Somatostatin Receptors, Somatostatin, Thymic Tumors, Neuroendocrine Tumors, Octreotide, Immunohistochemistry

Send correspondence to: Giovannella Palmieri, Department of Molecular and Clinical Oncology and Endocrinology, University "Federico II" via Pansini 5, 80131 Naples, Italy, Tel: 39-081-7462114, Fax: 39-081-7462114, E-mail: giovpalm@unina.it

<http://www.bioscience.org/current/vol14.htm>