

Control of cell death pathways by HTLV-1 proteins

Daniela Saggiorio¹, Micol Silic-Benussi², Roberta Biasiotto², Donna M. D'Agostino^{1,2}, Vincenzo Ciminale^{1,2}

¹*Molecular Immunology and Oncology Unit, Istituto Oncologico Veneto-IRCCS, via Gattamelata 64, I-35128 Padova, Italy,*

²*Department of Oncology and Surgical Sciences, University of Padova, via Gattamelata 64, I-35128 Padova, Italy*

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Cell death in T-cell homeostasis
4. ATLL- increased proliferation, increased survival, or both?
5. Influence of individual viral proteins on cell death pathways
 - 5.1. The Tax oncoprotein
 - 5.1.1. Tax and the NF-kappaB pathway
 - 5.1.2. Tax and the CREB pathway
 - 5.1.3. Tax and AKT
 - 5.1.4. Tax and tumor suppressor pathways
 - 5.1.5. Tax and activation-induced cell death
 - 5.2. The viral accessory proteins
 - 5.2.1. Interactions of p13 with mitochondria
 - 5.2.2. p12, T-cell activation, and calcium signalling
6. Conclusions and perspectives
7. Acknowledgements
8. References

1. ABSTRACT

Individuals infected with HTLV-1 harbor the virus mainly in CD4+ memory T-cells as a lifelong infection that remains subclinical in the majority of cases. However, about 3-5% of HTLV-1-infected individuals develop an aggressive T-cell neoplasia (ATLL) or a neurodegenerative disease (TSP/HAM) after a latency period ranging from years to decades. This review summarizes the current knowledge of the effects of the HTLV-1 proteins Tax, p13 and p12 on cell death and survival pathways. Tax, the major oncogenic determinant of HTLV-1, enhances cell survival through its effects on the NF-kappaB, CREB and AKT pathways and on the tumor suppressors p53 and Rb. p13 is targeted to the inner mitochondrial membrane and sensitizes cells to the Fas/ceramide apoptotic pathway and reactive oxygen species-mediated cell death. p12 enhances release of calcium from the endoplasmic reticulum and therefore may influence calcium-dependent apoptotic signals, including opening of the mitochondrial permeability transition pore. The long-term fate of HTLV-1-infected cells (apoptosis, survival, transformation) may therefore depend on the balance of the effects of Tax, p13 and p12 on cell death pathways.

2. INTRODUCTION

Despite nearly 3 decades of intense study, many aspects of HTLV-1 replication, persistence and pathogenesis remain to be understood (for a general review of HTLV-1, see ref. 1). The virus is the etiological agent of 2 different types of diseases: adult T-cell leukemia/lymphoma (ATLL), an aggressive T-cell neoplasm that is extremely refractory to chemotherapy, and tropical spastic paraparesis/HTLV-associated myelopathy (TSP/HAM), a progressive demyelinating disease that targets mainly the thoracic spinal cord. The viral Tax protein plays a key role in HTLV-1 replication and is a powerful oncogenic factor that is necessary and sufficient to induce T-cell transformation (reviewed in ref. 2). Tax is also highly immunogenic, and its recognition by cytotoxic T lymphocytes (CTL) in the central nervous system of TSP/HAM patients is proposed to make an important contribution to the chronic inflammatory and degenerative processes that characterize TSP/HAM (3). Nevertheless, ATLL and TSP/HAM arise in a minority (3-5%) of infected individuals after a latency period ranging from years (TSP/HAM) to decades (ATLL). Thus, the most outstanding characteristic of HTLV-1 infection is probably its life-long persistence with only rare pathologic manifestations (reviewed in ref. 4).

Resistance to apoptosis represents one of the hallmarks of cancer cells (reviewed in ref. 5), and dysregulated components of apoptotic signalling pathways represent promising anticancer drug targets (reviewed in ref. 6). In addition to playing a role in neoplastic transformation, dysregulation of apoptotic pathways has been implicated in many other pathological settings including cardiovascular, autoimmune, and neurodegenerative diseases (reviewed in ref. 7). This review is focused on selected aspects of the interactions between HTLV-1 and apoptotic pathways, and their possible connections to ATLL. Emphasis is placed on the role of the viral proteins Tax and p13 on processes influencing cell death, a topic of study in our laboratories.

3. CELL DEATH AND T-CELL HOMEOSTASIS

Although HTLV-1 is able to infect many types of cells in tissue culture, infected individuals harbor the virus mainly in CD4+/CD45RO+ memory T-cells. Normal memory T-cells are derived through a series of events that rely on properly timed apoptosis. Upon stimulation by a relevant antigen, peripheral resting T-cells undergo a massive clonal expansion. Following clearance of the antigen, the vast majority of reactive T-cell clones must undergo programmed cell death, which is of critical importance in order to maintain homeostasis of the T cell compartment. Only a small subset of antigen-specific 'memory' T-cells survive this culling process, which is termed activation-induced cell death (AICD). Interestingly, both lack of stimulation (e.g. deprivation of growth factors/cytokines) and repeated engagement of the T-cell receptor (TCR) may trigger cell death (reviewed in ref. 8). The switch from an activation-driven expansion to AICD is tightly linked to changes in Nuclear Factor-kappaB (NF- κ B) pathway regulation that result in the transition from an AICD-resistant to an AICD-susceptible T-cell phenotype. This critical step is regulated by proteolytic cleavage of the hematopoietic progenitor kinase 1 (HPK1). In its full length form, HPK1 activates the I- κ B kinase (IKK) complex resulting in activation of the NF- κ B pathway and cell survival, while its C-terminal cleaved form exerts an opposite effect on IKK and triggers cell death (reviewed in ref. 9).

Cell death in peripheral T-cells may be triggered through caspase-dependent "intrinsic" (i.e. mitochondrial) or "extrinsic" (i.e. receptor-mediated) pathways or through caspase-independent pathways. Cell death signals triggered by extrinsic stimuli are delivered through cell death receptors which assemble into a "death-inducing signalling complex" (DISC) of adaptor and signalling molecules that activate downstream caspases. One of the key events at the DISC is activation of procaspase 8 by proteolytic cleavage. Activated caspase 8 then initiates execution of the apoptotic program either directly (in "type I" cells) or through a mitochondrial amplification loop involving cleavage of Bid, a proapoptotic protein of the BCL-2 family (in "type II" cells) (10). Cleaved Bid translocates to mitochondria where it induces depolarization and

release of a number of proapoptotic factors including cytochrome c, AIF and Smac/Diablo. These events lead to activation of caspase 9 and execution of the apoptotic program. One of the most important negative regulators of the DISC in T-cells is the caspase-8 (FLICE)-like inhibitory protein (c-FLIP). Interestingly, c-FLIP expression is positively controlled by NF- κ B, thus providing a key regulatory loop that determines the fate of peripheral T-cells in response to challenge by antigenic stimuli.

T-cell death through the intrinsic pathway is regulated by the fine tuning of anti-apoptotic and pro-apoptotic BCL-2 family proteins, the latter of which trigger the release of pro-apoptotic factors upon recruitment to mitochondria. Opening of the mitochondrial permeability transition pore (PTP) also represents an important apoptotic stimulus. Among other mechanisms, PTP opening can be triggered by excessive Ca^{2+} uptake by mitochondria following release from the endoplasmic reticulum (ER) and/or after entry from the extracellular medium through plasma membrane channels (reviewed in ref. 11). In addition to controlling the intrinsic pathway of cell death, mitochondria have a strong influence on cell survival by releasing caspase inhibitors (e.g. XIAP, X-linked inhibitor of apoptosis protein).

Although the pathways leading to long term persistence of memory cells are still incompletely understood, it is clear that the fate of T-cells following antigen stimulation depends on the strength of T-cell receptor (TCR) stimulation and cytokines (12; reviewed in ref. 13). Recent studies based on deuterated glucose labelling showed that the proliferation rate of memory cells (effector memory 4.7% per day, central memory 1.5% per day) is significantly higher than that of naive cells (only 0.2% per day) (14). These findings suggest that maintenance of memory cell populations relies on replenishment through cell division, particularly in the case of effector memory cells. On the other hand, it is known that maintenance of memory cells depends on the expression levels of pro- and anti-apoptotic molecules (reviewed in ref. 15) and response to cytokines (reviewed in ref. 16), which suggests that increased survival might also be important in defining memory cell "fitness".

4. ATLL- INCREASED PROLIFERATION, INCREASED SURVIVAL, OR BOTH?

The relative contributions of increased proliferation and resistance to cell death to the phenotype of ATLL cells remain to be clarified. It is however clear that persistence of HTLV-1 in the host relies on both *de novo* infection of new host cells by virus particles, and, perhaps more importantly, on "mitotic transmission" of the integrated viral genome to daughter cells (17). This latter mode of propagation is of course tightly linked to the ability of infected cells to proliferate and persist, which, as described later, is strongly favored by the viral transactivator Tax. Indeed, recent studies of *in vivo*

HTLV-1 and cell death

lymphocyte dynamics through labelling with deuterated glucose showed a higher proliferation rate of CD4+/CD45RO+ T-cells in HTLV-1 infected subjects compared to controls; this effect correlated with Tax expression and was more prominent in TSP/HAM patients compared to asymptomatic carriers of infection (18). These findings are indirectly supported by a recent study by Sibon *et al.* (19) on T-cell clones derived from TSP/HAM patients which showed that HTLV-1-infected CD4+ T-cells accumulate as a result of increased cell proliferation. Interestingly, infected CD8+ T-cells were found to accumulate as a result of reduced cell death (19). Application of this experimental approach to ATLL cells would aid in our understanding of the contribution of proliferation to the transformed phenotype. Such a scenario would suggest that neoplastic transformation by HTLV-1 could be considered a "side effect" of mitotic transmission.

Indirect evidence for the impact of HTLV-1 infection on cell death/survival pathways has emerged from several studies based on microarray expression profiles. An array-based study carried out by Harhaj *et al.* (20) that compared the gene expression patterns of HTLV-1-immortalized T-cells and normal T-cells revealed a large number of differentially expressed genes involved in controlling apoptosis, with down regulation of pro-apoptotic genes, e.g. TNF-alpha, TNF receptors, caspase 3 and Bax, and up regulation of anti-apoptotic genes, e.g IAP-1, I-309 and NIP3 (20). Ruckes *et al.* (21) compared the expression patterns of cells obtained from ATLL patients and uninfected stimulated PBMC. Among the differentially expressed genes identified, these authors highlighted the up regulation of I-309, an anti-apoptotic chemokine that binds the CCR8 receptor and provides an anti-apoptotic autocrine loop in ATLL cells (21). Pise-Masison *et al.* (22) identified 763 genes differentially expressed in HTLV-1 infected cells. Among these, the authors describe significant upregulation of anti-apoptotic genes (e.g. HIAP-1, API1, Bcl-xL, I-309) as well as downregulation of pro-apoptotic genes (caspase-8, -4 and -6). More recently, Akl *et al.* (23) used microarray analysis to investigate gene expression profiles in the HTLV-1-infected cell line WE17/10. This study identified many apoptosis-related genes whose expression changed in HTLV-1-infected cells, including downregulation of granzymes B and A, two key proteases required for CTL-induced cell death, and the CD7 surface receptor, which promotes T-cell death upon engagement with its ligand, galectin-1 (23).

As described below, functional analyses of individual viral proteins have provided convincing evidence that HTLV-1 infection is capable of causing major perturbations in cell death pathways. The fact that ATLL cells exhibit many genetic abnormalities is a clear indication that the transformation process involves mechanisms that override the activation of death pathways that are normally activated in response to DNA damage. In line with this idea, ATLL cells exhibit

a marked resistance to genotoxic chemotherapeutic agents (reviewed in refs. 24, 25).

5. INFLUENCE OF INDIVIDUAL VIRAL PROTEINS ON CELL DEATH PATHWAYS

5.1. The Tax oncoprotein

Tax is generally recognized as the major oncogenic protein coded by HTLV-1 (reviewed in ref. 2). Tax plays a key role in controlling turnover of infected cells both by driving proliferation and by affecting cell survival. Consistent with these functions, Tax was shown to be necessary and sufficient for transformation of CD4+ T-cells, a hallmark of ATLL. Indeed, Tax immortalizes human lymphocytes when expressed in a herpesviral or retroviral vector (26, 27), and causes leukemia in transgenic mice (28). In addition to functioning as an essential transactivator of the viral long terminal repeat (LTR), Tax regulates the expression and activity of a number of cellular genes by serving as a transcriptional cofactor for the cAMP responsive element-binding protein (CREB), NF-kB, and the serum responsive factor (SRF) pathways (reviewed in refs. 25, 29). The long list of cellular genes affected by Tax includes proto-oncogenes, cytokines, growth factor receptors, cyclin-dependent kinases, inhibitors of cyclin-dependent kinases, and genes involved in DNA repair, cell adhesion and apoptosis (2). Tax also exerts its pleiotropic functions through direct interaction with numerous cellular proteins (30-32), many of which participate in signal transduction pathways (33). In addition, Tax has been shown to increase genomic instability and mutation frequency (reviewed in ref. 34).

The contribution of Tax to apoptosis has been documented in numerous studies. Initial findings were contradictory, with Tax reported to possess either pro-apoptotic (35-41) or anti-apoptotic (42-49) activity. However, studies of the effects of Tax on gene expression clearly demonstrate that it suppresses a wide range of pro-apoptotic factors and stimulates expression of factors acting as apoptosis inhibitors (22, 50-52). It is currently accepted that Tax's anti-apoptotic activity overrides its potential apoptotic effects, with its overall impact on cell survival determined by multiple coexisting signaling events. Four major cellular targets are engaged by Tax to overcome apoptosis: the NF-kB pathway, the CREB pathway, the AKT pathway, and tumor suppressor functions. As summarized by N. Mori. in this issue, components of these pathways are being investigated as possible targets for therapy of ATLL.

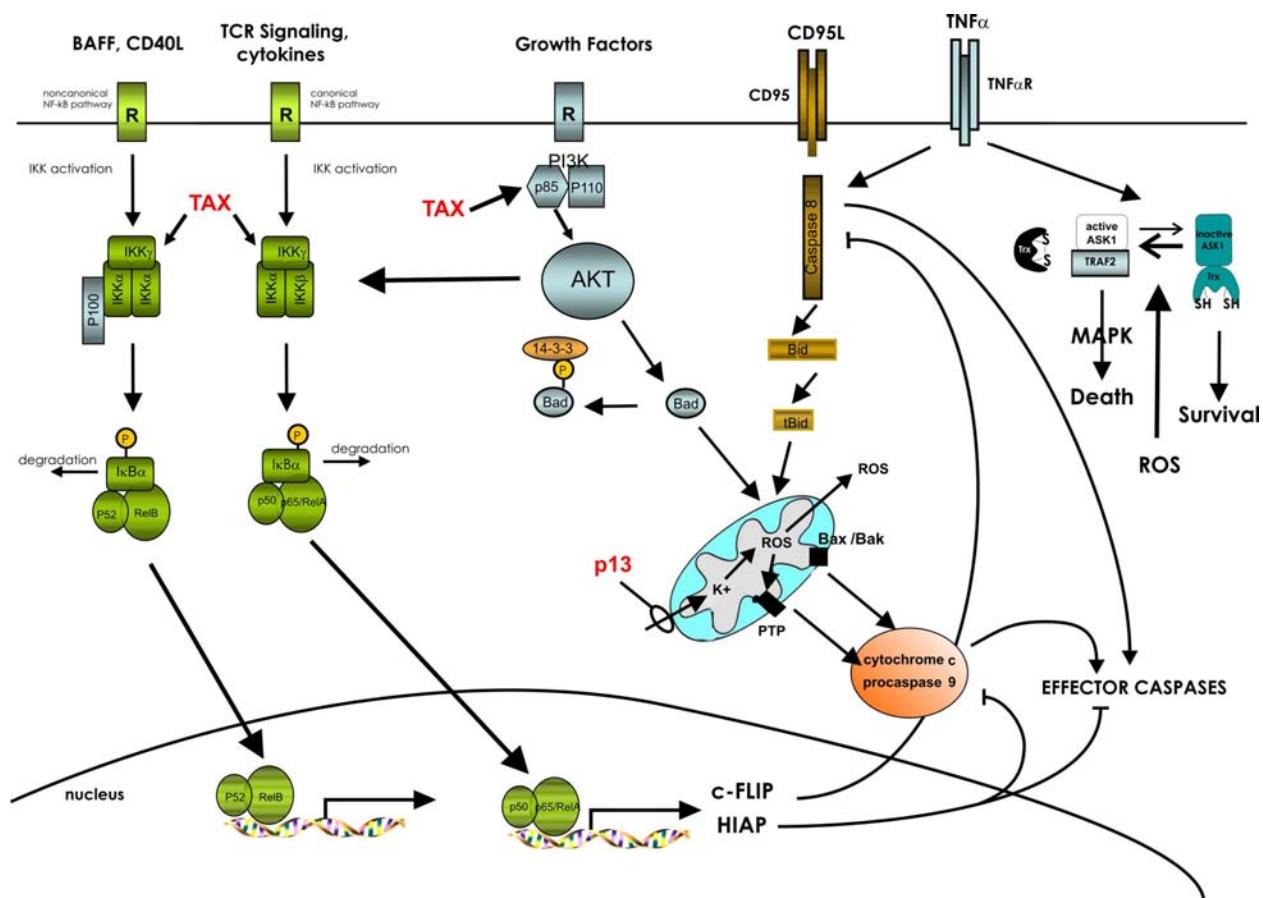
5.1.1. Tax and the NF-kB pathway

NF-kB is normally regulated through its cytoplasmic retention by physical interaction with specific inhibitor proteins called IkappaB. Phosphorylation of IkappaBs by the IKK complex, which is composed of catalytic subunits IKKalpha and IKKbeta and a non catalytic scaffolding subunit IKKgamma/NEMO, leads to their ubiquitination and degradation, thus leaving NF-kB free to translocate to the nucleus. Most of the inducible NF-kB responses are mediated by NF-kB p50-p65 (RelA)

heterodimers, in the so-called canonical pathway of NF- κ B activation. A second, non canonical pathway of NF- κ B activation involves IKK1alpha-mediated phosphorylation and subsequent processing of NF- κ B2/p100 to p52/RelB dimers (reviewed in ref. 53). Under physiological conditions, non canonical NF- κ B activation occurs primarily in B cells and lymphoid stromal cells (54); in T-cells the signals mediating NF- κ B activation are transient and stimulate predominantly the canonical pathway, a property shared with most other cell types. In contrast, NF- κ B is constitutively activated in both HTLV-1-transformed T-cell lines and freshly isolated ATLL cells (55-58). This property has been ascribed to Tax through its interactions with several NF- κ B members, including RelA, p50, and p52. Tax also interacts with members of the IkappaB family such as IkappaBalph and the precursor proteins p105 and p100. While such interactions might contribute to the activation of the NF- κ B pathway by Tax, the finding that IkappaBalph undergoes constitutive phosphorylation and degradation in HTLV-1-infected T-cells highlights the relevance of IKK in Tax-mediated NF- κ B activation. Constitutive activation of IKK by Tax has been demonstrated in both non-lymphoid and T-cell systems (59, 60). The formation of Tax/IKK complexes relies on physical interactions between Tax and the IKKgamma subunit (60-62). Another hallmark of Tax-stimulated NF- κ B activation is the marked induction of non canonical p100 processing leading to the generation of p52 in addition to the canonical NF- κ B members. As demonstrated for canonical NF- κ B activation, Tax-mediated induction of p100 processing requires its physical interaction with the IKKalpha subunit (63).

The NF- κ B pathway is intimately linked to the survival pathways of mammalian cells, and its activation is therefore considered important for the proliferation of HTLV-1-infected cells and their escape from death. In line with this idea, inhibition of NF- κ B activity by antisense oligonucleotides to RelA/p65 in Tax-transformed fibroblasts leads to suppression of growth and impaired tumorigenicity in mice (64). A more recent study reported the induction of ATLL cell death by using specific NF- κ B pathway inhibitors (65, 66).

Waldele *et al.* (67) described the upregulation of the anti-apoptotic protein HIAP-1 (human inhibitor of apoptosis 1) in HTLV-1-transformed and ATLL-derived cells. HIAP-1 acts by inhibiting caspases 3, 7, and 9. Interestingly, HIAP-1 expression is stimulated by Tax through the NF- κ B pathway. Silencing HIAP-1 by RNAi triggered caspase 3- and 7-mediated apoptosis in HTLV-1 transformed T-cells, but did not affect an HTLV-1 negative T-cell tumor cell line (HuT-78). This finding suggests that HTLV-1 infection/transformation "per se" somehow engages pathways activating apoptosis and that Tax-mediated induction of HIAP-1 is required for survival of HTLV-1-transformed cells. Although the apoptotic trigger that Tax-induced HIAP-1 must overcome remains to be identified, one interesting candidate is the p13 protein which, as described below, sensitizes cells to death.


As mentioned in the preceding section, long-term survival of normal peripheral T-cells depends on the concerted action of stimulatory and costimulatory molecules controlling both clonal expansion and long term persistence of antigen-specific clones. Interestingly, the costimulatory receptor 4-1BB (TNFRSF9/CD137/ILA) was shown to be significantly upregulated in HTLV-1-infected cell lines (68). In analogy to HIAP-1, 4-1BB is also induced through Tax-mediated stimulation of the NF- κ B pathway. An analysis of *ex vivo* samples from infected patients revealed a strong correlation between levels of Tax and 4-1BB expression. HTLV-1-transformed cell lines also express 4-1BB ligand, suggesting that an autocrine loop might control survival of these cells. Nevertheless, 4-1BB ligand was not expressed in cells isolated *ex vivo* from infected individuals, suggesting that *in vivo* stimulation of 4-1BB may result from the interaction of infected cells with antigen-presenting cells (e.g. B-cells and macrophages) that express the 4-1BB ligand. Ligand-engaged 4-1BB receptors could then activate both the canonical and non-canonical NF- κ B pathways, thus resulting in a positive feedback amplification of NF- κ B-mediated expression of anti-apoptotic factors (Figure 1).

5.1.2. Tax and the CREB pathway

CREB is an ubiquitously expressed transcription factor. The key steps involved in CREB-mediated gene transcription include dimerization, binding to response elements in DNA, and phosphorylation (reviewed in ref. 69). The precise succession of events and in particular whether phosphorylation precedes or follows dimerization (70) remain to be clarified. Many kinases can phosphorylate CREB, and different phosphorylation sites in the protein differentially regulate its activity. Phosphorylation at Ser-133 stimulates the recruitment of CREB-binding protein (CBP)/p300 (71, 72), leading to activation of gene transcription, while phosphorylation at Ser-142 promotes the dissociation of the CREB dimer and a consequent reduction in CREB-mediated transcription (69).

The vast number and functional diversity of CREB-regulated genes (73) indicate that CREB is of critical importance in many processes including cell survival/death (74-76). CREB activation or overexpression has also been found to play a role in both normal hematopoiesis and development of leukemia (77-80).

Our studies of the antiapoptotic effects of Tax provided evidence indicating that its ability to transactivate CREB, rather than its NF- κ B transcriptional activity, is important in preventing cell death and that the protective effect is due to a block in the apoptotic program regulated by mitochondria (49, 81). The relevance of an active CREB pathway in protection from apoptosis is further supported by results obtained by triggering CREB activation with forskolin (reduced apoptosis) or conversely by inducing a specific block in CREB transactivation using dominant negative CREB mutants (increased apoptosis) (82, 83). We also observed

Figure 1. Major survival/death pathways controlled by HTLV-1 proteins. Indicated are the major survival pathways affected by HTLV-1: (i) NF-κB, which is activated by the Tax oncoprotein and controls the expression of pro-survival genes (e.g. the indicated c-FLIP and HIAP inhibitors of apoptosis), (ii) the PI3K-AKT pathway, also activated by Tax, acts by inhibiting the proapoptotic protein Bad and by activating the NF-κB pathway, (iii) receptor-mediated death (e.g. through CD95/Fas) is inhibited by a Tax/ NF-κB-mediated upregulation of c-FLIP, (iv) p13 may favor cell death by enhancing the response to certain apoptotic stimuli (e.g. C2-ceramide and FasL) and/or by a modulation of ROS production by mitochondria. Changes in the cellular REDOX state are known to affect cell survival through the oxidation of thioredoxin (TRX), which results in dissociation of TRX from the ASK1 kinase which, through binding to TRAF2, triggers cell death.

that HeLa cells expressing Tax exhibit higher levels of CREB phosphorylation at Ser-133 compared to control cells, indicating that Tax might influence the phosphorylation state of CREB (83). In line with our observations, Kim *et al.* (84) reported that CREB is constitutively phosphorylated at Ser-133 in HTLV-1-infected T-cell lines and that Tax expression directly enhances CREB phosphorylation. Thus, together with previous data suggesting a role for CREB in activating anti-apoptotic genes such as BCL-2 and BCL-xL (85-87), these findings indicate that the Tax/CREB interaction is not only involved in the regulation of viral gene transcription, but may also play a relevant role in promoting the survival of HTLV-1-infected cells.

5.1.3. Tax and AKT

AKT, also known as protein kinase B (PKB), is a serine/threonine kinase that functions as a regulator of cell survival and proliferation. Indeed, aberrant activation of the AKT pathway is common in many cancers and

contributes to resistance to chemotherapy. The importance of AKT to cell survival is due to its regulation of multiple target pathways through phosphorylation of critical proteins. For example, AKT-mediated phosphorylation of Bad, a pro-apoptotic member of the BCL-2 family, results in the loss of Bad's apoptotic activity (reviewed in ref. 88). AKT is also a signalling intermediate upstream of NF-κB- and CREB-mediated pathways controlling expression of 'survival' genes (reviewed in ref. 89). Peloponese *et al.* (90) reported that activated AKT triggers activation of activator protein-1 (AP-1), which is highly expressed in many invasive cancers as well as in ATLL. AKT also regulates cyclin D1, probably through interaction with the p27 and p21 proteins (89). AKT activation is regulated by phosphatidylinositol 3-kinase (PI3K) through site-specific phosphorylation; full activation of AKT requires its phosphorylation at Ser-473. AKT is often activated in HTLV-1-transformed cells, a property which is accompanied by its phosphorylation at Ser-473 and Thr-

308 (91). Peloponese *et al.* (90) proposed that Tax might promote AKT activation by directly interacting with the p85 subunit of PI3K. Furthermore, the upstream PI3K/AKT/mTOR (mammalian Target of Rapamycin) pathway was also found to be activated in HTLV-1-transformed cells (92); consistent with these findings, treatment with PI3K inhibitors induces death of Tax-expressing cells (92, 93).

5.1.4. Tax and tumor suppressor pathways

The effects of HTLV-1 on cell death are also linked to the ability of Tax to interfere with the activities of the two key tumor suppressors p53 and Rb. The tumor suppressor function of p53 reflects, to a major extent, its ability to trigger death of cells subjected to metabolic, oncogenic or genotoxic stress. In addition, p53 modulates regulatory factors involved in cell cycle arrest, senescence, apoptosis, DNA repair and angiogenesis (reviewed in refs. 94, 95). Therefore, Tax-mediated interference with these p53 functions might play a key role in promoting genetic instability and transformation in T-cells harboring HTLV-1. Interestingly, in contrast to most other human tumors, relatively few ATLL cases present p53 mutations; instead, it has been reported that ATLL tumor cells and HTLV-1 transformed cell lines contain elevated levels of functionally inactive p53 protein (96, 97) rather than genetic alterations of p53. It has been demonstrated that Tax is sufficient for abrogation of the transactivating function of p53 through a mechanism that likely does not involve direct physical interaction between the two proteins (98, 99).

Different, and in part contradictory, mechanisms have been proposed for Tax-mediated inhibition of p53 function. Pise-Masison *et al.* reported that p53 is hyperphosphorylated at Ser-15 and Ser-392 in HTLV-1-infected cells and indicated the NF- κ B pathway as responsible for this effect (98, 100). Although phosphorylation at these residues had no effect on the ability of p53 to bind to DNA, it prevented its interaction with the basal transcription factor TFIID and with MDM2, leading, respectively, to impairment of p53 transcriptional function and stabilization. More recently the same group (101) demonstrated that Tax favours the formation of p65 (RelA)-p53 complexes and that this interaction requires Ser-15 and Ser-392 phosphorylation. In contrast to these observations, Ariumi *et al.* (99) found that phosphorylation at Ser-15 was not the major cause of Tax-mediated p53 inactivation and instead implicated the CREB pathway in a mechanism involving competition between Tax and p53 for binding with the coactivator CBP/p300. Involvement of the CREB pathway in Tax-mediated p53 inactivation was also proposed by Mulloy *et al.* (46). The AKT pathway was recently identified as an additional component in the mechanism of Tax-induced p53 inactivation. Indeed, inhibition of AKT was found to prevent Tax-mediated p53 stabilization and functional inactivation, and was associated with increased expression of MDM2, a negative regulator of p53 (91). Interestingly, the response of ATLL patients to treatment with the antiretroviral drug azidothymidine depends on the tumor's p53 status, as patients with mutated p53 fail to respond to this treatment (102).

In addition to its effects on p53, Tax was also shown to inactivate the Rb tumor suppressor by favoring its hyperphosphorylated/inactive form (31) and by targeting it to proteasomal degradation (103). However, given the role of Rb as a principal regulator of cell proliferation, we can presume that the effects of Tax on Rb are likely to affect proliferation rather than cell death.

5.1.5. Tax and AICD

As mentioned above (see Section 3), receptor-mediated pathways and expression of the apoptosis inhibitor c-FLIP are major determinants of the fate of peripheral T-cells in response to challenge by antigenic stimuli. Interestingly, Krueger *et al.* recently demonstrated that HTLV-1-infected cell lines generated from infected patients express high levels of c-FLIP. Furthermore, both the levels of c-FLIP expression and resistance to CD95-triggered cell death were found to be tightly linked with Tax expression. These findings suggest that Tax might perturb a physiological mechanism that controls clearance of antigen-reactive T-cells, resulting in expansion and long-term persistence of infected cell pools (104).

5.2. The viral accessory proteins

In addition to the structural proteins Gag, Pro, Pol, Env and the essential regulatory proteins Tax and Rex, the HTLV-1 genome encodes a number of additional proteins of incompletely defined function termed 'accessory proteins' (reviewed in refs. 105, 106). Two of these proteins, namely p13 and p12, may be implicated in the control of cell death pathways. Although p13 and p12 are dispensable for viral replication and immortalization of cells in tissue culture (107, 108), further experiments carried out in a rabbit model indicated that they are essential for establishing an infection *in vivo* (109, 110).

5.2.1. Interactions of p13 with mitochondria

p13 is a 87-amino acid protein that corresponds to the C-terminal portion of another accessory protein named p30 (reviewed in refs. 111, 112). Although occasionally detected in the nucleus (113), p13 is mainly localized in mitochondria (114). Functional mapping studies demonstrated that p13 contains a mitochondrial targeting signal spanning amino acids 21-30; this sequence includes 4 arginines that form a positively charged face within an amphipathic alpha-helix.

HeLa and Jurkat cell lines stably transfected with p13 show an inhibition of growth at high densities compared to controls (115). p13 also suppresses growth of experimental tumors derived from HeLa cells, which are normally highly tumorigenic, and interferes with transformation of primary fibroblasts by the Ras and Myc oncogenes (115).

Expression of p13 *per se* does not appear to be an apoptotic stimulus. However, p13-expressing Jurkat T-cells are sensitized to apoptosis induced by FasL and C-2 ceramide (115, 116). This effect of p13 probably involves an alteration in the Ras pathway, as cell death can be blocked by pretreating the cells with inhibitors of prenylation, a post-translational modification important

for Ras activity (116). The involvement of Ras in p13-mediated function is also suggested by p13's capacity to interact with farnesyl pyrophosphate synthase, a key enzyme in the synthesis of substrates required for Ras prenylation (117).

Mitochondria and the ER modulate calcium signalling, and vice versa, calcium regulates several processes in these organelles such as mitochondrial motility (118), activation of key metabolic enzymes, stimulation of ATP production and aerobic metabolism, and allosteric modulation of ER Ca^{2+} -release channels (reviewed in ref. 119). Furthermore, excessive calcium accumulation in mitochondria causes matrix swelling, opening of the mitochondrial PTP and release of apoptogenic factors such as cytochrome c and AIF (reviewed in ref. 120). The mitochondrial localization of p13 and its effects on mitochondrial morphology therefore prompted us to test whether the protein might influence calcium homeostasis. Results of *in vitro* assays carried out on isolated mitochondria demonstrated that a peptide spanning the active portion of p13 changes mitochondrial conductance of Ca^{2+} ; however, this effect required relatively high doses of the peptide (121). Additional experiments carried out on transfected HeLa cells showed that p13 increases phosphorylation of CREB on serine 133 in response to histamine (115), which works by augmenting the levels of cytosolic Ca^{2+} . This result suggests that p13 indeed influences calcium homeostasis, through a mechanism that is probably complex. In particular, the net effect of p13 on Ca^{2+} -mediated signalling versus apoptosis might depend on the ability of mitochondria to maintain their inner membrane potential. Depolarized mitochondria will have a reduced capacity to take up cytosolic Ca^{2+} released from the ER, resulting in prolonged amplitude and duration of the calcium signal. The situation might be different when mitochondria are partially depolarized: such mitochondria will be able to accumulate Ca^{2+} , which in turn could sensitize opening of the permeability transition pore and trigger apoptosis.

Our most recent experiments aimed at dissecting the mechanism of p13 function showed that it mediates K^+ influx in mitochondria, resulting in partial depolarization. Interestingly, in the presence of abundant O_2 and substrates, this effect is partially compensated by an increase in the activity of the respiratory chain, which couples substrate oxidation and electron transport with H^+ extrusion. This finding is of interest in the context of cell survival, since the mitochondrial respiratory chain is one of the major sources of reactive oxygen species (ROS), which have recently emerged as important mediators of both cell activation and death (reviewed in refs. 122, 123). Indeed, we observed that p13 increases the levels of ROS when cells are cultivated under conditions of metabolic stress such as glucose deprivation. This effect is accompanied by increased cell death, probably due to a lowering of the threshold for opening of the PTP (Silic-Benussi *et al.*, manuscript submitted).

5.2.2. p12, T-cell activation, and calcium signalling

p12 is a 99-amino acid, hydrophobic protein that contains 2 putative transmembrane domains, 4 putative SH-3 domains, and a calcineurin binding motif. p12 accumulates mainly in the ER (113) and Golgi (124, 125). Initial functional studies of p12 showed that it is able to increase the *in vitro* transforming activity of the bovine papillomavirus E5 protein, with which it shares about 50% sequence identity; a possible cooperative role for p12 in HTLV-1 transformation was therefore proposed (126).

Analysis of p12 in the context of T-cells showed that it interacts with the IL-2R beta and gamma chains and downregulates their surface expression (127). Additional experiments demonstrated that p12's interaction with the IL-2R beta chain results in activation of the JAK-STAT5 signal transduction-transcription pathway (128). Another indication that p12 positively influences T-cell activation steps is provided by a study showing that the protein is required for efficient infection of quiescent primary lymphocytes (129).

In addition to promoting activation of infected cells, p12 might interfere with their lysis by CTL. In fact, p12 is able to bind to free MHC class I heavy chains; this interaction disrupts association of heavy chains with beta2-microglobulin and results in reduced expression of MHC-I on the cell surface, thus impairing recognition of infected cells by CTL (125). HTLV-1-infected T-cells are also resistant to killing by NK cells, in part due to p12-dependent down-modulation of ICAM-1 and ICAM-2, which mediate adhesion of NK to infected target cells (130). These properties suggest that p12 might play an important role in escape from immune surveillance resulting in long term survival/persistence of infected cells, and are consistent with the finding that p12 is required to establish a persistent infection in rabbits (109).

Another intriguing activity of p12 is its ability to augment Ca^{2+} release from the ER (131), which leads to activation of the NFAT transcription factor (132). This effect involves interaction of p12 with calnexin and calreticulin (124), two proteins of the ER that regulate storage and release of Ca^{2+} from this organelle, as well as calcineurin (133), a calcium/calmodulin-dependent phosphatase responsible for activation of NFAT. Microarray analyses of Jurkat T-cells stably expressing p12 indicated that the protein increases expression of genes known to be regulated by calcium and influences networks of genes involved in T-cell signalling, cell proliferation, and apoptosis (134).

The influence of p12 on release of calcium from the ER is of particular interest in light of the complex interplay between the ER and mitochondria in controlling calcium homeostasis. The observations indicating that p13 and p12 modulate calcium signalling are in line with the recent finding that HTLV-1 infected cells show important alterations in calcium homeostasis (23).

6. CONCLUSIONS AND PERSPECTIVES

The information gathered so far on the activities of Tax, p12 and p13 suggest interesting functional interactions at the level of apoptotic signalling that might

play a role in the development of ATLL. The fact that Tax protects cells from apoptosis induced by mitochondria-mediated stimuli and evidence that p13 may trigger cell death in response to specific signals (e.g., C2-ceramide) or metabolic conditions (glucose deprivation) suggest that these two viral proteins might have opposite effects on cell death. Balanced expression of p13 and Tax might therefore be important for maintaining the survival and proliferation of infected cells at a level compatible with viral persistence and long term survival of the host. In alternative, Tax and p13 might cooperate in promoting cell transformation. This possibility is linked to the observation that p13 influences production of ROS by mitochondria. If unopposed, increased ROS levels could lead to accumulation of genetic lesions and sensitize cells to apoptosis, which however might be offset by the pro-survival effects of Tax, resulting in accumulation of DNA damage and progression towards the neoplastic phenotype.

The effects of p13 on ROS production are interesting also in light of previous studies which documented alterations in ROS and ROS-scavenging pathways in HTLV-1 infection. In particular, Tax is known to modulate ROS levels and trigger apoptosis in activated T-cells, an effect that is stimulated by the CD3/TCR pathway (135). Furthermore, ROS levels were found to modulate expression from the viral promoter (136). HTLV-1 infected cells produce and release in the medium large amounts of the scavenger protein thioredoxin (TRX) (137). In addition to its ROS-scavenging capacity, TRX also functions as a powerful REDOX sensor and signalling molecule controlling receptor-mediated cell death. In fact, reduced TRX binds and inhibits the ASK1 kinase, while oxidized TRX dissociates from ASK1, leading to its assembly with TRAF-2 and activation of the p38/JNK pathways that trigger cell death (Figure 1). It will thus be interesting to investigate whether p13 and Tax modulate the sensitivity to death receptor-mediated cell death (and, possibly, AICD), by controlling the REDOX state of TRX.

The effects of p13 and p12 are very likely to intersect at the level of Ca^{2+} homeostasis, which is known to be altered in HTLV-1-infected cells (23). As described above, p12 increases calcium release from the ER stores, while p13 may either decrease the Ca^{2+} uptake capacity of mitochondria (as a result of depolarization) or sensitize mitochondria to opening of the PTP (when mitochondria retain some membrane potential and are therefore competent for Ca^{2+} uptake). Combined expression of p12 and p13 might therefore result in an increase in the duration and amplitude of cytosolic Ca^{2+} transients, which could have important effects on activation of NFAT, or potentiate apoptosis triggered by PTP opening.

Experiments aimed at reconstructing the complexity of HTLV-1 biology/pathogenesis by testing the functional interactions between Tax, p12 and p13 should yield useful information regarding the impact of these proteins on T-cell survival pathways. Understanding of the functional interactions of these proteins would also benefit from information on the relative amount and

timing of expression of the different regulatory and accessory proteins in the context of natural HTLV-1 infection, a topic that is currently under investigation in our laboratory.

7. ACKNOWLEDGMENTS

We thank Luigi Chieco-Bianchi, Paolo Bernardi, Charles Bangham and Luc Willems for their generous sharing of ideas and reagents. This work was supported by grants from the European Union ('The role of chronic infections in the development of cancer'; contract no. 2005-018704), the Istituto Superiore di Sanità AIDS research program, the Associazione Italiana per la Ricerca sul Cancro, the Ministero per l'Università e la Ricerca Scientifica, e Tecnologica Progetti di Ricerca di Interesse Nazionale, and the University of Padova. This paper is dedicated to the memory of our friend and collaborator Ralph Grassmann.

8. REFERENCES

1. M. D. Lairmore. & G. Franchini: Human T-cell leukemia virus types 1 and 2. In: *Fields Virology*, Fifth Edition. Eds: Knipe D. M., Howley P. M., Lippincott Williams and Wilkins, Philadelphia (2007)
2. Grassmann R, M. Aboud, K. T. Jeang: Molecular mechanisms of cellular transformation by HTLV-1 Tax. *Oncogene* 24, 5976-5985 (2005)
3. Kubota R, S. S. Soldan, R. Martin, S. Jacobson: Selected cytotoxic T lymphocytes with high specificity for HTLV-I in cerebrospinal fluid from a HAM/TSP patient. *J Neurovirol* 8, 53-57 (2002)
4. Taylor G P, M. Matsuoka: Natural history of adult T-cell leukemia/lymphoma and approaches to therapy. *Oncogene* 24, 6047-6057 (2005)
5. Hanahan D, R. A. Weinberg: The hallmarks of cancer. *Cell* 100, 57-70 (2000)
6. Meier P, K. H. Vousden: Lucifer's labyrinth--ten years of path finding in cell death. *Mol Cell* 28, 746-754 (2007)
7. Jana S, J. Paliwal: Apoptosis: potential therapeutic targets for new drug discovery. *Curr Med Chem* 14, 2369-2379 (2007)
8. Krammer P H, R. Arnold, I. N. Lavrik: Life and death in peripheral T cells. *Nat Rev Immunol* 7, 532-542 (2007)
9. Brenner D, P. H. Krammer, R. Arnold: Concepts of activated T cell death. *Crit Rev Oncol Hematol* 66, 52-64 (2008)
10. Scaffidi C, S. Fulda, A. Srinivasan, C. Friesen, F. Li, K. J. Tomaselli, K. M. Debatin, P. H. Krammer, M. E. Peter: Two CD95 (APO-1/Fas) signaling pathways. *EMBO J* 17, 1675-1687 (1998)

HTLV-1 and cell death

11. Rasola A, P. Bernardi: The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. *Apoptosis* 12, 815-833 (2007)
12. Valitutti S, S. Muller, M. Celli, E. Padovan, A. Lanzavecchia: Serial triggering of many T-cell receptors by a few peptide-MHC complexes. *Nature* 375, 148-151 (1995)
13. Lanzavecchia A, F. Sallusto: Progressive differentiation and selection of the fittest in the immune response. *Nat Rev Immunol* 2, 982-987 (2002)
14. Macallan D C, B. Asquith, A. J. Irvine, D. L. Wallace, A. Worth, H. Ghattas, Y. Zhang, G. E. Griffin, D. F. Tough, P. C. Beverley: Measurement and modeling of human T cell kinetics. *Eur J Immunol* 33, 2316-2326 (2003)
15. Rathmell J C, C. B. Thompson: Pathways of apoptosis in lymphocyte development, homeostasis, and disease. *Cell* 109 Suppl, S97-107 (2002)
16. Schluns K S, L. Lefrancois: Cytokine control of memory T-cell development and survival. *Nat Rev Immunol* 3, 269-279 (2003)
17. Overbaugh J, C. R. Bangham: Selection forces and constraints on retroviral sequence variation. *Science* 292, 1106-1109 (2001)
18. Asquith B, Y. Zhang, A. J. Mosley, C. M. de Lara, D. L. Wallace, A. Worth, L. Kaftantz, K. Meekings, G. E. Griffin, Y. Tanaka, D. F. Tough, P. C. Beverley, G. P. Taylor, D. C. Macallan, C. R. Bangham: *In vivo* T lymphocyte dynamics in humans and the impact of human T-lymphotropic virus 1 infection. *Proc Natl Acad Sci U S A* 104, 8035-8040 (2007)
19. Sibon D, A. S. Gabet, M. Zandek, C. Pinatel, J. Thete, M. H. Delfau-Larue, S. Rabaaoui, A. Gessain, O. Gout, S. Jacobson, F. Morteux, E. Wattel: HTLV-1 propels untransformed CD4 lymphocytes into the cell cycle while protecting CD8 cells from death. *J Clin Invest* 116, 974-983 (2006)
20. Harhaj E W, L. Good, G. Xiao, S. C. Sun: Gene expression profiles in HTLV-1-immortalized T cells: deregulated expression of genes involved in apoptosis regulation. *Oncogene* 18, 1341-1349 (1999)
21. Ruckes T, D. Saul, J. Van Snick, O. Hermine, R. Grassmann: Autocrine antiapoptotic stimulation of cultured adult T-cell leukemia cells by overexpression of the chemokine I-309. *Blood* 98, 1150-1159 (2001)
22. Pise-Masison C A, M. Radonovich, R. Mahieux, P. Chatterjee, C. Whiteford, J. Duvall, C. Guillerm, A. Gessain, J. N. Brady: Transcription profile of cells infected with human T-cell leukemia virus type I compared with activated lymphocytes. *Cancer Res* 62, 3562-3571 (2002)
23. Akl H, B. M. Badran, N. E. Zein, F. Bex, C. Sotiriou, K. E. Willard-Gallo, A. Burny, P. Martiat: HTLV-I infection of WE17/10 CD4+ cell line leads to progressive alteration of Ca²⁺ influx that eventually results in loss of CD7 expression and activation of an antiapoptotic pathway involving AKT and BAD which paves the way for malignant transformation. *Leukemia* 21, 788-796 (2007)
24. Kfouri Y, R. Nasr, O. Hermine, H. de The, A. Bazarbachi: Proapoptotic regimes for HTLV-I-transformed cells: targeting Tax and the NF-κB pathway. *Cell Death Differ* 12 Suppl 1, 871-877 (2005)
25. Yoshida, M.: Multiple viral strategies of HTLV-1 for dysregulation of cell growth control. *Annu Rev Immunol* 19, 475-496 (2001)
26. Grassmann R, C. Dengler, I. Muller-Fleckenstein, B. Fleckenstein, K. McGuire, M. C. Dokhelar, J. G. Sodroski, W. A. Haseltine: Transformation to continuous growth of primary human T lymphocytes by human T-cell leukemia virus type I X-region genes transduced by a Herpesvirus saimiri vector. *Proc Natl Acad Sci U S A* 86, 3351-3355 (1989)
27. Robek M D, L. Ratner: Immortalization of CD4 (+) and CD8 (+) T lymphocytes by human T-cell leukemia virus type 1 Tax mutants expressed in a functional molecular clone. *J Virol* 73, 4856-4865 (1999)
28. Hasegawa H, H. Sawa, M. J. Lewis, Y. Orba, N. Sheehy, Y. Yamamoto, T. Ichinohe, Y. Tsunetsugu-Yokota, H. Katano, H. Takahashi, J. Matsuda, T. Sata, T. Kurata, K. Nagashima, W. W. Hall: Thymus-derived leukemia-lymphoma in mice transgenic for the Tax gene of human T-lymphotropic virus type I. *Nat Med* 12, 466-472 (2006)
29. Franchini G, C. Nicot, J. M. Johnson: Seizing of T cells by human T-cell leukemia/lymphoma virus type 1. *Adv Cancer Res* 89, 69-132 (2003)
30. Neuveut C, K. G. Low, F. Maldarelli, I. Schmitt, F. Majone, R. Grassmann, K. T. Jeang: Human T-cell leukemia virus type 1 Tax and cell cycle progression: role of cyclin D-CDK and p110Rb. *Mol Cell Biol* 18, 3620-3632 (1998)
31. Haller K, Y. Wu, E. Derow, I. Schmitt, K. T. Jeang, R. Grassmann: Physical interaction of human T-cell leukemia virus type 1 Tax with cyclin-dependent kinase 4 stimulates the phosphorylation of retinoblastoma protein. *Mol Cell Biol* 22, 3327-3338 (2002)
32. Suzuki, T, S. Kitao, H. Matsushima, M. Yoshida: HTLV-1 Tax protein interacts with cyclin-dependent kinase inhibitor p16INK4A and counteracts its inhibitory activity towards CDK4. *EMBO J* 15, 1607-1614 (1996)
33. Wu K, M. E. Bottazzi, C. de la Fuente, L. Deng, S. D. Gitlin, A. Maddukuri, S. Dadgar, H. Li, A. Vertes, A.

HTLV-1 and cell death

Pumfery, F. Kashanchi: Protein profile of tax-associated complexes. *J Biol Chem* 279, 495-508 (2004)

34. Lemoine F J, S. J. Marriott: Genomic instability driven by the human T-cell leukemia virus type I (HTLV-I) oncoprotein, Tax. *Oncogene* 21, 7230-7234 (2002)

35. Yamada T, S. Yamaoka, T. Goto, M. Nakai, Y. Tsujimoto, M. Hatanaka: The human T-cell leukemia virus type I Tax protein induces apoptosis which is blocked by the Bcl-2 protein. *J Virol* 68, 3374-3379 (1994)

36. Chlichlia K, G. Moldenhauer, P. T. Daniel, M. Busslinger, L. Gazzolo, V. Schirrmacher, K. Khazaie: Immediate effects of reversible HTLV-1 tax function: T-cell activation and apoptosis. *Oncogene* 10, 269-277 (1995)

37. Fujita M, H. Shiku: Differences in sensitivity to induction of apoptosis among rat fibroblast cells transformed by HTLV-I tax gene or cellular nuclear oncogenes. *Oncogene* 11, 15-20 (1995)

38. Chen X, V. Zachar, M. Zdravkovic, M. Guo, P. Ebbesen, X. Liu: Role of the Fas/Fas ligand pathway in apoptotic cell death induced by the human T cell lymphotropic virus type I Tax transactivator. *J Gen Virol* 78, 3277-3285 (1997)

39. Hall A P, J. Irvine, K. Blyth, E. R. Cameron, D. E. Onions, M. E. Campbell: Tumours derived from HTLV-I tax transgenic mice are characterized by enhanced levels of apoptosis and oncogene expression. *J Pathol* 186, 209-214 (1998)

40. Nicot C, R. Harrod: Distinct p300-responsive mechanisms promote caspase-dependent apoptosis by human T-cell lymphotropic virus type 1 Tax protein. *Mol Cell Biol* 20, 8580-8589 (2000)

41. Kao S Y, F. J. Lemoine, S. J. Marriott: HTLV-1 Tax protein sensitizes cells to apoptotic cell death induced by DNA damaging agents. *Oncogene* 19, 2240-2248 (2000)

42. Brauweiler A, J. E. Garrus, J. C. Reed, J. K. Nyborg: Repression of bax gene expression by the HTLV-1 Tax protein: implications for suppression of apoptosis in virally infected cells. *Virology* 231, 135-140 (1997)

43. Copeland K F, A. G. Haaksma, J. Goudsmit, P. H. Krammer, J. L. Heeney: Inhibition of apoptosis in T cells expressing human T cell leukemia virus type I Tax. *AIDS Res Hum Retroviruses* 10, 1259-1268 (1994)

44. Kishi S, S. Saijyo, M. Arai, S. Karasawa, S. Ueda, M. Kannagi, Y. Iwakura, M. Fujii, S. Yonehara: Resistance to fas-mediated apoptosis of peripheral T cells in human T lymphocyte virus type I (HTLV-I) transgenic mice with autoimmune arthropathy. *J Exp Med* 186, 57-64 (1997)

45. Arai M, M. Kannagi, M. Matsuoka, T. Sato, N. Yamamoto, M. Fujii: Expression of FAP-1 (Fas-associated phosphatase) and resistance to Fas-mediated apoptosis in T cell lines derived from human T cell leukemia virus type 1-associated myelopathy/tropical spastic paraparesis patients. *AIDS Res Hum Retroviruses* 14, 261-267 (1998)

46. Mulloy J C, T. Kislyakova, A. Cereseto, L. Casareto, A. LoMonico, J. Fullen, M. V. Lorenzi, A. Cara, C. Nicot, C. Giam, G. Franchini: Human T-cell lymphotropic/leukemia virus type 1 Tax abrogates p53-induced cell cycle arrest and apoptosis through its CREB/ATF functional domain. *J Virol* 72, 8852-8860 (1998)

47. Iwanaga Y, T. Tsukahara, T. Ohashi, Y. Tanaka, M. Arai, M. Nakamura, K. Ohtani, Y. Koya, M. Kannagi, N. Yamamoto, M. Fujii: Human T-cell leukemia virus type 1 tax protein abrogates interleukin-2 dependence in a mouse T-cell line. *J Virol* 73, 1271-1277 (1999)

48. Kawakami A, T. Nakashima, H. Sakai, S. Urayama, S. Yamasaki, A. Hida, M. Tsuboi, H. Nakamura, H. Ida, K. Migita, Y. Kawabe, K. Eguchi: Inhibition of caspase cascade by HTLV-I tax through induction of NF- kappaB nuclear translocation. *Blood* 94, 3847-3854 (1999)

49. Saggioro D, S. Barp, L. Chieco-Bianchi: Block of a mitochondrial-mediated apoptotic pathway in Tax-expressing murine fibroblasts. *Exp Cell Res* 269, 245-55 (2001)

50. Mesnard J M, C. Devaux: Multiple control levels of cell proliferation by human T-cell leukemia virus type 1 Tax protein. *Virology* 257, 277-284 (1999)

51. de la Fuente C, L. Wang, D. Wang, L. Deng, K. Wu, H. Li, L. D. Stein, T. Denny, F. Coffman, K. Kehn, S. Baylor, A. Maddukuri, A. Pumfery, F. Kashanchi: Paradoxical effects of a stress signal on pro- and anti-apoptotic machinery in HTLV-1 Tax expressing cells. *Mol Cell Biochem* 245, 99-113 (2003)

52. Tsukasaki K, S. Tanosaki, S. DeVos, W. K. Hofmann, W. Wachsman, A. F. Gombart, J. Krebs, A. Jauch, C. R. Bartram, K. Nagai, M. Tomonaga, J. W. Said, H. P. Koeffler: Identifying progression-associated genes in adult T-cell leukemia/lymphoma by using oligonucleotide microarrays. *Int J Cancer* 109, 875-881 (2004)

53. Pomerantz J L, D. Baltimore: Two pathways to NF- kappaB. *Mol Cell* 10, 693-695 (2002)

54. Claudio E, K. Brown, U. Siebenlist: NF-kappaB guides the survival and differentiation of developing lymphocytes. *Cell Death Differ* 13, 697-701 (2006)

55. Ballard D W, E. Bohnlein, J. W. Lowenthal, Y. Wano, B. R. Franzia, W. C. Greene: HTLV-I tax induces cellular proteins that activate the kappa B element in the IL-2 receptor alpha gene. *Science* 241, 1652-1655 (1988)

HTLV-1 and cell death

56. Mori N, M. Fujii, S. Ikeda, Y. Yamada, M. Tomonaga, D. W. Ballard, N. Yamamoto: Constitutive activation of NF-kappaB in primary adult T-cell leukemia cells. *Blood* 93, 2360-8 (1999)

57. Mori N, M. Fujii, M. Hinz, K. Nakayama, Y. Yamada, S. Ikeda, Y. Yamasaki, F. Kashanchi, Y. Tanaka, M. Tomonaga, N. Yamamoto: Activation of cyclin D1 and D2 promoters by human T-cell leukemia virus type I tax protein is associated with IL-2-independent growth of T cells. *Int J Cancer* 99, 378-385 (2002)

58. Hironaka N, K. Mochida, N. Mori, M. Maeda, N. Yamamoto, S. Yamaoka: Tax-independent constitutive IkappaB kinase activation in adult T-cell leukemia cells. *Neoplasia* 6, 266-278 (2004)

59. Yamaoka S, G. Courtois, C. Bessia, S. T. Whiteside, R. Weil, F. Agou, H. E. Kirk, R. J. Kay, A. Israel: Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. *Cell* 93, 1231-1240 (1998)

60. Harhaj E.W, S. C. Sun: IKKgamma serves as a docking subunit of the IkappaB kinase (IKK) and mediates interaction of IKK with the human T-cell leukemia virus Tax protein. *J Biol Chem* 274, 22911-22914 (1999)

61. Chu Z L, Y. A. Shin, J. M. Yang, J. A. DiDonato, D. W. Ballard: IKKgamma mediates the interaction of cellular IkappaB kinases with the tax transforming protein of human T cell leukemia virus type 1. *J Biol Chem* 274, 15297-15300 (1999)

62. Xiao G, E. W. Harhaj, S. C. Sun: Domain-specific interaction with the I kappa B kinase (IKK) regulatory subunit IKK gamma is an essential step in tax-mediated activation of IKK. *J Biol Chem* 275, 34060-34067 (2000)

63. Xiao G, M. E. Cvijic, A. Fong, E. W. Harhaj, M. T. Uhlik, M. Waterfield, S. C. Sun: Retroviral oncoprotein Tax induces processing of NF-kappaB2/p100 in T cells: evidence for the involvement of IKKalpha. *EMBO J* 20, 6805-6815 (2001)

64. Kitajima I, T. Shinohara, J. Bilakovics, D. A. Brown, X. Xu, M. Nerenberg: Ablation of transplanted HTLV-I Tax-transformed tumors in mice by antisense inhibition of NF-kappa B. *Science* 258, 1792-1795 (1992)

65. Sanda T, K. Asamitsu, H. Ogura, S. Iida, A. Utsunomiya, R. Ueda, T. Okamoto: Induction of cell death in adult T-cell leukemia cells by a novel IkappaB kinase inhibitor. *Leukemia* 20, 590-598 (2006)

66. Mori N, Y. Yamada, S. Ikeda, Y. Yamasaki, K. Tsukasaki, Y. Tanaka, M. Tomonaga, N. Yamamoto, M. Fujii: Bay 11-7082 inhibits transcription factor NF-kappaB and induces apoptosis of HTLV-I-infected T-cell lines and primary adult T-cell leukemia cells. *Blood* 100, 1828-1834 (2002)

67. Waldele K, K. Silbermann, G. Schneider, T. Ruckes, B. R. Cullen, R. Grassmann: Requirement of the human T-cell leukemia virus (HTLV-1) tax-stimulated HIAP-1 gene for the survival of transformed lymphocytes. *Blood* 107, 4491-4499 (2006)

68. Pichler K, T. Kattan, J. Gentzsch, A. K. Kress, G. P. Taylor, C. R. Bangham, R. Grassmann: Strong induction of 4-1BB, a growth and survival promoting costimulatory receptor, in HTLV-1-infected cultured and patients' T-cells by the viral Tax oncoprotein. *Blood* 111, 4741-4751 (2008)

69. Mayr B, M. Montminy: Transcriptional regulation by the phosphorylation-dependent factor CREB. *Nat Rev Mol Cell Biol* 2, 599-609 (2001)

70. Cha-Molstad H, D. M. Keller, G. S. Yochum, S. Impey, R. H. Goodman: Cell-type-specific binding of the transcription factor CREB to the cAMP-response element. *Proc Natl Acad Sci U S A* 101, 13572-13577 (2004)

71. Chrivia J C, R. P. Kwok, N. Lamb, M. Hagiwara, M. R. Montminy, R. H. Goodman: Phosphorylated CREB binds specifically to the nuclear protein CBP. *Nature* 365, 855-859 (1993)

72. Parker D, K. Ferreri, T. Nakajima, V. J. LaMorte, R. Evans, S. C. Koerber, C. Hoeger, M. R. Montminy: Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism. *Mol Cell Biol* 16, 694-703 (1996)

73. Zhang X, D. T. Odom, S. H. Koo, M. D. Conkright, G. Canettieri, J. Best, H. Chen, R. Jenner, E. Herbolsheimer, E. Jacobsen, S. Kadam, J. R. Ecker, B. Emerson, J. B. Hogenesch, T. Unterman, R. A. Young, M. Montminy: Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. *Proc Natl Acad Sci U S A* 102, 4459-4464 (2005)

74. Jean D, M. Harbison, D. J. McConkey, Z. Ronai, M. Bar-Eli: CREB and its associated proteins act as survival factors for human melanoma cells. *J Biol Chem* 273, 24884-24890 (1998)

75. Ciani E, S. Guidi, G. Della Valle, G. Perini, R. Bartesaghi, A. Contestabile: Nitric oxide protects neuroblastoma cells from apoptosis induced by serum deprivation through cAMP-response element-binding protein (CREB) activation. *J Biol Chem* 277, 49896-49902 (2002)

76. Mantamadiotis T, T. Lemberger, S. C. Bleckmann, H. Kern, O. Kretz, A. Martin Villalba, F. Tronche, C. Kellendonk, D. Gau, J. Kapfhammer, C. Otto, W. Schmid, G. Schutz: Disruption of CREB function in brain leads to neurodegeneration. *Nat Genet* 31, 47-54 (2002)

77. Shankar D B, K. M. Sakamoto: The role of cyclic-AMP binding protein (CREB) in leukemia cell proliferation and acute leukemias. *Leuk Lymphoma* 45, 265-270 (2004)

HTLV-1 and cell death

78. Shankar D B, J. C. Cheng, K. Kinjo, N. Federman, T. B. Moore, A. Gill, N. P. Rao, E. M. Landaw, K. M. Sakamoto: The role of CREB as a proto-oncogene in hematopoiesis and in acute myeloid leukemia. *Cancer Cell* 7, 351-362 (2005)

79. Shankar D B, J. C. Cheng, K. M. Sakamoto: Role of cyclic AMP response element binding protein in human leukemias. *Cancer* 104, 1819-1824 (2005)

80. Cheng J C, K. Kinjo, D. R. Judelson, J. Chang, W. S. Wu, I. Schmid, D. B. Shankar, N. Kasahara, R. Stripecke, R. Bhatia, E. M. Landaw, K. M. Sakamoto: CREB is a critical regulator of normal hematopoiesis and leukemogenesis. *Blood* 111, 1182-1192 (2008)

81. Saggioro D, L. Acquasaliente, L. Daprai, L. Chieco-Bianchi: Inhibition of apoptosis by human T-lymphotropic virus type-1 tax protein. *Ann N Y Acad Sci* 1010, 591-597 (2003)

82. Trevisan R, L. Daprai, L. Acquasaliente, V. Ciminale, L. Chieco-Bianchi, D. Saggioro: Relevance of CREB phosphorylation in the anti-apoptotic function of human T-lymphotropic virus type 1 tax protein in serum-deprived murine fibroblasts. *Exp Cell Res* 299, 57-67 (2004)

83. Trevisan R, L. Daprai, L. Paloschi, N. Vajente, L. Chieco-Bianchi, D. Saggioro: Antiapoptotic effect of human T-cell leukemia virus type 1 tax protein correlates with its creb transcriptional activity. *Exp Cell Res* 312, 1390-1400 (2006)

84. Kim Y M, J. A. Ramirez, J. E. Mick, H. A. Giebler, J. P. Yan, J. K. Nyborg: Molecular characterization of the tax-containing HTLV-1 enhancer complex reveals a prominent role for CREB phosphorylation in tax transactivation. *J Biol Chem* 282, 18750-18757 (2007)

85. Wilson J B, J. L. Bell, A. J. Levine: Expression of Epstein-Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. *EMBO J* 15, 3117-3126 (1996)

86. Wilson B E, E. Mochon, L. M. Boxer: Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. *Mol Cell Biol* 16, 5546-5556 (1996)

87. Mori N, M. Fujii, G. Cheng, S. Ikeda, Y. Yamasaki, Y. Yamada, M. Tomonaga, N. Yamamoto: Human T-cell leukemia virus type I tax protein induces the expression of anti-apoptotic gene Bcl-xL in human T-cells through nuclear factor-kappaB and c-AMP responsive element binding protein pathways. *Virus Genes* 22, 279-287 (2001)

88. Datta S R, A. Brunet, M. E. Greenberg: Cellular survival: a play in three Akts. *Genes Dev* 13, 2905-2927 (1999)

89. Fresno Vara J A, E. Casado, J. de Castro, P. Cejas, C. Belda-Iniesta, M. Gonzalez-Baron: PI3K/Akt signalling pathway and cancer. *Cancer Treat Rev* 30, 193-204 (2004)

90. Peloponese J M Jr, K. T. Jeang: Role for Akt/protein kinase B and activator protein-1 in cellular proliferation induced by the human T-cell leukemia virus type 1 tax oncoprotein. *J Biol Chem* 281, 8927-8938 (2006)

91. Jeong S J, C. A. Pise-Masison, M. F. Radonovich, H. U. Park, J. N. Brady: Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells. *Oncogene* 24, 6719-6728 (2005)

92. Ikezoe T, C. Nishioka, K. Bandobashi, Y. Yang, Y. Kuwayama, Y. Adachi, T. Takeuchi, H. P. Koeffler, H. Taguchi: Longitudinal inhibition of PI3K/Akt/mTOR signaling by LY294002 and rapamycin induces growth arrest of adult T-cell leukemia cells. *Leuk Res* 31, 673-682 (2007)

93. Jeong S J, A. Dasgupta, K. J. Jung, J. H. Um, A. Burke, H. U. Park, J. N. Brady: PI3K/AKT inhibition induces caspase-dependent apoptosis in HTLV-1-transformed cells. *Virology* 370, 264-272 (2008)

94. Fridman J S, S. W. Lowe: Control of apoptosis by p53. *Oncogene* 22, 9030-9040 (2003)

95. Rodier F, J. Campisi, D. Bhaumik: Two faces of p53: aging and tumor suppression. *Nucleic Acids Res* 35, 7475-7484 (2007)

96. Reid R L, P. F. Lindholm, A. Mireskandari, J. Dittmer, J. N. Brady: Stabilization of wild-type p53 in human T-lymphocytes transformed by HTLV-I. *Oncogene* 8, 3029-3036 (1993)

97. Takemoto S, R. Trovato, A. Cereseto, C. Nicot, T. Kislyakova, L. Casareto, T. Waldmann, G. Torelli, G. Franchini: p53 stabilization and functional impairment in the absence of genetic mutation or the alteration of the p14 (ARF)-MDM2 loop in *ex vivo* and cultured adult T-cell leukemia/lymphoma cells. *Blood* 95, 3939-3944 (2000)

98. Pise-Masison C A, K. S. Choi, M. Radonovich, J. Dittmer, S. J. Kim, J. N. Brady: Inhibition of p53 transactivation function by the human T-cell lymphotropic virus type 1 Tax protein. *J Virol* 72, 1165-1170 (1998)

99. Ariumi Y, A. Kaida, J. Y. Lin, M. Hirota, O. Masui, S. Yamaoka, Y. Taya, K. Shimotohno: HTLV-1 tax oncoprotein represses the p53-mediated transactivation function through coactivator CBP sequestration. *Oncogene* 19, 1491-1499 (2000)

100. Pise-Masison C A, R. Mahieux, H. Jiang, M. Ashcroft, M. Radonovich, J. Duvall, C. Guillerm, J. N. Brady: Inactivation of p53 by human T-cell lymphotropic virus type 1 Tax requires activation of

HTLV-1 and cell death

the NF-kappaB pathway and is dependent on p53 phosphorylation. *Mol Cell Biol* 20, 3377-3386 (2000)

101. Jeong S J, M. Radonovich, J. N. Brady, C. A. Pise-Masison: HTLV-I Tax induces a novel interaction between p65/RelA and p53 that results in inhibition of p53 transcriptional activity. *Blood* 104, 1490-1497 (2004)

102. Datta A, M. Bellon, U. Sinha-Datta, A. Bazarbachi, Y. Lepelletier, D. Canioni, T. A. Waldmann, O. Hermine, C. Nicot: Persistent inhibition of telomerase reprograms adult T-cell leukemia to p53-dependent senescence. *Blood* 108, 1021-1029 (2006)

103. Kehn K, L. Fuente Cde, K. Strouss, R. Berro, H. Jiang, J. Brady, R. Mahieux, A. Pumfrey, M. E. Bottazzi, F. Kashanchi: The HTLV-I Tax oncoprotein targets the retinoblastoma protein for proteasomal degradation. *Oncogene* 24, 525-540 (2005)

104. Krueger A, S. C. Fas, M. Giaisi, M. Bleumink, A. Merling, C. Stumpf, S. Baumann, D. Holtkotte, V. Bosch, P. H. Krammer, M. Li-Weber: HTLV-1 Tax protects against CD95-mediated apoptosis by induction of the cellular FLICE-inhibitory protein (c-FLIP). *Blood* 107, 3933-3939 (2006)

105. Nicot C, R. L. Harrod, V. Ciminale, G. Franchini: Human T-cell leukemia/lymphoma virus type 1 nonstructural genes and their functions. *Oncogene* 24, 6026-6034 (2005)

106. Albrecht B, M. D. Lairmore: Critical role of human T-lymphotropic virus type 1 accessory proteins in viral replication and pathogenesis. *Microbiol Mol Biol Rev* 66, 396-406 (2002)

107. Derse D, J. Mikovits, F. Ruscetti: X-I and X-II open reading frames of HTLV-I are not required for virus replication or for immortalization of primary T-cells in vitro. *Virology* 237, 123-128 (1997)

108. Robek M D, F. H. Wong, L. Ratner: Human T-cell leukemia virus type 1 pX-I and pX-II open reading frames are dispensable for the immortalization of primary lymphocytes. *J Virol* 72, 4458-4462 (1998)

109. Collins N D, G. C. Newbound, B. Albrecht, J. L. Beard, L. Ratner, M. D. Lairmore: Selective ablation of human T-cell lymphotropic virus type 1 p12I reduces viral infectivity in vivo. *Blood* 91, 4701-4707 (1998)

110. Hiraragi H, S. J. Kim, A. J. Phipps, M. Silic-Benussi, V. Ciminale, L. Ratner, P. L. Green, M. D. Lairmore: Human T-lymphotropic virus type 1 mitochondrion-localizing protein p13 (II) is required for viral infectivity in vivo. *J Virol* 80, 3469-3476 (2006)

111. D'Agostino D.M, M. Silic-Benussi, H. Hiraragi, M. D. Lairmore, V. Ciminale: The human T-cell leukemia virus type 1 p13II protein: effects on mitochondrial function and cell growth. *Cell Death Differ* 12 Suppl 1, 905-915 (2005)

112. D'Agostino D M, L. Zotti, T. Ferro, G. Franchini, L. Chieco-Bianchi, V. Ciminale: The p13II protein of HTLV type 1: comparison with mitochondrial proteins coded by other human viruses. *AIDS Res Hum Retroviruses* 16, 1765-1770 (2000)

113. Koralnik I J, J. Fullen, G. Franchini: The p12I, p13II, and p30II proteins encoded by human T-cell leukemia/lymphotropic virus type I open reading frames I and II are localized in three different cellular compartments. *J Virol* 67, 2360-2366 (1993)

114. Ciminale V, L. Zotti, D. M. D'Agostino, T. Ferro, L. Casareto, G. Franchini, P. Bernardi, L. Chieco-Bianchi: Mitochondrial targeting of the p13II protein coded by the x-II ORF of human T-cell leukemia/lymphotropic virus type I (HTLV-I). *Oncogene* 18, 4505-4514 (1999)

115. Silic-Benussi M, I. Cavallari, T. Zorzan, E. Rossi, H. Hiraragi, A. Rosato, K. Horie, D. Saggiaro, M. D. Lairmore, L. Willems, L. Chieco-Bianchi, D. M. D'Agostino, V. Ciminale: Suppression of tumor growth and cell proliferation by p13II, a mitochondrial protein of human T cell leukemia virus type 1. *Proc Natl Acad Sci U S A* 101, 6629-6634 (2004)

116. Hiraragi H, B. Michael, A. Nair, M. Silic-Benussi, V. Ciminale, M. Lairmore: Human T-lymphotropic virus type 1 mitochondrion-localizing protein p13II sensitizes Jurkat T cells to Ras-mediated apoptosis. *J Virol* 79, 9449-9457 (2005)

117. Lefebvre L, A. Vanderplasschen, V. Ciminale, H. Heremans, O. Dangoisse, J. C. Jauniaux, J. F. Toussaint, V. Zelnik, A. Burny, R. Kettmann, L. Willems: Oncoviral bovine leukemia virus G4 and human T-cell leukemia virus type 1 p13 (II) accessory proteins interact with farnesyl pyrophosphate synthetase. *J Virol* 76, 1400-1414 (2002)

118. Yi M, D. Weaver, G. Hajnoczky: Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. *J Cell Biol* 167, 661-672 (2004)

119. Pizzo P, T. Pozzan: Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. *Trends Cell Biol* 17, 511-517 (2007)

120. Bernardi, P, A. Rasola: Calcium and cell death: the mitochondrial connection. *Subcell Biochem* 45, 481-506 (2007)

121. D'Agostino D M, L. Ranzato, G. Arrigoni, I. Cavallari, F. Belleudi, M. R. Torrisi, M. Silic-Benussi, T. Ferro, V. Petronilli, O. Marin, L. Chieco-Bianchi, P. Bernardi, V. Ciminale: Mitochondrial alterations induced by the p13II protein of human T-cell leukemia virus type 1. Critical role of arginine residues. *J Biol Chem* 277, 34424-34433 (2002)

122. Rustin P: Mitochondria, from cell death to proliferation. *Nat Genet* 30, 352-353 (2002)

123. Giorgio M, M. Trinei, E. Migliaccio, P. G. Pelicci: Hydrogen peroxide: a metabolic by-product or a

common mediator of ageing signals? *Nat Rev Mol Cell Biol* 8, 722-728 (2007)

124. Ding W, B. Albrecht, R. Luo, W. Zhang, J. R. Stanley, G. C. Newbound, M. D. Lairmore: Endoplasmic reticulum and cis-Golgi localization of human T-lymphotropic virus type 1 p12 (I): association with calreticulin and calnexin. *J Virol* 75, 7672-7682 (2001)

125. Johnson J M, C. Nicot, J. Fullen, V. Ciminale, L. Casareto, J. C. Mulloy, S. Jacobson, G. Franchini: Free major histocompatibility complex class I heavy chain is preferentially targeted for degradation by human T-cell leukemia/lymphotropic virus type 1 p12 (I) protein. *J Virol* 75, 6086-6094 (2001)

126. Franchini G, J. C. Mulloy, I. J. Koralnik, A. Lo Monico, J. J. Sparkowski, T. Andresson, D. J. Goldstein, R. Schlegel: The human T-cell leukemia/lymphotropic virus type I p12I protein cooperates with the E5 oncoprotein of bovine papillomavirus in cell transformation and binds the 16-kilodalton subunit of the vacuolar H⁺ ATPase. *J Virol* 67, 7701-7704 (1993)

127. Mulloy J C, R. W. Crownley, J. Fullen, W. J. Leonard, G. Franchini: The human T-cell leukemia/lymphotropic virus type 1 p12I proteins bind the interleukin-2 receptor beta and gamma chains and affects their expression on the cell surface. *J Virol* 70, 3599-3605 (1996)

128. Nicot C, J. C. Mulloy, M. G. Ferrari, J. M. Johnson, K. Fu, R. Fukumoto, R. Trovato, J. Fullen, W. J. Leonard, G. Franchini: HTLV-1 p12 (I) protein enhances STAT5 activation and decreases the interleukin-2 requirement for proliferation of primary human peripheral blood mononuclear cells. *Blood* 98, 823-829 (2001)

129. Albrecht B, N. D. Collins, M. T. Burniston, J. W. Nisbet, L. Ratner, P. L. Green, M. D. Lairmore: Human T-lymphotropic virus type 1 open reading frame I p12 (I) is required for efficient viral infectivity in primary lymphocytes. *J Virol* 74, 9828-9835 (2000)

130. Banerjee P, G. Feuer, E. Barker: Human T-cell leukemia virus type 1 (HTLV-1) p12I down-modulates ICAM-1 and -2 and reduces adherence of natural killer cells, thereby protecting HTLV-1-infected primary CD4+ T cells from autologous natural killer cell-mediated cytotoxicity despite the reduction of major histocompatibility complex class I molecules on infected cells. *J Virol* 81, 9707-9717 (2007)

131. Ding W, B. Albrecht, R. E. Kelley, N. Muthusamy, S. J. Kim, R. A. Altschuld, M. D. Lairmore: Human T-cell lymphotropic virus type 1 p12 (I) expression increases cytoplasmic calcium to enhance the activation of nuclear factor of activated T cells. *J Virol* 76, 10374-10382 (2002)

132. Albrecht B, C. D. D'Souza, W. Ding, S. Tridandapani, K. M. Coggeshall, M. D. Lairmore: Activation of nuclear factor of activated T cells by human T-lymphotropic virus type 1 accessory protein p12 (I). *J Virol* 76, 3493-3501 (2002)

133. Kim S J, W. Ding, B. Albrecht, P. L. Green, M. D. Lairmore: A conserved calcineurin-binding motif in human T lymphotropic virus type 1 p12I functions to modulate nuclear factor of activated T cell activation. *J Biol Chem* 278, 15550-15557 (2003)

134. Nair A, B. Michael, H. Hiraragi, S. Fernandez, G. Feuer, K. Boris-Lawrie, M. Lairmore: Human T lymphotropic virus type 1 accessory protein p12I modulates calcium-mediated cellular gene expression and enhances p300 expression in T lymphocytes. *AIDS Res Hum Retroviruses* 21, 273-284 (2005)

135. Los M, K. Khazaie, K. Schulze-Osthoff, P. A. Baeuerle, V. Schirrmacher, K. Chlchlia: Human T cell leukemia virus-I (HTLV-I) Tax-mediated apoptosis in activated T cells requires an enhanced intracellular prooxidant state. *J Immunol* 161, 3050-3055 (1998)

136. Sasada T, H. Nakamura, H. Masutani, S. Ueda, H. Sono, A. Takabayashi, J. Yodoi: Thioredoxin-mediated redox control of human T cell lymphotropic virus type I (HTLV-I) gene expression. *Mol Immunol* 38, 723-732 (2002)

137. Masutani H, S. Ueda, J. Yodoi: The thioredoxin system in retroviral infection and apoptosis. *Cell Death Differ* 12 Suppl 1, 991-998 (2005)

Abbreviations: AICD, activation-induced cell death; ATLL, adult T-cell leukemia/lymphoma; c-FLIP, caspase 8(FLICE)-like inhibitory protein; ER, endoplasmic reticulum; HTLV-1, human T-cell leukemia virus type 1; HIAP-1, human inhibitor of apoptosis 1; IKK, IkappaB kinase; NF- κ B, nuclear factor- κ B; PI3K, phosphatidylinositol 3-kinase; PTP, permeability transition pore; REDOX, oxido-reductive; ROS, reactive oxygen species; TSP-HAM, tropical spastic paraparesis/HTLV-associated myelopathy

Key Words: HTLV-1, Tax, p12, p13, apoptosis, Mitochondria, Review

Send correspondence to: Vincenzo Ciminale, Dipartimento di Scienze Oncologiche e Chirurgiche, Università di Padova, via Gattamelata 64, I-35128 Padova, Italia, Tel: 39-049-821-5885, Fax: 39-049-807-2854, E-mail: v.ciminale@unipd.it

<http://www.bioscience.org/current/vol14.htm>