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1. ABSTRACT

Individuals infected with HTLV-1 harbor the
virus mainly in CD4+ memory T-cells as a lifelong
infection that remains subclinical in the majority of cases.
However, about 3-5% of HTLV-1-infected individuals
develop an aggressive T-cell neoplasia (ATLL) or a
neurodegenerative disease (TSP/HAM) after a latency
period ranging from years to decades. This review
summarizes the current knowledge of the effects of the
HTLV-1 proteins Tax, pl3 and pl2 on cell death and
survival pathways. Tax, the major oncogenic determinant
of HTLV-1, enhances cell survival through its effects on
the NF-kappaB, CREB and AKT pathways and on the
tumor suppressors p53 and Rb. p13 is targeted to the inner
mitochondrial membrane and sensitizes cells to the
Fas/ceramide apoptotic pathway and reactive oxygen
species-mediated cell death. pl2 enhances release of
calcium from the endoplasmic reticulum and therefore
may influence calcium-dependent apoptotic signals,
including opening of the mitochondrial permeability
transition pore. The long-term fate of HTLV-1-infected
cells (apoptosis, survival, transformation) may therefore
depend on the balance of the effects of Tax, p13 and p12
on cell death pathways.
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2. INTRODUCTION

Despite nearly 3 decades of intense study, many
aspects of HTLV-1 replication, persistence and
pathogenesis remain to be understood (for a general
review of HTLV-1, see ref. 1). The virus is the etiological
agent of 2 different types of diseases: adult T-cell
leukemia/lymphoma (ATLL), an aggressive T-cell neoplasm
that is extremely refractory to chemotherapy, and tropical
spastic paraparesis/HTLV-associated myelopathy
(TSP/HAM), a progressive demyelinating disease that targets
mainly the thoracic spinal cord. The viral Tax protein plays a
key role in HTLV-1 replication and is a powerful oncogenic
factor that is necessary and sufficient to induce T-cell
transformation (reviewed in ref. 2). Tax is also highly
immunogenic, and its recognition by cytotoxic T lymphocytes
(CTL) in the central nervous system of TSP/HAM patients is
proposed to make an important contribution to the chronic
inflammatory and degenerative processes that characterize
TSP/HAM (3). Nevertheless, ATLL and TSP/HAM arise in a
minority (3-5%) of infected individuals after a latency period
ranging from years (TSP/HAM) to decades (ATLL). Thus,
the most outstanding characteristic of HTLV-1 infection is
probably its life-long persistence with only rare pathologic
manifestations (reviewed in ref. 4).
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Resistance to apoptosis represents one of the
hallmarks of cancer cells (reviewed in ref. 5), and
dysregulated components of apoptotic signalling pathways
represent promising anticancer drug targets (reviewed in
ref. 6). In addition to playing a role in neoplastic
transformation, dysregulation of apoptotic pathways has
been implicated in many other pathological settings
including cardiovascular, autoimmune, and
neurodegenerative diseases (reviewed in ref. 7). This
review is focused on selected aspects of the interactions
between HTLV-1 and apoptotic pathways, and their
possible connections to ATLL. Emphasis is placed on the
role of the viral proteins Tax and pl3 on processes
influencing cell death, a topic of study in our laboratories.

3. CELL DEATH AND T-CELL HOMEOSTASIS

Although HTLV-1 is able to infect many types
of cells in tissue culture, infected individuals harbor the
virus mainly in CD4+/CD45RO+ memory T-cells.
Normal memory T-cells are derived through a series of
events that rely on properly timed apoptosis. Upon
stimulation by a relevant antigen, peripheral resting T-
cells undergo a massive clonal expansion. Following
clearance of the antigen, the vast majority of reactive T-
cell clones must undergo programmed cell death, which
is of critical importance in order to maintain
homeostasis of the T cell compartment. Only a small
subset of antigen-specific 'memory' T-cells survive this
culling process, which is termed activation-induced cell
death (AICD). Interestingly, both lack of stimulation
(e.g. deprivation of growth factors/cytokines) and
repeated engagement of the T-cell receptor (TCR) may
trigger cell death (reviewed in ref. 8). The switch from
an activation-driven expansion to AICD is tightly linked
to changes in Nuclear Factor-kappaB (NF-kB) pathway
regulation that result in the transition from an AICD-
resistant to an AICD-susceptible T-cell phenotype. This
critical step is regulated by proteolytic cleavage of the
hematopoietic progenitor kinase 1 (HPK1). In its full
length form, HPK1 activates the I-kappaB kinase (IKK)
complex resulting in activation of the NF-kB pathway
and cell survival, while its C-terminal cleaved form
exerts an opposite effect on IKK and triggers cell death
(reviewed in ref. 9).

Cell death in peripheral T-cells may be
triggered through caspase-dependent "intrinsic" (i.e.
mitochondrial) or "extrinsic" (i.e. receptor-mediated)
pathways or through caspase-independent pathways.
Cell death signals triggered by extrinsic stimuli are
delivered through cell death receptors which assemble
into a "death-inducing signalling complex" (DISC) of
adaptor and signalling molecules that activate
downstream caspases. One of the key events at the
DISC is activation of procaspase 8 by proteolytic
cleavage. Activated caspase 8§ then initiates execution of
the apoptotic program either directly (in "type I" cells)
or through a mitochondrial amplification loop involving
cleavage of Bid, a proapoptotic protein of the BCL-2
family (in "type II" cells) (10). Cleaved Bid translocates
to mitochondria where it induces depolarization and
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release of a number of proapoptotic factors including
cytochrome ¢, AIF and Smac/Diablo. These events lead
to activation of caspase 9 and execution of the apoptotic
program. One of the most important negative regulators
of the DISC in T-cells is the caspase-8 (FLICE)-like
inhibitory protein (c-FLIP). Interestingly, c-FLIP
expression is positively controlled by NF-kB, thus
providing a key regulatory loop that determines the fate
of peripheral T-cells in response to challenge by
antigenic stimuli.

T-cell death through the intrinsic pathway is
regulated by the fine tuning of anti-apoptotic and pro-
apoptotic BCL-2 family proteins, the latter of which
trigger the release of pro-apoptotic factors upon
recruitment to mitochondria. Opening of the
mitochondrial permeability transition pore (PTP) also
represents an important apoptotic stimulus. Among
other mechanisms, PTP opening can be triggered by
excessive Ca’" uptake by mitochondria following
release from the endoplasmic reticulum (ER) and/or
after entry from the extracellular medium through
plasma membrane channels (reviewed in ref. 11). In
addition to controlling the intrinsic pathway of cell
death, mitochondria have a strong influence on cell
survival by releasing caspase inhibitors (e.g. XIAP, X-
linked inhibitor of apoptosis protein).

Although the pathways leading to long term
persistence of memory cells are still incompletely
understood, it is clear that the fate of T-cells following
antigen stimulation depends on the strength of T-cell
receptor (TCR) stimulation and cytokines (12; reviewed
in ref. 13). Recent studies based on deuterated glucose
labelling showed that the proliferation rate of memory
cells (effector memory 4.7% per day, central memory
1.5% per day) is significantly higher than that of naive
cells (only 0.2% per day) (14). These findings suggest
that maintenance of memory cell populations relies on
replenishment through cell division, particularly in the
case of effector memory cells. On the other hand, it is
known that maintenance of memory cells depends on
the expression levels of pro- and anti-apoptotic
molecules (reviewed in ref. 15) and response to
cytokines (reviewed in ref. 16), which suggests that
increased survival might also be important in defining
memory cell "fitness".

4. ATLL- INCREASED PROLIFERATION,
INCREASED SURVIVAL, OR BOTH?

The relative contributions of increased
proliferation and resistance to cell death to the phenotype
of ATLL cells remain to be clarified. It is however clear
that persistence of HTLV-1 in the host relies on both de
novo infection of new host cells by virus particles, and,
perhaps more importantly, on "mitotic transmission" of the
integrated viral genome to daughter cells (17). This latter
mode of propagation is of course tightly linked to the
ability of infected cells to proliferate and persist, which, as
described later, is strongly favored by the viral
transactivator Tax. Indeed, recent studies of in vivo
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lymphocyte dynamics through labelling with deuterated
glucose showed a higher proliferation rate of
CD4+/CD45RO+ T-cells in HTLV-1 infected subjects
compared to controls; this effect correlated with Tax
expression and was more prominent in TSP/HAM patients
compared to asymptomatic carriers of infection (18).
These findings are indirectly supported by a recent study
by Sibon et al. (19) on T-cell clones derived from
TSP/HAM patients which showed that HTLV-1-infected
CD4+ T-cells accumulate as a result of increased cell
proliferation. Interestingly, infected CD8+ T-cells were
found to accumulate as a result of reduced cell death (19).
Application of this experimental approach to ATLL cells
would aid in our understanding of the contribution of
proliferation to the transformed phenotype. Such a
scenario would suggest that neoplastic transformation
by HTLV-1 could be considered a "side effect" of
mitotic transmission.

Indirect evidence for the impact of HTLV-1
infection on cell death/survival pathways has emerged
from several studies based on microarray expression
profiles. An array-based study carried out by Harhaj et
al. (20) that compared the gene expression patterns of
HTLV-1-immortalized T-cells and normal T-cells
revealed a large number of differentially expressed
genes involved in controlling apoptosis, with down
regulation of pro-apoptotic genes, e.g. TNF-alpha, TNF
receptors, caspase 3 and Bax, and up regulation of anti-
apoptotic genes, e.g IAP-1, 1-309 and NIP3 (20).
Ruckes et al. (21) compared the expression patterns of
cells obtained from ATLL patients and uninfected
stimulated PBMC. Among the differentially expressed
genes identified, these authors highlighted the up
regulation of I-309, an anti-apoptotic chemokine that
binds the CCRS receptor and provides an anti-apoptotic
autocrine loop in ATLL cells (21). Pise-Masison et al.
(22) identified 763 genes differentially expressed in
HTLV-1 infected cells. Among these, the authors
describe significant upregulation of anti-apoptotic genes
(e.g. HIAP-1, APIl, Becl-xL, I[-309) as well as
downregulation of pro-apoptotic genes (caspase-8, -4
and -6). More recently, Akl el. (23) used microarray
analysis to investigate gene expression profiles in the
HTLV-1-infected cell line WEI17/10. This study
identified many apoptosis-related genes whose
expression changed in HTLV-1-infected cells, including
downregulation of granzymes B and A, two key
proteases required for CTL-induced cell death, and the
CD7 surface receptor, which promotes T-cell death
upon engagement with its ligand, galectin-1 (23).

As described below, functional analyses of
individual viral proteins have provided convincing
evidence that HTLV-1 infection is capable of causing
major perturbations in cell death pathways. The fact
that ATLL cells exhibit many genetic abnormalities is a
clear indication that the transformation process involves
mechanisms that override the activation of death
pathways that are normally activated in response to
DNA damage. In line with this idea, ATLL cells exhibit
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a marked resistance to genotoxic chemotherapeutic
agents (reviewed in refs. 24, 25).

5. INFLUENCE OF INDIVIDUAL
PROTEINS ON CELL DEATH PATHWAYS

VIRAL

5.1. The Tax oncoprotein

Tax is generally recognized as the major
oncogenic protein coded by HTLV-1 (reviewed in ref. 2).
Tax plays a key role in controlling turnover of infected
cells both by driving proliferation and by affecting cell
survival. Consistent with these functions, Tax was shown
to be necessary and sufficient for transformation of CD4+
T-cells, a hallmark of ATLL. Indeed, Tax immortalizes
human lymphocytes when expressed in a herpesviral or
retroviral vector (26, 27), and causes leukemia in
transgenic mice (28). In addition to functioning as an
essential transactivator of the viral long terminal repeat
(LTR), Tax regulates the expression and activity of a
number of cellular genes by serving as a transcriptional
cofactor for the cAMP responsive element-binding protein
(CREB), NF-kB, and the serum responsive factor (SRF)
pathways (reviewed in refs. 25, 29). The long list of
cellular genes affected by Tax includes proto-oncogenes,
cytokines, growth factor receptors, cyclin-dependent
kinases, inhibitors of cyclin-dependent kinases, and genes
involved in DNA repair, cell adhesion and apoptosis (2).
Tax also exerts its pleiotropic functions through direct
interaction with numerous cellular proteins (30-32), many
of which participate in signal transduction pathways (33).
In addition, Tax has been shown to increase genomic
instability and mutation frequency (reviewed in ref. 34).

The contribution of Tax to apoptosis has been
documented in numerous studies. Initial findings were
contradictory, with Tax reported to possess either pro-
apoptotic (35-41) or anti-apoptotic (42-49) activity.
However, studies of the effects of Tax on gene expression
clearly demonstrate that it suppresses a wide range of pro-
apoptotic factors and stimulates expression of factors
acting as apoptosis inhibitors (22, 50-52). It is currently
accepted that Tax's anti-apoptotic activity overrides its
potential apoptotic effects, with its overall impact on cell
survival determined by multiple coexisting signaling
events. Four major cellular targets are engaged by Tax to
overcome apoptosis: the NF-kB pathway, the CREB
pathway, the AKT pathway, and tumor suppressor
functions. As summarized by N. Mori. in this issue,
components of these pathways are being investigated as
possible targets for therapy of ATLL.

5.1.1. Tax and the NF-kB pathway

NF-kB is normally regulated through its
cytoplasmic retention by physical interaction with specific
inhibitor proteins called IkappaB. Phosphorylation of
IkappaBs by the IKK complex, which is composed of
catalytic subunits IKKalpha and IKKbeta and a non
catalytic scaffolding subunit IKKgamma/NEMO, leads to
their ubiquitination and degradation, thus leaving NF-kB
free to translocate to the nucleus. Most of the inducible
NF-kB responses are mediated by NF-kB p50-p65 (RelA)
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heterodimers, in the so-called canonical pathway of NF-
kB activation. A second, non canonical pathway of NF-kB
activation involves IKK1lalpha—-mediated phosphorylation
and subsequent processing of NF-kB2/p100 to p52/RelB
dimers (reviewed in ref. 53). Under physiological
conditions, non canonical NF-kB activation occurs
primarily in B cells and lymphoid stromal cells (54); in T-
cells the signals mediating NF-kB activation are transient
and stimulate predominantly the canonical pathway, a
property shared with most other cell types. In contrast,
NF-kB is constitutively activated in both HTLV-1-
transformed T-cell lines and freshly isolated ATLL cells
(55-58). This property has been ascribed to Tax through
its interactions with several NF-kB members, including
RelA, p50, and p52. Tax also interacts with members of
the IkappaB family such as IkappaBalphaand the
precursor proteins p105 and p100. While such interactions
might contribute to the activation of the NF-kB pathway
by Tax, the finding that IkappaBalpha undergoes
constitutive phosphorylation and degradation in HTLV-1-
infected T-cells highlights the relevance of IKK in Tax-
mediated NF-kB activation. Constitutive activation of IKK
by Tax has been demonstrated in both non-lymphoid and
T-cell systems (59, 60). The formation of Tax/IKK
complexes relies on physical interactions between Tax and
the IKKgamma subunit (60-62). Another hallmark of
Tax-stimulated NF-kB activation is the marked induction
of non canonical pl00 processing leading to the
generation of p52 in addition to the canonical NF-kB
members. As demonstrated for canonical NF-kB
activation, Tax-mediated induction of pl100 processing
requires its physical interaction with the IKKalpha subunit
(63).

The NF-kB pathway is intimately linked to the
survival pathways of mammalian cells, and its activation
is therefore considered important for the proliferation of
HTLV-1-infected cells and their escape from death. In line
with this idea, inhibition of NF-kB activity by antisense
oligonucleotides to RelA/p65 in Tax-transformed
fibroblasts leads to suppression of growth and impaired
tumorigenicity in mice (64). A more recent study reported
the induction of ATLL cell death by using specific NF-kB
pathway inhibitors (65, 66).

Waldele et al. (67) described the upregulation of
the anti-apoptotic protein HIAP-1 (human inhibitor of
apoptosis 1) in HTLV-1-transformed and ATLL-derived
cells. HIAP-1 acts by inhibiting caspases 3, 7, and 9.
Interestingly, HIAP-1 expression is stimulated by Tax
through the NF-kB pathway. Silencing HIAP-1 by RNAi
triggered caspase 3- and 7-mediated apoptosis in HTLV-1
transformed T-cells, but did not affect an HTLV-1
negative T-cell tumor cell line (HuT-78). This finding
suggests that HTLV-1 infection/transformation "per se"
somehow engages pathways activating apoptosis and that
Tax-mediated induction of HIAP-1 is required for survival
of HTLV-I-transformed cells. Although the apoptotic
trigger that Tax-induced HIAP-1 must overcome remains
to be identified, one interesting candidate is the pl3
protein which, as described below, sensitizes cells to
death.
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As mentioned in the preceding section, long-
term survival of normal peripheral T-cells depends on the
concerted action of stimulatory and costimulatory
molecules controlling both clonal expansion and long term
persistence of antigen-specific clones. Interestingly, the
costimulatory receptor 4-1BB (TNFRSF9/CD137/ILA)
was shown to be significantly upregulated in HTLV-1-
infected cell lines (68). In analogy to HIAP-1, 4-1BB is
also induced through Tax-mediated stimulation of the NF-
kB pathway. An analysis of ex vivo samples from infected
patients revealed a strong correlation between levels of
Tax and 4-1BB expression. HTLV-1-transformed cell
lines also express 4-1BB ligand, suggesting that an
autocrine loop might control survival of these cells.
Nevertheless, 4-1BB ligand was not expressed in cells
isolated ex vivo from infected individuals, suggesting that
in vivo stimulation of 4-1BB may result from the
interaction of infected cells with antigen-presenting cells
(e.g. B-cells and macrophages) that express the 4-1BB
ligand. Ligand-engaged 4-1BB receptors could then
activate both the canonical and non-canonical NF-kB
pathways, thus resulting in a positive feedback
amplification of NF-kB-mediated expression of anti-
apoptotic factors (Figure 1).

5.1.2. Tax and the CREB pathway

CREB is an ubiquitously expressed transcription
factor. The key steps involved in CREB-mediated gene
transcription include dimerization, binding to response
elements in DNA, and phosphorylation (reviewed in ref.
69). The precise succession of events and in particular
whether phosphorylation precedes or follows dimerization
(70) remain to be clarified. Many kinases can
phosphorylate CREB, and different phosphorylation sites
in the protein differentially regulate its activity.
Phosphorylation at Ser-133 stimulates the recruitment of
CREB-binding protein (CBP)/p300 (71, 72), leading to
activation of gene transcription, while phosphorylation at
Ser-142 promotes the dissociation of the CREB dimer and
a consequent reduction in CREB-mediated transcription
(69).

The vast number and functional diversity of
CREB-regulated genes (73) indicate that CREB is of
critical importance in many processes including cell
survival/death (74-76). CREB activation or
overexpression has also been found to play a role in both
normal hematopoiesis and development of leukemia (77-
80).

Our studies of the antiapoptotic effects of Tax
provided evidence indicating that its ability to
transactivate CREB, rather than its NF-kB transcriptional
activity, is important in preventing cell death and that the
protective effect is due to a block in the apoptotic program
regulated by mitochondria (49, 81). The relevance of an
active CREB pathway in protection from apoptosis
is further supported by results obtained by triggering
CREB activation with forskolin (reduced apoptosis) or
conversely by inducing a specific block in CREB
transactivation using dominant negative CREB mutants
(increased apoptosis) (82, 83). We also observed
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Figure 1. Major survival/death pathways controlled by HTLV-1 proteins. Indicated are the major survival pathways affected by
HTLV-1: (i) NF-kB, which is activated by the Tax oncoprotein and controls the expression of pro-survival genes (e.g. the
indicated c-FLIP and HIAP inhibitors of apoptosis), (ii) the PI3K-AKT pathway, also activated by Tax, acts by inhibiting the
proapoptotic protein Bad and by activating the NF-kB pathway, (iii) receptor-mediated death (e.g through CD95/Fas) is
inhibited by a Tax/ NF-kB-mediated upregulation of c-FLIP, (iv) p13 may favor cell death by enhancing the response to certain
apoptotic stimuli (e.g. C2-ceramide and FasL) and/or by a modulation of ROS production by mitochondria. Changes in the
cellular REDOX state are known to affect cell survival through the oxidation of thioredoxin (TRX), which results in dissociation
of TRX from the ASK1 kinase which, through binding to TRAF2, triggers cell death.

that HeLa cells expressing Tax exhibit higher levels
of CREB phosphorylation at Ser-133 compared to control
cells, indicating that Tax might influence the
phosphorylation state of CREB (83). In line with our
observations, Kim et al. (84) reported that CREB is
constitutively phosphorylated at Ser-133 in HTLV-1-
infected T-cell lines and that Tax expression directly
enhances CREB phosphorylation. Thus, together with
previous data suggesting a role for CREB in activating
anti-apoptotic genes such as BCL-2 and BCL-xL (85-87),
these findings indicate that the Tax/CREB interaction is
not only involved in the regulation of viral gene
transcription, but may also play a relevant role in
promoting the survival of HTLV-1-infected cells.

5.1.3. Tax and AKT

AKT, also known as protein kinase B (PKB), is
a serine/threonine kinase that functions as a regulator of
cell survival and proliferation. Indeed, aberrant activation
of the AKT pathway is common in many cancers and
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contributes to resistance to chemotherapy. The
importance of AKT to cell survival is due to its regulation
of multiple target pathways through phosphorylation of
critical ~ proteins. For  example, = AKT-mediated
phosphorylation of Bad, a pro-apoptotic member of the
BCL-2 family, results in the loss of Bad’s apoptotic
activity (reviewed in ref. 88). AKT is also a signalling
intermediate upstream of NF-kB- and CREB-mediated
pathways controlling expression of 'survival' genes
(reviewed in ref. 89). Peloponese et al. (90) reported that
activated AKT triggers activation of activator protein-1
(AP-1), which is highly expressed in many invasive
cancers as well as in ATLL. AKT also regulates cyclin D1,
probably through interaction with the p27 and p2l
proteins  (89). AKT activation is regulated by
phosphatidylinositol 3-kinase (PI3K) through site-specific
phosphorylation; full activation of AKT requires its
phosphorylation at Ser-473. AKT is often activated in
HTLV-1-transformed cells, a property which is
accompanied by its phosphorylation at Ser-473 and Thr-
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308 (91). Peloponese el al. (90) proposed that Tax might
promote AKT activation by directly interacting with the
p85 subunit of PI3K. Furthermore, the upstream
PI3K/AKT/mTOR (mammalian Target of Rapamycin)
pathway was also found to be activated in HTLV-1-
transformed cells (92); consistent with these findings,
treatment with PI3K inhibitors induces death of Tax-
expressing cells (92, 93).

5.1.4. Tax and tumor suppressor pathways

The effects of HTLV-1 on cell death are also
linked to the ability of Tax to interfere with the activities
of the two key tumor suppressors p53 and Rb. The tumor
suppressor function of p53 reflects, to a major extent, its
ability to trigger death of cells subjected to metabolic,
oncogenic or genotoxic stress. In addition, p53 modulates
regulatory factors involved in cell cycle arrest, senescence,
apoptosis, DNA repair and angiogenesis (reviewed in refs. 94,
95). Therefore, Tax-mediated interference with these pS3
functions might play a key role in promoting genetic
instability and transformation in T-cells harboring HTLV-1.
Interestingly, in contrast to most other human tumors,
relatively few ATLL cases present p5S3 mutations; instead, it
has been reported that ATLL tumor cells and HTLV-1
transformed cell lines contain elevated levels of functionally
inactive p53 protein (96, 97) rather than genetic alterations of
p53. It has been demonstrated that Tax is sufficient for
abrogation of the transactivating function of p53 through a
mechanism that likely does not involve direct physical
interaction between the two proteins (98, 99).

Different, and in part contradictory, mechanisms
have been proposed for Tax-mediated inhibition of p53
function. Pise-Masison et al. reported that p53 is
hyperphosphorylated at Ser-15 and Ser-392 in HTLV-1-
infected cells and indicated the NF-kB pathway as
responsible for this effect (98, 100). Although
phosphorylation at these residues had no effect on the
ability of p53 to bind to DNA, it prevented its interaction
with the basal transcription factor TFIID and with MDM2,
leading, respectively, to impairment of p53 transcriptional
function and stabilization. More recently the same group
(101) demonstrated that Tax favours the formation of p65
(RelA)-pS3 complexes and that this interaction requires
Ser-15 and Ser-392 phosphorylation. In contrast to these
observations, Ariumi et al. (99) found that
phosphorylation at Ser-15 was not the major cause of Tax-
mediated p53 inactivation and instead implicated the
CREB pathway in a mechanism involving competition
between Tax and p53 for binding with the coactivator
CBP/p300. Involvement of the CREB pathway in Tax-
mediated p53 inactivation was also proposed by Mulloy et
al. (46). The AKT pathway was recently identified as an
additional component in the mechanism of Tax-induced
p53 inactivation. Indeed, inhibition of AKT was found to
prevent Tax-mediated p53 stabilization and functional
inactivation, and was associated with increased expression
of MDM2, a negative regulator of p53 (91). Interestingly,
the response of ATLL patients to treatment with the
antiretroviral drug azidothymidine depends on the tumor's
pS3 status, as patients with mutated p53 fail to respond to
this treatment (102).
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In addition to its effects on p53, Tax was also
shown to inactivate the Rb tumor suppressor by favoring
its hyperphosphorylated/inactive form (31) and by
targeting it to proteasomal degradation (103). However,
given the role of Rb as a principal regulator of cell
proliferation, we can presume that the effects of Tax on
Rb are likely to affect proliferation rather than cell death.

5.1.5. Tax and AICD

As mentioned above (see Section 3), receptor-
mediated pathways and expression of the apoptosis
inhibitor c-FLIP are major determinants of the fate of
peripheral T-cells in response to challenge by antigenic
stimuli. Interestingly, Krueger ef al. recently demonstrated
that HTLV-1-infected cell lines generated from infected
patients express high levels of c-FLIP. Furthermore, both
the levels of c-FLIP expression and resistance to CD95-
triggered cell death were found to be tightly linked with
Tax expression. These findings suggest that Tax might
perturb a physiological mechanism that controls clearance
of antigen-reactive T-cells, resulting in expansion and
long-term persistence of infected cell pools (104).

5.2. The viral accessory proteins

In addition to the structural proteins Gag, Pro,
Pol, Env and the essential regulatory proteins Tax and Rex,
the HTLV-1 genome encodes a number of additional
proteins of incompletely defined function termed
'accessory proteins' (reviewed in refs. 105, 106). Two of
these proteins, namely p13 and p12, may be implicated in
the control of cell death pathways. Although p13 and p12
are dispensable for viral replication and immortalization of
cells in tissue culture (107, 108), further experiments
carried out in a rabbit model indicated that they are
essential for establishing an infection in vivo (109, 110).

5.2.1. Interactions of p13 with mitochondria

pl3 is a 87-amino acid protein that corresponds
to the C-terminal portion of another accessory protein
named p30 (reviewed in refs. 111, 112). Although
occasionally detected in the nucleus (113), p13 is mainly
localized in mitochondria (114). Functional mapping
studies demonstrated that pl3 contains a mitochondrial
targeting signal spanning amino acids 21-30; this sequence
includes 4 arginines that form a positively charged face
within an amphipathic alpha-helix.

HeLa and Jurkat cell lines stably transfected
with p13 show an inhibition of growth at high densities
compared to controls (115). p13 also suppresses growth of
experimental tumors derived from HeLa cells, which are
normally highly tumorigenic, and interferes with
transformation of primary fibroblasts by the Ras and Myc
oncogenes (115).

Expression of p13 per se does not appear to be
an apoptotic stimulus. However, p13-expressing Jurkat T-
cells are sensitized to apoptosis induced by FasL and C-2
ceramide (115, 116). This effect of p13 probably involves
an alteration in the Ras pathway, as cell death can be
blocked by pretreating the cells with inhibitors of
prenylation, a post-translational modification important
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for Ras activity (116). The involvement of Ras in p13-
mediated function is also suggested by p13's capacity to
interact with farnesyl pyrophosphate synthase, a key
enzyme in the synthesis of substrates required for Ras
prenylation (117).

Mitochondria and the ER modulate calcium
signalling, and vice versa, calcium regulates several
processes in these organelles such as mitochondrial
motility (118), activation of key metabolic enzymes,
stimulation of ATP production and aerobic metabolism,
and allosteric modulation of ER Ca**-release channels
(reviewed in ref. 119). Furthermore, excessive calcium
accumulation in mitochondria causes matrix swelling,
opening of the mitochondrial PTP and release of
apoptogenic factors such as cytochrome c and AIF
(reviewed in ref. 120). The mitochondrial localization
of pl3 and its effects on mitochondrial morphology
therefore prompted us to test whether the protein might
influence calcium homeostasis. Results of in vitro
assays carried out on isolated mitochondria
demonstrated that a peptide spanning the active portion
of pl3 changes mitochondrial conductance of Ca*';
however, this effect required relatively high doses of the
peptide (121). Additional experiments carried out on
transfected HeLa cells showed that pl3 increases
phosphorylation of CREB on serine 133 in response to
histamine (115), which works by augmenting the levels
of cytosolic Ca**. This result suggests that p13 indeed
influences calcium homeostasis, through a mechanism
that is probably complex. In particular, the net effect of
p13 on Ca*-mediated signalling versus apoptosis might
depend on the ability of mitochondria to maintain their
inner membrane potential. Depolarized mitochondria
will have a reduced capacity to take up cytosolic Ca*"
released from the ER, resulting in prolonged amplitude
and duration of the calcium signal. The situation might
be different when mitochondria are partially
depolarized: such mitochondria will be able to
accumulate Ca®*, which in turn could sensitize opening
of the permeability transition pore and trigger apoptosis.

Our most recent experiments aimed at
dissecting the mechanism of p13 function showed that it
mediates K* influx in mitochondria, resulting in partial
depolarization. Interestingly, in the presence of
abundant O, and substrates, this effect is partially
compensated by an increase in the activity of the
respiratory chain, which couples substrate oxidation and
electron transport with H' extrusion. This finding is of
interest in the context of cell survival, since the
mitochondrial respiratory chain is one of the major
sources of reactive oxygen species (ROS), which have
recently emerged as important mediators of both cell
activation and death (reviewed in refs. 122, 123). Indeed,
we observed that p13 increases the levels of ROS when
cells are cultivated under conditions of metabolic stress
such as glucose deprivation. This effect is accompanied
by increased cell death, probably due to a lowering of
the threshold for opening of the PTP (Silic-Benussi et
al., manuscript submitted).
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5.2.2. p12, T-cell activation, and calcium signalling

pl2 is a 99-amino acid, hydrophobic protein that
contains 2 putative transmembrane domains, 4 putative
SH-3 domains, and a calcineurin binding motif. p12
accumulates mainly in the ER (113) and Golgi (124, 125).
Initial functional studies of p12 showed that it is able to
increase the in vitro transforming activity of the bovine
papillomavirus E5 protein, with which it shares about 50%
sequence identity; a possible cooperative role for p12 in
HTLV-1 transformation was therefore proposed (126).

Analysis of p12 in the context of T-cells showed
that it interacts with the IL-2R beta and gamma chains and
downregulates their surface expression (127). Additional
experiments demonstrated that p12's interaction with the IL-
2R beta chain results in activation of the JAK-STATS5 signal
transduction-transcription pathway (128). Another indication
that pl2 positively influences T-cell activation steps is
provided by a study showing that the protein is required for
efficient infection of quiescent primary lymphocytes (129).

In addition to promoting activation of infected cells,
p12 might interfere with their lysis by CTL. In fact, p12 is
able to bind to free MHC class I heavy chains; this interaction
disrupts association of heavy chains with beta2-microglobulin
and results in reduced expression of MHC-I on the cell
surface, thus impairing recognition of infected cells by CTL
(125). HTLV-1-infected T-cells are also resistant to killing by
NK cells, in part due to pl2-dependent down-modulation of
ICAM-1 and ICAM-2, which mediate adhesion of NK to
infected target cells (130). These properties suggest that p12
might play an important role in escape from immune
surveillance resulting in long term survival/persistence of
infected cells, and are consistent with the finding that p12 is
required to establish a persistent infection in rabbits (109).

Another intriguing activity of p12 is its ability to
augment Ca®" release from the ER (131), which leads to
activation of the NFAT transcription factor (132). This effect
involves interaction of pl2 with calnexin and calreticulin
(124), two proteins of the ER that regulate storage and release
of Ca®* from this organelle, as well as calcineurin (133), a
calcium/calmodulin-dependent phosphatase responsible for
activation of NFAT. Microarray analyses of Jurkat T-cells
stably expressing pl2 indicated that the protein increases
expression of genes known to be regulated by calcium and
influences networks of genes involved in T-cell signalling,
cell proliferation, and apoptosis (134).

The influence of p12 on release of calcium from
the ER is of particular interest in light of the complex
interplay between the ER and mitochondria in controlling
calcium homeostasis. The observations indicating that p13
and pl12 modulate calcium signalling are in line with the
recent finding that HTLV-1 infected cells show important
alterations in calcium homeostasis (23).

6. CONCLUSIONS AND PERSPECTIVES
The information gathered so far on the activities

of Tax, pl2 and pl3 suggest interesting functional
interactions at the level of apoptotic signalling that might
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play a role in the development of ATLL. The fact that Tax
protects cells from apoptosis induced by mitochondria-
mediated stimuli and evidence that p13 may trigger cell
death in response to specific signals (e.g., C2-ceramide) or
metabolic conditions (glucose deprivation) suggest that
these two viral proteins might have opposite effects on cell
death. Balanced expression of pl3 and Tax might
therefore be important for maintaining the survival and
proliferation of infected cells at a level compatible with
viral persistence and long term survival of the host. In
alternative, Tax and p13 might cooperate in promoting cell
transformation. This possibility is linked to the
observation that pl3 influences production of ROS by
mitochondria. If unopposed, increased ROS levels could
lead to accumulation of genetic lesions and sensitize cells
to apoptosis, which however might be offset by the pro-
survival effects of Tax, resulting in accumulation of DNA
damage and progression towards the neoplastic phenotype.

The effects of pl13 on ROS production are
interesting also in light of previous studies which
documented alterations in ROS and ROS-scavenging
pathways in HTLV-1 infection. In particular, Tax is
known to modulate ROS levels and trigger apoptosis in
activated T-cells, an effect that is stimulated by the
CD3/TCR pathway (135). Furthermore, ROS levels were
found to modulate expression from the viral promoter
(136). HTLV-1 infected cells produce and release in the
medium large amounts of the scavenger protein
thioredoxin (TRX) (137). In addition to its ROS-
scavenging capacity, TRX also functions as a powerful
REDOX sensor and signalling molecule controlling
receptor- mediated cell death. In fact, reduced TRX binds
and inhibits the ASKI1 kinase, while oxidized TRX
dissociates from ASKI1, leading to its assembly with
TRAF-2 and activation of the p38/JNK pathways that
trigger cell death (Figure 1). It will thus be interesting to
investigate whether p13 and Tax modulate the sensitivity
to death receptor-mediated cell death (and, possibly,
AICD), by controlling the REDOX state of TRX.

The effects of pl13 and pl2 are very likely to
intersect at the level of Ca®* homeostasis, which is known
to be altered in HTLV-1-infected cells (23). As described
above, p12 increases calcium release from the ER stores,
while p13 may either decrease the Ca®* uptake capacity of
mitochondria (as a result of depolarization) or sensitize
mitochondria to opening of the PTP (when mitochondria
retain some membrane potential and are therefore
competent for Ca>" uptake). Combined expression of p12
and pl3 might therefore result in an increase in the
duration and amplitude of cytosolic Ca®" transients, which
could have important effects on activation of NFAT, or
potentiate apoptosis triggered by PTP opening.

Experiments aimed at reconstructing the
complexity of HTLV-1 biology/pathogenesis by testing
the functional interactions between Tax, pl2 and pl3
should yield useful information regarding the impact of
these proteins on T-cell survival pathways. Understanding
of the functional interactions of these proteins would also
benefit from information on the relative amount and
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timing of expression of the different regulatory and
accessory proteins in the context of natural HTLV-1
infection, a topic that is currently under investigation in
our laboratory.
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