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1. ABSTRACT

Fanconi anemia (FA) is a recessive genetic
disorder characterized by developmental defects, bone
marrow failure, and cancer susceptibility. The complete set
of FA genes has only been identified recently and seems to
be uniquely conserved among vertebrates. Fanconi anemia
proteins have been implicated in the repair of interstrand
DNA crosslinks that block DNA replication and
transcription. Although all thirteen FA complementation
groups show similar clinical and cellular phenotypes,
approximately 85% of patients presented defective
FANCA, FANCC, or FANCG. The established DNA
interacting components (FANCM, FANCI, FANCD?2, and
FANCIJ) account only for ~5% of all FA patients, an
observation that raises doubt concerning the roles of FA
proteins in DNA repair. In recent years, rapid progress in
the area of FA research has provided great insights into the
critical roles of FA proteins in DNA repair. However, many
FA proteins do not have identifiable domains to indicate
how they contribute to biological processes, particularly
DNA repair. Therefore, future biochemical studies are
warranted to understand the biological functions of FA
proteins and their implications in human diseases.
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2. INTRODUCTION

Fanconi anemia (FA) is a severe chromosomal
instability disorder characterized by developmental defects,
aplastic =~ anemia, chromosomal instability, and
predisposition to leukemia and solid tumors (1-12).
Another hallmark of FA, which is also a reliable cellular
marker for clinical diagnosis, is its hypersensitivity to the
synthetic DNA interstrand crosslinking compounds
including mitomycin C (MMC), cisplatin, and
diepoxybutane (DEB) (8, 13). Upon treatment with these
DNA crosslinkers, FA cells display dramatically increased
genomic aberrations, including chromosome breaks and
radial chromosomes (8, 12), indicating that Fanconi anemia
proteins are involved in repairing DNA interstrand
crosslinks (ICLs). ICL covalently tethers both strands of
the double helix and blocks essential DNA transactions
including replication and transcription. It seems that DNA
replication is the most important factor to elicit repair and
also toxicity of ICLs (14-16). FA proteins are believed to
function in stabilizing replication forks and assisting the
replication machinery to deal with ICLs and other DNA
lesions or structures that hinder the progression of
replication forks (17-24).
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It has also been well documented that FA
proteins are directly involved in mitigating oxidative stress
(25-32), and FA deficient cells display hypersensitivity to
clevated oxidants (33-40). Increased susceptibility to
oxidants is believed to contribute to the bone marrow
failure associated with FA (32). Coincidently, oxidative
stress is the most prominent endogenous source of ICLs,
via generation of the lipid peroxidation products
malondialdehyde,  4-hydroxynonenal, acrolein, and
crotonaldehyde (35, 41-44).

Thirteen Fanconi anemia genes have been
identified thus far (FANC-A4, -B, -C, -D1/BRCA2, -D2, -E, -
F, -G, -1, -J/BRIP1/BACHI, -L, -M, and -N/PALB2) (45-
63). FA proteins were classified into three groups
according to their roles in the monoubiquitination of
FANCD?2 and FANCI, a critical step in the ICL repair (5).
Group I is composed of eight FA proteins, FANC-A, -B, -
C, -E, -F, -G, -L, and -M. These proteins are components of
the FA core complex. A major function of the core complex
is to activate the group II proteins, FANCD2 and FANCI
complex (ID complex), by monoubiquitination particularly
when cells are under genotoxic stress (53, 54, 60, 64-66). Cells
that are defective in any of group I proteins are deficient in
monoubiquitination of the ID complex. It is worth mentioning
that the activation of FANCD2 and FANCI also occurs
spontaneously (likely in response to naturally occurring
replication-stalling damage), or can be induced by DNA
damaging agents or stresses other than DNA crosslinkers, such
as ionizing radiation, ultraviolet radiation, aphidicolin, or
hydroxyurea (20, 64, 67-69). Downstream of or parallel to the
monoubiquitination of the ID complex are the group III
proteins, FANCDI1/BRCA2, FANCIJ/BRIPI, and
FANCN/PALB?2. These proteins are involved in the repair of
double strand breaks produced during the ‘unhooking’ of ICLs
(5, 7, 70), and constitute a FA-BRCA network to guard
genomic integrity (5, 64). A collection of excellent reviews
provides great insights into the mechanism how FA
proteins are involved in the DNA damage response and
repair (4, 5, 7, 9, 10, 12, 19, 43, 70-73). The focus of this
review is to summarize some of the recent progress on FA
protein studies and to provide our perspective on how FA
proteins participate in the repair of ICLs.

ICL repair is highly complex and unique among
all repair pathways, because multiple players from
established DNA repair pathways have to work
coordinately in order to remove a single interstrand
crosslink lesion. In addition to FA proteins, other proteins
involved in nucleotide excision repair (NER), translesion
synthesis (TLS), mismatch repair (MMR), and homologous
recombination (HR) also participate in ICL repair (5, 7, 16,
43, 74-83). In this review, we discuss the potential
mechanisms how FA proteins collaborate with multiple
DNA repair pathways and exert their functions in
maintaining the stability of replication forks.

3. FANCONI ANEMIA CORE COMPLEX -
COMPOSER, CONDUCTOR, AND MUSICIAN?

Extensive interaction studies have shown that
eight of the FA proteins form a multi-subunit nuclear core
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complex: FANCA, FANCB, FANCC, FANCE, FANCEF,
FANCG, FANCL, and FANCM (5, 12). The FA core
complex was successfully purified from HeLa cells through
immunoprecipitation with a FANCA-specific antibody (65,
84). This protein-association technique was successfully
used by Weidong Wang’s group to identify three FA genes,
FANCB, FANCL, and FANCM (46, 60, 65, 85). Two
additional FANCA-associated proteins, namely FAAP24
and FAAP100, have also been identified to be components
of the core complex although no FA patients with
mutations in these genes have been identified thus far (86,
87). The 10 proteins in the FA core complex may exist in

the form of subcomplexes, i.e. FANCM-FAAP24,
FANCA-FANCG, FANCB-FANCL-FAAP100, and
FANCC-FANCE-FANCF (5, 86, 88-91). HESI, a

transcriptional repressor, is also reported to be associated
with the FA core complex (92, 93). In addition to its critical
function of monoubiquitinating the ID complex, FA core
complex is also known to be directly involved in a wide
spectrum of other functions as described below.

3.1. Components of the FA core complex are
phosphorylated under genotoxic stress

The presence of any DNA damage that is bulky
enough to impede the progression of replication forks is
likely to be initially detected by the replication machinery.
Upon stalling of the replicative DNA polymerase, the
MCM (minichromosome maintenance) helicase in the
replication machinery continues to unwind DNA ahead of
the fork, resulting in exposure of single-stranded DNA
(94). The single-stranded DNA is quickly coated by ssDNA
binding protein RPA to prevent degradation by DNA
nucleases. More importantly, this RPA-coated ssDNA
serves as an anchor to independently recruit ATR-ATRIP,
Rad17-RFC, the 9-1-1 complex, and claspin, leading to the
activation of the ATR DNA damage response pathway, and
resulting in an intra-S checkpoint (94-96). Since ICLs
present an essentially unsurmountable barrier for DNA
helicases, one might expect the checkpoint activation by
ICLs to be limited due to lack of ssDNA exposure.
However, ICL damage actually does activate the ATR
damage response pathway, resulting in an S-phase
checkpoint arrest (97). Intriguingly, this checkpoint
activation requires the FA core complex and FANCD?2 (97-
100). Thus FA proteins appear to act as replication-coupled
DNA damage sensors in this scenario (18, 20).

It is known that the activated ATR-CHK1 kinases
phosphorylate many FA proteins, with implications for
DNA repair (Figure 1). Phosphorylation of FANCA on
serine 1449 by ATR kinase in response to DNA damage is
known to be essential for the FA pathway (101). Although
the FANCAS'*** mutant localizes normally to chromatin,
it fails to correct a variety of FA-associated phenotypes
including the FANCD2 monoubiquitination deficiency
(101). FANCE is phosphorylated at theronine 346 and
serine 374 by CHKI1. The non-phosphorylated mutant of
FANCE*AS34A  allows normal level of FANCD2
monoubiquitination and FANCD?2 foci assembly, but fails
to complement the hypersensitivity of FANCE-deficient
cells to the synthetic crosslinking agent, mitomycin C
(102). The phosphorylation of FANCE by CHKI1 leads to
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its degradation and has been suggested to be a negative
regulation mechanism of FA pathway (12). The putative
phosphorylation of FANCM by ATR kinase increases its
binding affinity for chromatin (60, 103, 104). Furthermore,
hyperphosphorylation of FANCM by Plk1 kinase (polo-like
kinase) is involved in the cell cycle dependent recruitment
of the core complex to chromatin (103, 105). This
phosphorylation provides an important layer of regulation
that ensures the FA core complex is recruited to chromatin
only during S phase, but not mitosis phase of the cell cycle.

In summary, the phosphorylation of the FA core
complex is likely to affect stability of the core complex,
ubiquitin ligase activity, chromatin association, and repair
functions. It is worth noting that the WD40 repeats of
FANCL may be involved in binding to the phosphorylated
serine or threonine (106), therefore serving as a platform to
bring together the phosphorylated subcomplexes FANCA-
FANCG (phospho-FANCA), FANCE-FANCC-FANCF
(phospho-FANCE), and FANCM-FAAP24 (phospho-
FANCM) with FANCL-FANCB-FAAP100 in order to
form the FA core complex in response to DNA damage.
In line with this, the WD40 repeats of FANCL are
reported to be required for assembly of the FA core
complex (107).

3.2. FA core complex is a multi-subunit E3 ubiquitin
ligase

A hallmark and convenient diagnostic marker of
FA is the monoubiquitination of FANCD2 (108, 109). All
10 known subunits of the FA core complex are
indispensable for the FANCD2 monoubiquitination (46, 64,
65, 86, 87). Very recently, FANCI, an interacting partner of
FANCD?2, was also found to be monoubiquitinated by the
FA core complex (53, 54). It is now clear that FANCD2
monoubiquitination occurs via FANCL-mediated E3
ubiquitin ligase activity (65). FANCL modifies FANCD?2 at
lysine 561 by adding a single ubiquitin molecule with
UBE2T acting as the E2 ubiquitin-conjugating enzyme
(110). It is currently unknown how other components of the
FA core complex facilitate or regulate the FANCL
ubiquitin ligase in response to DNA damage. However,
assembly of the FA core complex per se does not seem to
trigger the FANCD2 monoubiquitination. Instead, the
damage-induced recruitment of the FA core complex and
the independent recruitment of UBE2T to chromatin play a
critical role in regulating the FANCD2 monoubiquitination
(111).

3.3. Is FANCM-FAAP24 the only core component that
recognizes DNA?

Thus far, FANCM-FAAP24 is the only known
DNA-binding component in the FA core complex (60, 86).
FANCM contains a DEAH-box helicase domain and an
endonuclease domain (60). In human FANCM, the
endonuclease domain is thought to be degenerate since its
ERCC4 endonuclease catalytic motif ERKxxxD has
diverged to ERRxxXE (60, 75). To date, no DNA helicase
or endonuclease activity has been detected in FANCM.
Nevertheless, FANCM can remodel stalled replication
forks through fork reversal and branch migration, thus
stabilizing the stalled replication forks and providing

1133

temporal and spatial access for the damage to be repaired
(22, 23). The ATP-dependent branch-point migration
activity of FANCM does not seem to be required for the
monoubiquitination of FANCD2 and FANCI, but is needed
for its role in the ATR/Chkl damage signaling and the
repair of crosslinks through recombination (24, 100, 112).
Using Xenopus egg extracts, Sobeck et al showed that the
chromatin  recruitment and the damage-induced
phosphorylation of FANCM are mediated by both
FANCD2 and the ATR/ATM pathways, indicating that
FANCM may also act downstream of FANCD2 and have
multiple roles in chromosomal replication (104).

FANCM appears to be responsible for
recruitment of the FA core complex to chromatin (60, 75,
86-89, 103). The monoubiquitinated ID complex may also
be recruited to chromatin through a FANCM-dependent
mechanism (53, 61, 64, 113). However, unlike other factors
in the core complex, FANCM is not required for the
formation of the eight-subunit (but not the 10-subunit) core
complex (103) and FANCM™ cells are partially deficient in
damage-induced FANCD2 monoubiquitination (112, 114).
FANCM™ knockout mice further support that FANCM
may have a stimulatory but not essential role in
monoubiquitinating FANCD2 (115). These observations
suggest that FANCM may not be the only DNA binding
component in the FA core complex and that the FA core
complex may also be recruited to DNA through
components other than FANCM.

Additionally, a direct interacting partner for
FANCM-FAAP24 in the FA core complex has not been
identified thus far, although FANCM-FAAP24 was
originally identified through protein association in a
FANCA-specific immunoprecipitation assay (19, 60, 84).
FANCM™ cells are sensitive to camptothecin, a
topoisomerase inhibitor. Susceptibility to camptothecin is a
unique feature identified only for FANCD1/BRCA2 and
FANCN/PALB?2, but not for components of the FA core
complex (114). These data indicate that FANCM may
function in both FA core complex dependent and
independent pathways (114, 115), and that the FA core
complex may alternatively be recruited to chromatin or
damaged replication forks through other mechanisms, e.g.,
additional unknown DNA binding or damage recognition
factors present in the FA core complex.

Very recently, the sole identified FANCM
patient, EUFA867, was reported to have additional defects
in the FANCA gene (biallelic mutations) (114), which
raises concerns as to whether FANCM is an actual FA gene
(8). Additionally, patient EUFA867 exhibited a much
milder and therefore atypical clinical phenotype relative to
other FA patients (114), supporting the notion that the
FANCA deficiency may be attenuating the severity of
FANCM deficiency. This phenomenon is also observed
when FANCM was disrupted in a FANCC-deficient
background (61). These data suggest that, in the absence of
FANCM, the alternative processing of ICLs by FA core
components is likely to produce more deleterious effect
compared to processing that involves FANCM
participation.
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3.4. Functions of FANCA, FANCB, FANCC, FANCE,
FANCF, FANCG, and FAAP100

This group of identified FA factors comprises
newly evolved proteins in vertebrates and currently lacks
identifiable domains and motifs to suggest what biological
activities they may have (70). Intriguingly, mutations in
FANCA, FANCC, and FANCG make up 85% of the FA
patient population (8, 12). The best characterized functions
of these proteins are to facilitate the monoubiquitination of
FANCD2 by FANCL as described above, to directly
mitigate oxidative stress, and/or to enable cells to repair
DNA damage.

3.4.1. Functions in DNA repair

Although direct evidence in DNA transaction is
lacking, this group of FA proteins play critical roles in
DNA damage response and repair. The similar cellular
phenotypes, including sensitivity to DNA damaging agents,
increased spontaneous and damage-induced chromosomal
aberrations, and reduced damage-induced base substitution
mutagenesis, unequivocally establish the DNA repair
functions of these FA proteins. These FA core components
seem to be involved in all major steps of the ICL repair
including ICL unhooking, bypass, and fork reestablishment
through homologous recombination. The FA core complex
may play more important roles in interacting with and
repair of DNA damage than currently appreciated.

FANCA, FANCC, and FANCG knockout mice
show similar phenotype in terms of sensitivity to DNA
crosslinking agents and chromosomal instability (116-121).
FANCA and FANCG were shown to be required for the
DNA double strand break-induced ICL repair in human
cells (78). Using nuclear protein extracts and complementation
analysis, it was demonstrated that FANCA, B, C, F, and G are
all required for efficient incisions at the sites of psoralen-
mediated ICLs (122, 123). FANCA was also found to be
involved in the psoralen ICL-induced mutagenesis in
lymphoblasts, implicating its involvement in the mutagenic
TLS of DNA damage (124). Furthermore, both FANCA and
FANCG are necessary for efficient spontaneous and UV-
induced base substitution mutagenesis in human fibroblasts
(82). FANCA is required for recruiting RADS51 and
BRCA2/FANCDI1 into the MMC-induced nuclear foci,
indicating its role in the homologous recombination repair of
ICLs (125). In avian DT40 cells, FANCC was shown to
function together with BRCA2/FANCD1 and RADS51 to repair
double strand breaks (DSB) produced during replication in an
epistatic manner (126). FANCG is associated with
FANCD1/BRCA2 and XRCC3 (RADS51 paralog) during
homologous recombination by direct interactions (127, 128).
In FANCG-knockout CHO cells, defects in homologous
recombination and non-homologous end joining were also
observed (17). These data suggest direct involvement of the
components of the FA core complex in DNA repair.
Biochemical characterization of these FA core proteins and
their interactions with DNA should greatly help us understand
how they are involved in DNA metabolism.

3.4.2. Functions in mitigating oxidative stress
There is a large body of evidence supporting that
FA cells are hypersensitive to oxidative stress and FA
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proteins are involved in mitigating the effect of such stress
(25-36). Cytochrome P450 2E1 (CYP2E1), a drug
metabolism enzyme involved in the production of ROS
intermediates and frequently localized to nuclei (129), was
shown to interact with and be down-regulated by FANCG
(29). Through direct interaction, FANCG also increases the
activity of mitochondrial peroxidase peroxiredoxin-3
(PRDX3), a mitochondrial antioxidant enzyme (130).
Additionally, FANCA and FANCG are redox-sensitive
proteins. In response to the oxidative stress, both FANCA
and FANCG are multimerized through intermolecular
disulfide linkage (31). FANCA forms a stable complex
with FANCG and may help the nuclear localization of
FANCG (88). Since both FANCG and FANCC can be
localized to nucleus through interaction with the nuclear
localization signal-containing FANCA and FANCE
respectively (70, 91), we speculate that FANCG and
FANCC may be involved in suppressing the oxidative
stress in the nucleus. This putative function will be helpful
to prevent the formation of oxidative DNA damage and
link the oxidative stress hypothesis and the DNA repair
hypothesis to the etiology of Fanconi anemia.

Furthermore, FANCC has been shown to interact
with NADPH cytochrome P450 reductase and suppress its
activity in triggering the production of reactive oxygen
species (ROS) (30). FANCC also interacts with glutathione
S-transferase P1-1 and significantly increases its
antioxidant activity (131). Comparing with cells from other
FA subtypes, FANCE-deficient cells show the highest
degree of DNA oxidation after H,O, treatment, indicating
that FANCE may also be involved in the modulation of
oxidative stress response (132).

4. 1D COMPLEX - CONDUCTOR

FANCI is the most recently identified FA gene
and the last assigned FA complementation group (53-55). It
is a paralog of FANCD2 and its C-terminus interacts with
FANCD?2 to form a complex called the ID complex (21,
53). It has been noted that FANCI and FANCD2 are not
always found together in the ID complex. In a
reconstitution analysis in insect cells, only ~5% of FANCI
was found to form a complex with FANCD2 (21). Both
FANCI and FANCD2 are leucine rich proteins (21) and
both proteins are monoubiquitinated by the FA core
complex under genotoxic stress (53, 59, 64). This
modification is considered to be essential for the FA
pathway to exert its effects, especially in reestablishing
replication forks through homologous recombination.

4.1. ID complex is phosphorylated, monoubiquitinated,
and deubiquitinated under genotoxic stress

Under genotoxic stress, both FANCI and
FANCD2 can act as substrates of ATR/ATM (ataxia
telangiectasia and Rad3-related/ataxia telangiectasia-
mutated) kinases (53, 67, 133). The phosphorylation of
FANCI may function as a molecular switch to turn on the
FA pathway (134). The phosphorylation of FANCD?2 is
required for DNA damage-induced intra-S phase
checkpoint and for cellular resistance to DNA crosslinking
agents (133, 135). However, another study suggests that
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FANCD?2 phosphorylation is dispensable for resistance to
cisplatin and for FANCD2 monoubiquitination (134).

The monoubiquitination of FANCD2 plays a
critical role in cellular resistance to DNA crosslinking
agents and is required for FANCD2 to form damage-
induced nuclear foci with BRCAI, FANCDI1/BRCA2,
RADS1, FANCJ/BRIP1, FANCN/PALB2, and gamma-H2AX
on chromatin during S phase of the cell cycle (62, 64, 66, 136-
141). Under genotoxic stress, FANCD2 is monoubiquitinated
at lysine 561 and FANCI is monoubiquitinated at lysine 523
by the FA core complex (53, 59, 64, 142, 143). While there is
no disagreement on the importance of the FANCD2
monoubiquitination, the importance of the FANCI
monoubiquitination is in dispute (53, 134). The
monoubiquitination of FANCI seems to rely on the FANCD2
monoubiquitination (53, 70). Nevertheless, the presence of
FANCIT increases monoubiquitination and also restricts it to the
physiological lysine site on FANCD2 in an in vitro
reconstituted system (142), although this ubiquitination site on
FANCD?2 does not seem to be critical based on the fact that
FANCD2 K561R-ubiquitin fusion protein complements the
defects of the FANCDZ2 knockout DT40 cells (144).

The deubiquitination of FANCD2 by USPI1-
UAF]1 is an important mechanism to keep the FA pathway
in check under unstressed conditions. Down regulation of
USP1 by transcriptional repression and DNA damage-
dependent autocleavage shifts the ubiquitination balance
toward increased monoubiquitination of FANCD2 and
FANCI and therefore triggers downstream repair events
(12, 101, 145-148). However, in chicken DT40 cells, the
monoubiquitination of FANCD2 has been shown to be
independent of USP1 autocleavage and the deubiquitination
of FANCD?2 is required for DNA crosslink repair (149).

4.2. ID complex recognizes branched structures

Purified human FANCD2 has been reported to
bind double-stranded DNA and Holliday junctions (150).
However, in a very recent study, the unmodified FANCD2
was found to have higher affinity to single-stranded DNA
over Holliday junction and dsDNA (151). Research from
both Patrick Sung’s group as well as our laboratory has
recently described the DNA binding properties of FANCI
(21, 143). We have found that FANCI is relatively
promiscuous in terms of binding to various DNA
structures, and that the FANCD2-complexed FANCI
exhibits apparently greater affinity toward branched DNA
structures in a gel shift assay under non-competitive
condition (21). This observation was confirmed by in vivo
association of FANCI nuclear foci with chromatin and
PCNA foci (21). By employing a substrate competition
assay, Patrick Sung’s group established that FANCI per se
recognizes branched structures (143). One explanation for
the discrepancy in our respective findings is that the DNA
binding assays in these two studies were performed under
different reaction conditions. While it may be postulated
that a competition assay is more definitive in terms of
determining  substrate  preference, our  results
unambiguously demonstrate that FANCD2 enhances the
selectivity of FANCI toward branched DNA structures
through direct interaction in vitro.
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Because the unmodified FANCI and ID complex
recognize branched (fork) structures, it is proposed that the
ID complex can be recruited to chromatin or stalled
replication forks independently of the FA core complex and
regardless of its ubiquitination status (21, 111). This
hypothesis does not exclude the possibility that the FA core
complex (FANCC, FANCE, and FANCG) may facilitate
the recruitment of FANCD2 (ID complex) to sites of DNA
damage or stalled replication forks (144, 152, 153). It is
conceivable that phosphorylation and monoubiquitination
of FANCI and FANCD2 may function to increase ID
complex formation and/or its affinity to stalled replication
forks (21, 113, 144). In a very recent study using the
Xenopus egg extract and purified proteins, Knipscheer and
colleagues showed that the ID complex binds to chromatin
in a manner dependent on DNA replication, DNA damage,
and FANCD2 monoubiquitination (154). Additionally,
gamma-H2AX, a physiological marker of DSBs, interacts
with FANCD2 and is able to facilitate recruitment of
FANCD?2 to broken DNA ends (136).

4.3. Functions of the ID complex

The branch recognition activity of the ID
complex and its co-localization with PCNA in the absence
of exogenous DNA damage support the function of FA
proteins in stabilizing replication forks during unperturbed
S phase and DNA replication (18, 20, 21, 53, 155). When
the DNA replication machinery encounters single strand
breaks or ICLs, DSBs are likely to be the result (5, 7, 12,
19, 156, 157). FA proteins (including the ID complex) may
act to hold together broken DNA ends in the vicinity of the
replication site in order to prevent collapse of the
replication fork.  Subsequent phosphorylation and
monoubiquitination of the ID complex, a critical switch
that signals initiation of the FA pathway, could then recruit
homologous recombination factors, including
FANCDI/BRCA2, FANCN/PALB1, FANCIJ/BRIPI,
BRCA1, and RADS51, to repair DSB and to reestablish the
replication fork (66, 139, 140, 158).

The preferential binding activity of the ID
complex toward branched structures allows its independent
recruitment to chromatin and makes it possible for
FANCD2 to act upstream of FANCM phosphorylation
(104). FANCD?2 has also been shown to be required for
efficient XPF-induced incisions around psoralen-generated
ICLs (123). However, two recent reports indicate that XPF-
ERCC1 precedes FANCD2 foci formation and its
recruitment to chromatin, and is required for homologous
recombination-mediated DSB repair (159, 160).

It is reasonable to assume that the
monoubiquitination of FANCI and FANCD?2 could act as a
surrogate of PCNA monoubiquitination in the recruitment
of UBD- (ubiquitin binding domain) containing TLS
polymerases in order to bypass unhooked ICLs. This
possibility is supported by a recent study in Xenopus egg
extract by Johannes Walter’s group (154). Through the
antibody depletion of FANCD?2, they established that the
monoubiquitinated ID complex is essential for both
incision and TLS bypass, and therefore the overall
replication-coupled repair of a site-specific cisplatin ICL
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(154). However, it is worth mentioning that another study
indicates that the monoubiquitination of FANCI and
FANCD2 does not seem to affect TLS-induced
mutagenesis in human cells (82).

5. FANCD1, FANCN, AND FANCJ - MUSICIANS

FANCDI1, FANCN, and FANC]J are bona fide
DSB repair factors. They act downstream of the
monoubiquitination of the ID complex in order to mend
broken DNA ends produced during replication-coupled ICL
repair and to reestablish the replication fork (5, 7, 10, 12,
19). While haplodeficiency of these factors caused by
single allelic mutation predisposes humans to breast and
ovarian cancers, biallelic mutations cause Fanconi anemia
(5, 161).

The connection between Fanconi anemia and
DSB repair factors was first shown in an elegant study by
Alan D’Andrea’s group (48). They established that
BRCA2, a factor that facilitates formation of RADS5I-
ssDNA nucleofilaments (162, 163), is not only mutated in
FANCD1 patient (48), but also interacts with
monoubiquitinated FANCD2 to form nuclear foci (139,
140). FANCD1 (BRCAZ2) appears to operate downstream
of the FA core complex, but FANCD1/BRCA2 is more
important for the repair of replication-blocking lesions
relative to the FA core complex (118, 161, 164-168).
Although the FANCD1/BRCA2%*"4?7 deficient mice do not
recapitulate the bone marrow failure characteristic of FA,
their bone marrow cells display more severe spontaneous
and crosslinker-induced chromosomal aberrations than the
FANCA™ mice (164, 169).

PALB2, an interacting partner of BRCA2, has
been found to be associated with the Fanconi anemia
complementation group N (62, 63, 170). FANCN is
required for localization of FANCD1/BRCA2 to chromatin
and BRCA2-mediated homologous recombination (141,
171, 172). Biallelic mutations in BRIPI or BACHI, an
interacting partner of BRCA1 and an ATP-dependent 5°-3°
DNA helicase (137, 173, 174), are responsible for the
Fanconi anemia complementation group J (FANCJ) (56,
58, 167). Although not mutated in FA patients, BRCA1
interacts with FANCA, directly binds to the branched DNA
structures, and is required for the redistribution of BRCA2
and FANCIJ to DNA damage sites (138, 175, 176). BRCAL1
was also shown to be required for the FANCD2 nuclear
foci formation (64). Using an elegant eChIP (episomal
replication-based chromatin IP) system, Lei Li’s group has
shown that FANCDI1/BRCA2, FANCJ/BACHI, and
FANCN/PALB2 can be recruited to DNA ICL sites in a
replication-dependent and FA core complex-independent
manner, suggesting that the stalled replication forks serve
as a sufficient signal to initiate homologous recombination-
mediated repair (177).

In the absence of the top-tier musicians, second
string players such as non-homologous end joining (NHEJ)
take over and result in the observed FA phenotype of
chromosome instability such as radial chromosomal
structures (7, 12, 19, 124, 178).
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6. NON-FA FACTORS IN ICL REPAIR - GUEST
MUSICIANS

Although not mutated in the FA patients, many
other factors are involved in the FA pathway of ICL repair
because they resemble the FA phenotype in some aspects
such as hypersensitivity to crosslinking agents,
hematopoietic defects, and mutagenesis footprints, and/or
through their interaction with FA proteins.

6.1. Endonucleases

XPF-ERCCI1, a heterodimeric structure-specific
endonuclease involved in nucleotide excision repair (NER),
is distinct from other NER factors because its deficiency
results in uniquely high sensitivity to crosslinking agents
(15, 75, 179-183). These observations indicate that XPF-
ERCC1 may also be involved in the repair of ICLs. Indeed,
purified XPF-ERCCI1 protein is able to introduce damage-
specific dual incisions on both 5’ and 3’ sides of the
defined psoralen-ICL DNA substrates. The dual incisions
take place on the same strand and therefore unhook the ICL
(184, 185). Components of the FA core complex and the ID
complex are required for the incision (122, 123). More
importantly, ERCCI deficient mice exhibit certain
phenotypes characteristic of FA but not other NER
deficiencies, such as hematopoietic defects (186). XPF-
ERCCI1 also plays an important role in the localization of
FANCD2 to chromatin (leading to FANCD2 foci
formation) and subsequent homologous recombination-
mediated repair (74, 78, 159, 160).

MUS81-EME1 is another member of the
XPF/MUSS1 family of DNA endonucleases (75). It cleaves
3’ flap, replication fork, D-loop, and Holliday junction
structures very efficiently (86, 187-191). MUS81-EMEI is
likely involved in ICL unhooking (19, 157). However, an
unprocessed stalled replication fork is most likely a 5 flap
structure and therefore not an ideal substrate for MUSS81-
EMElL. FANCM-FAAP24 remodels the structure of the
stalled replication fork through fork regression and can
make it into a substrate for MUS81-EMEI1 (19, 74).

Very recently, mammalian SLX4, a scaffold
protein that mediates interactions between endonucleases
XPF-ERCCI1, MUS81-EMEI, and SLX1, was found to be
required for the ICL repair (192-195).

6.2. TLS polymerases

Translesion synthesis polymerases are a group of
low fidelity DNA polymerases that specialize in bypassing
DNA replication-blocking lesions, albeit at a price of
clevated mutagenesis (196-198). TLS polymerases REV1
and Pol zeta (REV3-REV7) are required for ICL bypass
during ICL repair (16, 78, 82, 83, 199-201). REV3 deficient
mouse embryonic fibroblasts and chicken DT40 cells are
extremely sensitive to DNA crosslinking agents (199, 202-
204). In chicken DT40 cells, FANCC deficiency and Pol
zeta deficiency are epistatic in their sensitivity to
crosslinking agents indicating that FANCC and REV1- Pol
zeta function in the same ICL repair pathway (83, 199). It
also has been shown that the FA core complex is required
for efficient REV1 foci formation (82). Pol zeta-depleted
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Xenopus egg nuclear extract has been demonstrated to be
defective in replication-dependent ICL repair (16). In the
context of replication-independent ICL repair, REV1-
REV3 also plays a major role in bypassing ICL damage
(200).

Additionally, DNA polymerase kappa (DINB1)
has been shown to play a role in bypassing a N°>-N*-guanine
ICL in vitro and in intact cells (81). Pol eta (XPV) may also
be involved in the ICL bypass because the XPV deficient
cell line XP30RO is hypersensitive to psoralen-induced
ICLs but not to psoralen monoadducts (205).

6.3. Mismatch repair factors

Mismatch ~ repair  factors  MutS  beta
(MSH2/MSH3), MutL alpha (MLH1/PMS2), and EXOI
also play roles in ICL repair (77-80, 206-208). MutS beta
recognizes psoralen ICLs and is required for a repair step
prior to engagement of FA proteins in the in vitro
processing of psoralen ICLs (79, 80, 208). The functional
and physical interactions between ERCC1 and MSH2
suggest that MutSP may also be involved in the incision of
ICLs (209). Processing of ICLs by these mismatch repair
proteins seems to result in the error-free ICL repair in
human cells (208).

MutLo interacts with the helicase domain of
FANCIJ/BRIP1 and this interaction is required for the repair
of ICL because its disruption results in ICL sensitivity
(207). Since MutLo is an endonuclease that creates
incisions on both sides of a mismatch (210, 211), it is likely
that MutL alpha could be involved in the unhooking of
ICLs. However, unlike MSH2, MutL alpha deficiency
(MLH1 knockdown) results in resistance to psoralen ICLs,
suggesting that MSH2 and MLH1 contribute differently to
ICL repair (77). Indeed, MLH1 is known to play an
important role in activating apoptosis through activation of
caspase 3/7, a mechanism which requires DNA
fragmentation for its initiation (77).

6.4. Other factors

Bloom (BLM) syndrome shares some phenotypic
similarities with FA in terms of hypersensitivity to
crosslinking agents, high frequency of chromosomal breaks
and rearrangement, and high risk of cancer (84, 212, 213).
BLM protein is found to be present in the same BRAFT
complex with FA proteins, topoisomerase III alpha and
RPA (84). The FA core complex is required for the ICL-
induced BLM phosphorylation and assembly into nuclear
foci (213). In response to crosslinking agents and
replication stress, BLM and FANCD2 are found to
colocalize and coimmunoprecipitate with each other (213).
FA proteins also collaborate with BLM to prevent
chromosome abnormalities during mitosis (214).

The MRN (MRE11-RAD50-NBS1) complex is
the major regulator of DNA end processing, and is likely to
be involved in the end resection of DSBs produced during
ICL repair. In the absence of FANCC, the MRN complex
fails to form nuclear foci in response to DNA crosslinking
agents, suggesting that MRN may work downstream of the
FA core complex (98). NBS1 has also been demonstrated
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to interact with FANCD2 in response to DNA damage
(215), and this interaction is critical for the stability of
FANCD?2 protein (151).

7. A HYPOTHETICAL MODEL FOR FA PROTEINS
IN ICL REPAIR

The primary physiological roles of FA proteins
are widely considered to be repair of all forms of
replication-stalling factors (bulky DNA lesions, secondary
structures, strand breaks, ICLs, and etc) in order to prevent
deleterious collapse of the replication fork, to restart
replication after repair, and therefore to maintain the
stability and integrity of DNA replication. Using the
ultimate replication-blocking lesion, namely ICLs, as an
example, we summarize what we have learned about the
FA repair pathway as follows. We propose that the repair
pathway involves four steps: (1) damage recognition, (2)
ICL unhooking, (3) ICL bypass, and (4) fork
reestablishment. Because FANCM and the ID complex
recognize branched structures, they are likely to be
involved in recognition of the ICL-stalled replication fork
(Figure 1A). The stalled replication fork also activates the
ATR-CHK1  kinases (damage response) which
subsequently phosphorylate the FA core and ID complexes.
The activated FA core complex monoubiquitinates the ID
complex through its FANCL ubiquitin ligase activity and
thereby initiates repair of the damaged replication fork.

The mechanism of the subsequent ICL unhooking
step remains elusive. There are likely two processes which
are able to unhook ICLs. One is by action of MUSS81-
EME1 and XPF-ERCCI1 on the leading strand (Figure 1B).
For MUS81-EMEI] to be able to make incision, the stalled
replication fork has to be remodeled by FANCM-FAAP24
through its branch point translocase activity (19), because
MUS81-EME1 does not cut the 5’ flap structure that is
usually seen in a regular replication fork. The
monoubiquitinated ID complex may recruit BRCAI-
FANCIJ helicase or other helicases to unwind the duplex
locally in order to make the other side of the stalled
replication fork suitable for the incision by the XPF-
ERCCI1 endonuclease (10, 19). In this scenario, the FA core
complex and attendant helicases may mimic the action of
transcription factor TFIIH in nucleotide excision repair.
Accordingly, the entire FA core complex may be directly
interacting with the damaged DNA (in addition to
FANCM-FAAP24) by participating in the maintenance of
the opened bubble DNA structure.

The unhooked ICL lesion is then bypassed by
TLS polymerases such as REV1 and Pol zeta (Figure 1C).
One caveat to keep in mind is that for ICL unhooking on
the leading strand, the XPF-ERCCI1 incision has to take
place prior to TLS in order for an extendable 3’ end to be
available for DNA synthesis. Components of the FA core
complex and FANCIJ helicase may facilitate the subsequent
bypass activity. The multi-point DNA binding activity of
the monoubiquitinated ID complex (or FANCM-FAAP24)
may then help to hold together the ‘collapsed’ end in the
vicinity of the processed fork for subsequent repair. The ID
complex may also recruit double strand break repair factors
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Damage recognition 5

Fork regression, local
unwinding, & ICL unhooking First incision

TLS & second incision

XPF-ERCC17? * %

MutLa?

HR and Fork reestablishment HR and Fork reestablishment

HJ resolution &
replication start

Figure 1. The Fanconi anemia pathway of ICL repair. A, a stalled replication fork can be recognized simultaneously by
FANCM-FAAP24, ID complex, other unidentified FA factors, or combination of these factors. FANCI and FANCD2 are
depicted to be present in the ID complex after their phosphorylation and monoubiquitination, but do not necessarily need to be
continuously together in order to exert their functions. B, ICLs are unhooked by XPF-ERCC1 and MUS81-EMEI. C, Translesion
synthesis across the unhooked ICL. D, The replication fork reestablishes through homologous recombination. E, An alternative
way of ICL unhooking via the function of an unidentified 5’ flap endonuclease. F, Translesion synthesis and a second incision to
completely unhook an ICL. G, Fork reestablishment through homologous recombination. H, DNA replication restarts after
resolution of the produced Holliday junction. Red zigzag line: ICL. Letter ‘P’ in a blue circle: Phosphorylation; Red ovals:
monoubiquitination; All other letters in circles represent different Fanconi anemia complementation groups. Factors that are
likely to be present in a subcomplex are shown by a common color. Scissors: endonucleases. Newly synthesized strands are

indicated in light blue.
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such as BRCA1) to maintain integrity of the processed
replication fork.

Replication fork reestablishment may be
achieved through recruitment of the RADS1 recombinase
(facilitated by FANCDI1/BRCA2-FANCN/PALB2) to
single-stranded 3’ overhang followed by assembly of a
nucleofilament for strand invasion (annealing with newly
synthesized strand) (Figure 1D). Further end resection
can be accomplished by the MRN complex (98, 151,
215) with the BRCA1-FANCI helicase assisting in strand
invasion by unwinding dsDNA. This process can take
place in the presence of the unhooked ICL moiety and
components of the FA core complex may participate in
the process.

Alternatively, as observed in the Xenopus
extract, ICL incision can take place on the lagging strand
(Figure 1E) (16, 154). MUS81-EMEI1 functions as a 3’
flap endonuclease and is unlikely to be involved in this
first incision because of its substrate specificity (75, 187,
188, 216, 217). We speculate that an unidentified 5° flap
endonuclease is involved in this lagging strand incision
with FA proteins coordinating its function for precise
incision.

In this second scenario, as illustrated by
Johannes Walter’s group, DNA synthesis on the leading
strand provides a convenient primer end for lesion
bypass and incision is not required for TLS to take place
(Figure 1F) (16). XPF-ERCCI1 could be the endonuclease
for the second incision as it incises on both sides of a
psoralen ICL (184). MutL alpha is another likely
candidate to make such incision. The FA core complex
and/or FANCIJ could help to make the incision specific to
the ICL.

Without much end resection (by MRN
complex, for example), the resulting one-ended DSB
with a 3” overhang could serve as a primer to reestablish
the replication fork through strand invasion (i.e.
annealing with the parental strand), a process catalyzed
by RADS51 and FA proteins (Figure 1G).

The preferential Holliday junction binding
activity of FANCI and the ID complex may help to
recruit resolvases in order to allow DNA replication to
restart following resolution of the resulting Holliday
junction (Figure 1H). It is conceivable that the unhooked
ICL moiety could then be removed by the full NER
machinery after replication.

8. CONCLUSION

In summary, the FA pathway of DNA repair is
the most complicated and least understood repair
mechanism. In fact, a more accurate name to describe this
repair mechanism could be the “Fanconi anemia network of
DNA repair”. Although many questions still remain
answered, it is clear that Fanconi anemia is a bona fide
DNA repair disorder. The biased distribution of the disease
genes in FA patients (85% being FANCA, FANCC, or
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FANCG, and 5% being the DNA-interacting FANCM,
FANCI, FANCD2, and FANCJ) indicate on one hand that
FANCA, FANCC, and FANCG are involved in processes
other than DNA repair in the FA etiology. On the other
hand, FANCA, FANCC, and FANCG could be directly
involved in critical DNA repair transactions.

One difficult but interesting issue is that many
FA proteins do not have identifiable domains to indicate
how they contribute to biological processes including DNA
repair. Future research focusing on exploring the
biochemical properties of FA proteins and mapping out the
dynamic protein-DNA and protein-protein interaction
network should be promising in terms of delineating how
FA proteins participate in the DNA damage repair and the
maintenance of genome integrity.

A greater elucidation of FA protein —mediated
repair mechanisms will not only be useful for FA diagnosis
and intervention, but also provide a meaningful basis
towards understanding how to overcome drug resistance
during cancer chemotherapy. It appears that ICLs represent
the primary cytotoxic lesion induced by clinically
important bi-functional chemotherapeutic agents, such as
mitomycin C, cisplatin, psoralen, nitrogen mustards, and
nitrosourea (43, 74, 218, 219). Cancer cells develop
resistance to such agents by up-regulation of the FA
pathway after initial treatment and therefore compromise
subsequent therapeutic efficacy. Development of small
inhibitory molecules against FA proteins may help
potentiate toxicity of the drugs toward cancer, reduce
dosage of treatment, and minimize drug-related side
effects.

Small molecule inhibitors targeting FA proteins
will have implication in cancer treatment through synthetic
lethality which is an emerging therapeutic strategy to
effectively treat cancers while sparing normal cells and
tissue. Cancer cells that arise as a result of deficiencies in
one DNA repair pathway may depend heavily on other
repair pathways for survival. Inactivation of such secondary
repair pathways prove to lethal for these cancer cells (12).
For example, inhibition of an auxiliary base excision repair
protein, PARP1, causes synthetic lethality in breast and
ovarian cancer cells with BRCA1 and BRCA2
(homologous recombination repair) deficiency (220-222).
Similarly, abrogation of the ATM pathway was found to
cause synthetic lethality in tumors with FA deficiency,
suggesting that ATM inhibitors might be the next
generation drugs to be used for treatment of cancers that
arise in FA patients (12, 223).
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