[Frontiers in Bioscience 17, 2070-2088, June 1, 2012]

Superfamily 2 helicases

Alicia K. Byrd', Kevin D. Raney'

! Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W. Markham St. Slot

516, Little Rock, Arkansas 72205, USA
TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Superfamily 2 helicases
4. Families
4.1. DEAD-box
4.1.1. Destabilization mechanism
4.2. Ski2-like
4.3. Viral NS3/NPH-1I
4.4. DEAH/RHA
4.5. RecQ-like
4.6. Rad3/XPD
4.7. Swi/Snf
4.8. RIG-I-like
4.9. Type I restriction enzymes
4.10. RecG-like
5. Conclusions
6. Acknowledgements
7. References

1. ABSTRACT

Superfamily 2 helicases are involved in
all aspects of RNA metabolism, and many steps in DNA
metabolism. This review focuses on the basic mechanistic,
structural and biological properties of each of the families
of helicases within superfamily 2. There are ten separate
families of helicases within superfamily 2, each playing
specific roles in nucleic acid metabolism. The mechanisms
of action are diverse, as well as the effect on the nucleic
acid. Some families translocate on single-stranded nucleic
acid and unwind duplexes, some unwind double-stranded
nucleic acids without translocation, and some translocate
on double-stranded or single-stranded nucleic acids without
unwinding.
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2. INTRODUCTION

Helicases are a ubiquitous group of enzymes that use the
energy of nucleoside triphosphate (NTP) hydrolysis to
catalyze the separation of double-stranded nucleic acids
(dsNA). The resulting single-stranded nucleic acids (ssNA)
are  substrates for numerous cellular reactions.
Consequently, helicases are involved in essentially every
step in DNA and RNA metabolism, including replication,
DNA repair, recombination, transcription, translation,
chromatin rearrangement, ribosome synthesis, RNA
maturation and splicing, nuclear export, Holliday junction
movement, and displacement of proteins from DNA and
RNA (reviewed in (1, 2, 3, 4). Helicases were originally
identified as proteins that could separate double-stranded
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Table 1. Members and enzymatic activities of superfamily 2 helicase families

Family Family members discussed in this review Activities

DEAD-box Mammalian eIF4A(37) dsRNA unwinding
S. cerevisiae Mss116p (41, 164, 37)

E. coli DbpA (50, 49)
S. cerevisiae Dedlp (37)
Neurospora crassa CYP-19 (44)

DEAH/RHA S. cerevisiae Prp16p(77) ssRNA translocase
S. cerevisiae Prp22p(78) dsRNA unwinding
S. cerevisiae Prp43p (74, 79, 81)

RecQ-like human BLM (90) ssDNA translocase
human WRN (91, 24) dsDNA unwinding
human RecQ1 (23, 161, 165) triplex and quadruplex unwinding
human RecQ4 (92) branched DNA unwinding

Rad3/XPD archaeal XPD (97) ssDNA translocase
human XPD (100, 95) dsDNA unwinding

Swi/Snf human CSB (111) dsDNA translocase
human ATRX (116, 114)

S. cerevisiae INO80(108)

S. cerevisiae ISWI (19)

S. cerevisiae Rad54(113)

S. solfataricus SWI2/SNF2 (166)

RIG-I-like archaeal Hef (167) dsRNA translocase
human Dicer (123, 124)
human RIG-1(17, 126)

Type I Restriction Enzyme E. coli EcoR1241(168, 132) dsDNA translocase

Ski2-like S. cerevisiae Ski2p (52) ssRNA translocase
S. cerevisiae Mtr4 (56) dsRNA unwinding
archaeal Hel308 (85)

RecG-like E. coli RecG (152, 147, 155) dsDNA translocase
T. maritima RecG (162) branched DNA unwinding
E. coli PriA (158, 147, 160)

NS3/NPH-II Dengue Virus NS3(86, 62) ssRNA translocase
Vaccinia Virus NPH-II(59, 60) dsRNA unwinding
Hepatitis C Virus NS3 (63, 71, 69, 58)

nucleic acids based on 7 conserved sequence motifs (5) and
were later classified into superfamilies (SF) (6, 4).
However, only a subset of these enzymes have dsNA
unwinding activity. The helicase motifs, instead, are
characteristic of all nucleic acid dependent NTPases, of
which helicases are a subset (7, 1). Some helicases have
been shown to be translocases (ie: utilize the energy of
NTP hydrolysis for directional translocation on NA),
including PcrA (8, 9, 10), NS3 (11, 12), NS3h (13), Rep
(14), and UvrD (15). However, not all translocases have
helicase activity, including EcoR1241 (16) RIG-I (17),
SWI/SNF (18), and ISW2 (19), and not all helicases have
translocase activity, such as Dedl (20, 21). Therefore, not
all proteins possessing the helicase motifs and the helicase core
structure are helicases (able to unwind dsDNA or dsRNA in an
ATP dependent manner); examples are the Swi/Snf family and
the type I restriction enzymes (Table 1).

Of the conserved sequence motifs, only the Walker A and
B motifs are common to all helicases (22). These are
involved in NTP binding and hydrolysis. Superfamily (SF)
1 and SF2 are the largest of the superfamilies and the
conserved motifs are similar (6). The SF1 and SF2
helicases appear to function as monomers or dimers (3) for
unwinding. Some specialized activities such as Holliday
junction resolution and strand annealing require larger
oligomers (23, 24). Each monomer contains two RecA-like
domains (4). SF3-SF6 helicases show little similarity to
SF1 and SF2 helicases. They have fewer conserved motifs
(6, 4), contain one RecA-like domain per monomer (4), and
function as hexamers or double hexamers (4, 25). These
hexameric rings encircle the DNA, resulting in a highly
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processive helicase. The replicative helicases involved in
chromosomal DNA replication are members of these
superfamilies (26, 4).

3. SUPERFAMILY 2 HELICASES

Superfamily 2 is the largest and most diverse of the
helicase superfamilies. It has been further divided into families
including RecQ-like, RecG-like, Rad3/XPD, Ski2-like, type [
restriction enzyme, RIG-I-like, NS3/NPH-II, DEAH/RHA,
DEAD-box, and Swi/Snf families based on sequence
homology (Table 1) (1, 27, 25). It also includes smaller
groups, such as type III restriction enzymes and Suv3 (1).
Although they are classified as helicases, some have not been
shown to separate the strands of duplex NA or translocate on
nucleic acids (16, 17, 18, 19, 28). Some unwind DNA or RNA
while translocating on the NA, some unwind without
translocation, and some translocate without unwinding. All
have nucleic acid stimulated ATPase activity (25). SF2
helicases are involved in transcription, DNA repair, chromatin
rearrangement, (29, 30, 31) and all aspects of RNA
metabolism (25, 3). Since SF2 helicases function in diverse
parts of nucleic acid metabolism, defects are associated with a
variety of diseases including predisposition to cancer,
premature aging, immunodeficiency, and mental retardation
(32, 33).

4. FAMILIES
Based on recent work by the Jankowsky lab there

are 10 families within SF2, in addition to the smaller type
III restriction enzyme group and helicases such as Suv3
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Figure 1. Structure of DEAD-box helicase Mss116p. A. The crystal structure (Protein Data Bank code 3161 (41)) of the DEAD-
box helicase Mss116p bound to ssRNA and the ATP transition state analog, ADP-BeF;, illustrates the bending of the nucleic
acid substrate by DEAD-box helicases. The helicase motifs are in the cleft formed between the two RecA-like domains. B. The
consensus sequence for the conserved helicase motifs (1, 34) in DEAD-box family members is shown.

which belong to SF2, but not to any of the families or
groups (1, 27, 25). They are collectively referred to as
DExH/D helicases. However, the structures, mechanisms,
and biological functions of the members of each of the
families within this SF vary widely. This review will
summarize available information about each of the families
within SF2.

4.1. DEAD-box

The DEAD-box family is the largest in SF2 and
is conserved from bacteria to humans (25). They are
required for all aspects of RNA metabolism including
transcription, splicing, transport, ribosome biogenesis,
translation, RNA/protein complex assembly, and
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degradation (34, 25, 7). These enzymes are named for the
conserved sequence of amino acids in the Walker B motif.
They function exclusively on RNA as ATP-dependent
chaperones that reconfigure the RNA. Diverse substrates
are utilized by these enzymes, but they are most efficient
when the RNA binding domain, separate from the
unwinding active site, is also bound to RNA (35, 20). It
can be ssRNA, dsRNA, or even structured RNA (36).
DEAD-box proteins bind to RNA in an ATP dependent
manner, but they don’t translocate.  Instead, they
manipulate structured RNAs and RNA protein complexes
(RNPs) by disrupting local secondary and tertiary
structures and RNA-protein interactions (34). ATP-
dependent unwinding of RNA by DEAD-box proteins
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Figure 2. Proposed destabilization mechanism for unwinding by DEAD-box helicases (34, 37). The helicase (yellow oval) binds
to the ATP (green triangle) and dsRNA (black lines) (step 1). Following a rearrangement (step 2) one strand of RNA can
dissociate (step 3). ATP hydrolysis occurs after unwinding (step 4), and the cycle is completed with the release of phosphate (red

triangle), ssSRNA, and ADP (blue trapezoid) (step 5).

occurs by binding to the dsRNA and prying the strands
apart instead of by translocation on nucleic acid (21). This
allows unwinding to occur without directionality in some
cases (37). It also limits the DEAD-box helicases to
unwinding short duplexes, normally less than 2 helical
turns (21).

The helicase motifs are clustered in the cleft between the
two RecA-like domains (Figure 1). They form the ATP
and RNA binding sites. The Q motif (38) contacts the
nucleotide base, providing a specificity for ATP (7). The
N-terminal RecA-like domain of all DEAD box helicases
contains motifs I-III. Motifs IV-VI are in the C-terminal
domain (34). When ATP and RNA are absent, the helicase
is in an open conformation and the two RecA-like domains
do not interact (39). Upon binding of RNA and ATP, the
helicases domains close (40). In the structures of DEAD-
box proteins bound to ssRNA, the phosphate backbone is
kinked (Figure 1) (41, 40, 42, 43). This may aid in duplex
destabilization, thereby providing a mechanism for
unwinding short duplexes. Many contacts are made
between the DEAD-box proteins and the RNA backbone,
but little or no interactions with the bases are observed in
the structures (40, 42, 43). Hydrogen bonding between the
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ribose 2’-OH and helicase motifs Ia, Ib, and IV confers
specificity for RNA (42, 43).

ATP binding, but not hydrolysis, is required for
strand separation (37, 44). S. cerevisiae DEAD-box
proteins Dedlp and Mss116, and mammalian eIlF4A can
unwind dsRNA with the non-hydrolyzable ATP analog
ADP-BeF;, but not with ADP-AIF; or ADPNP (37). These
results suggest that ATP hydrolysis is needed for protein
recycling, not strand separation. When bound to ATP, the
helicase has a high affinity for RNA, but the ADP bound
and free enzymes have low affinity for RNA (7, 495),
resulting in release of the RNA after hydrolysis of ATP.
Interestingly, although Mss116p functions differently with
various ATP analogs, the structures of Mss116p bound to
AMP-PNP, ADP-BeF3, and ADP-AIF} are all similar (41).
Comparisons of the kinetic parameters for ATPase and
unwinding reactions also suggest that ATP binding results
in unwinding (44). ATP hydrolysis is not required for
unwinding, but it is possible that ATP hydrolysis occurs
after the dsRNA is melted due to ATP binding, but
before the strands have completely separated. Helicase
dissociation increases after ATP hydrolysis, but
unwinding is faster than helicase dissociation, resulting
in strand separation upon ATP hydrolysis. This could
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explain the reduced unwinding rates with ADP-BeF;
compared to ATP (37). Local unwinding, whether or
not it is accompanied by ATP hydrolysis allows the
remainder of short duplexes to spontaneously melt. Due
to this unwinding mechanism, the unwinding rate
constants decrease as duplex length and stability increase
(21). With longer duplexes, the enzyme is likely to
dissociate following ATP hydrolysis before the strands are
completely separated, resulting in nonproductive ATP
hydrolysis (44).

DbpA appears to be an exception. ATP and RNA bind
cooperatively to most DEAD-box proteins (45, 46, 47, 48),
and this has been accepted as a characteristic of DEAD-box
proteins (34). However, kinetic studies on DbpA indicate
no cooperativity in binding (49). Also, when the
equilibrium and rate constants of each step in the ATPase
cycle of DbpA were measured, it was found that the high
affinity RNA binding state is ADP-bound (50), in contrast
to other DEAD-box proteins which have high affinity for
RNA when bound to ATP. Upon release of phosphate
from the ADP-P; bound state, the DbpA loses its high
affinity for RNA and returns to the low affinity state. This
results in unwinding of an 8 nucleotide nucleic acid strand
after ATP hydrolysis, but before phosphate release (50).
This is in contrast to Ded1p, Mss116p, and eIF4A which all
unwind dsRNA before ATP hydrolysis, as shown in Figure
2(37).

4.1.1. Destabilization mechanism

Since unwinding can occur in the absence of
ATP, a destabilization mechanism has been suggested
(Figure 2) (7, 34). ADP-bound and the free protein have
low affinity for RNA for most DEAD-box proteins (37,
44). Helicase bound to ADP and P; (49) or bound to non-
hydrolyzable ATP analogs (37) has high affinity for RNA.
The rate limiting step in unwinding is phosphate release
(49). This is in agreement with unwinding occurring in the
presence of ADP-BeF; for some DEAD-box proteins (37).
The kink in the ssRNA bound in the active site disrupts
base pairing and causes separation of a few base pairs of
the dsRNA substrate (step 2 in Figure 2), which has been
suggested to be the initial step in unwinding (43). Strand
separation occurs before ATP hydrolysis, but ATP
hydrolysis is required for enzyme recycling (37) (step 5 in
Figure 2). Since the substrates unwound are short
duplexes, destabilization of a small portion of the
duplex may be sufficient for unwinding as the remainder
of the duplex may spontaneously melt. Since AMP-PNP
and ADP-AIF; binding also produce a kink in the RNA, but
not unwinding, a rearrangement of the protein/ATP
complex before hydrolysis has been suggested (34). This is
consistent with two phase nucleotide binding (49). Based
on these data, a model where the protein binds to ATP and
dsRNA rearranges to a hydrolysis competent form has
been proposed (7, 34, 41). Rearrangement can occur
when ADP-BeF; is bound, so unwinding can occur.
Rearrangement does not take place when ADP-AIF™ 4 or
AMP-PNP is bound, so no unwinding occurs. ATP
hydrolysis (step 4 in Figure 2) occurs after dissociation
(unwinding) of the first RNA strand (step 3 in Figure 2)
(37). The hydrolysis of one ATP molecule either nearly
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or completely unwinds a short helix due to a kink that
distorts the duplex RNA. For longer duplexes, the
dsRNA may not be separated by the local distortion of
the duplex, resulting in ATP hydrolysis while duplex
RNA is bound to the enzyme (no unwinding) (44).
After ATP hydrolysis, the enzyme is bound to ssRNA
(or dsRNA if unwinding did not occur due to a long or
stable duplex), ADP, and P; (step 4 in Figure 2). The
ADP-P; bound helicase has high affinity for RNA, so
phosphate likely dissociates before RNA. This causes
the enzyme to return to the open conformation, where
ADP and RNA are released (step 5 in Figure 2) (49, 45).

4.2. Ski2-like

Ski2 family members are RNA helicases
essential for removal of polyadenylated RNA from
the cell (51, 52), and are thought to unwind
secondary structure in and displace proteins from the
RNA targeted to the exosome (53). mRNA is
degraded in eukaryotes in the 5°-to-3” direction by
the exonuclease XRN1 and in the 3’-to-5’ direction
by the exosome, a complex of exonucleases and the
Ski complex which includes a Ski2 helicase (54, 55).
Ski2 helicases translocate on ssRNA and unwind
dsRNA in the 3’-to-5" direction (56). Eukaryotes
have nuclear and cytosolic exosomes. XRNI1, the
cytosolic exosome, and the Ski complex are also a
part of the nonsense-mediated decay (NMD) pathway
that degrades mRNAs with premature translation
termination codons and the nonstop decay (NSD)
pathway that eliminated mRNAs without stop codons
(55). The nuclear exosome interacts with the
TRAMP (Trf4-Air1-Mtr4) complex which recognizes
polyadenylated RNA substrates. Trf4 is a poly(A)
polymerase, Airl is a Zn knuckle protein, and Mtr4 is
a member of the Ski2-like RNA helicase family (53).

4.3. Viral NS3/NPH-II

Viral NS3/NPH-II helicases are DExH
helicases encoded by many positive strand RNA
viruses that unwind substrates with a 3’-ssNA
overhang (57, 58). NPH-II requires a RNA loading
strand (59). It translocates along the loading strand
through an interaction with the sugar-phosphate
backbone (60). NPH-II has been proposed to unwind
RNA by strand exclusion (wire-stripper or wedge
mechanism) (60). Nicks in the displaced strand do
not affect unwinding by NPH-II or NS3, but both are
halted by nicks in the loading strand (60, 61),
indicating that these enzymes track along one of the
strands.

A number of the Flaviviridae family of
viruses encode a SF2 helicase, including hepatitis C,
dengue virus, West Nile virus, yellow fever virus,
and Japanese encephalitis virus (62). Hepatitis C
virus (HCV) nonstructural protein 3 (NS3) is a dual
function helicase/protease. The C-terminal portion
forms a SF2 helicase (3, 1) while the N-terminal
domain forms the protease. The HCV nonstructural
proteins replicate and package the viral genome, and
NS3 is required for viral replication (58).
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Several structures of the helicase domain of NS3
(NS3h) (63, 64) and full length NS3 (65) from Hepatitis C
have been solved. The structures suggest that translocation
of 1 nucleotide per ATP hydrolyzed occurs in a
ratcheting or inchworm mechanism due to several
conformational changes that occur upon ATP binding
and hydrolysis (64). NS3 has been reported to have a
large kinetic step size of 11-18 base pairs (66, 67, 68)
composed of smaller steps of 3 base pairs (69) and 1
base pair (63, 64, 69). The large kinetic step size has
been proposed to be due to slow dissociation of the
displaced strand from an as yet unidentified site on the
enzyme (70). Using single-molecule FRET, Myong et
al (69) observed unwinding in three base pair steps, with
smaller translocation steps of one nucleotide (69). A
spring-loaded inchworm mechanism was proposed based
on this data in which three translocation steps of one
nucleotide each produce strain in the enzyme’s
structure. Release of the strain occurs when the trailing
edge of the enzyme springs forward to melt three base
pairs. This model received support from recent crystal
structures (71) which indicated that the leading edge of
NS3 could translocate one nucleotide while the trailing
edge remained bound to the same RNA bases of the 3°-
end of the RNA (71). It is possible that some form of
‘scrunching’ of RNA might also account for the single
molecule FRET data as has been reported for the SF1
helicase UvrD (15).

4.4. DEAH/RHA

The DEAH family of RNA helicases is found in
eukaryotes (72) and prokaryotes (73). It is distinct from
the NS3/NPH-II (viral DExH) family of helicases (74).
It is named for human RNA helicase A (RHA) and for
the conserved sequence of the Walker B box.
DEAH/RHA helicases have two conserved domains C-
terminal to the two RecA-like helicase domains (72).
One is a helicase-associated domain and the other has
unknown function. These domains are required (73) and
are specific to DEAH/RHA helicases; viral NS3/NPH-II
helicases do not have these conserved domains (74).

DEAH/RHA helicases are involved in
ribosome biogenesis (Dhrlp and Drh2p in yeast, and
DHX32 and DHX37 in humans) and mRNA splicing
(Prp2p, Prpl6p, Prp22p, and Prp43p in yeast and DHXS,
DHX16, and DHX38 in humans) (72). In bacteria,
DEAH/RHA helicases are also involved in RNA
processing  (73). Helicases in the human RHA
subfamily (DHX9, DHX29, DHX30, DHX36, and
DHXS57) are involved in nuclear import and export,
RNA localization, translational regulation, and splicing
(75). RHA knockout mice were not viable (76). During
splicing, DEAH/RHA helicases appear to remodel
structural RNAs. Prpl6p melts the U2/U6 helix in the
spliceosome after cleavage of the 5’-exon (77). Prp22p
catalyzes mRNA release from the spliceosome by
translocating on the mRNA (78). Prp43p is required for
synthesis of both subunits of the ribosome (79, 80) and
releases the lariat intron from the spliceosome in an
ATP dependent process (81, 82, 83, 84).

2075

The structure of Prp43p is similar to the Ski2-
like DNA helicase Hel308 (74). Like Hel308, Prp43p
has a ratchet domain. Stacking interactions with amino
acids of the helix and the nucleic acid are proposed to
pull the ssNA into the active site and allow the
helicase to translocate along the NA in a processive
manner (85, 74). However, unlike Hel308, C-
terminal to the RecA-like domains, Prp43p has an
oligonucleotide/oligosaccharide-binding  (OB)-fold
that is characteristic of DEAH/RHA proteins. The
OB-fold is required for ATPase activity, interaction
with protein partners, and increases its affinity for
RNA (74). The helicase interacts with the nucleic
acid through the phosphate backbone. ATP is bound
in a conformation similar to that of NS3/NPH-II
helicases (86), not like it is typically bound in
DEAD-box helicases (43) or Ski2-like helicases (85).
Since DEAH/RHA and Ski2-like helicases share a
similar structure, it suggests that the catalytic
mechanisms are similar between these two families.
Ski-2-like helicases translocate in the 3’-to-5’
direction along the ssNA, with a beta-hairpin (Figure 3)
causing strand separation (74).

4.5. RecQ-like

RecQ-like helicases are involved in DNA
recombination, telomere maintenance, and DNA
damage signaling (87). They reduce illegitimate
recombination by unwinding branched DNA
structures (88). Cells lacking RecQ proteins have
increased recombination and chromosome
missegregation, in addition to defects in meiosis.
There are five human RecQ-like helicases (BLM,
WRN, RecQI1, RecQ4, and RecQ5) (29). Mutations
in three are associated with predispositions to cancer
and premature aging (33, 89, 87, 32). Mutations in
BLM are associated with Bloom’s syndrome (90),
WRN with Werner’s syndrome (91), and RecQ4 with
Rothmund-Thomson syndrome (92). RecQ helicases
interact with the recombination and replication
complexes to remove intermediates during
recombination and to stabilize replication forks,
thereby aiding in maintenance of genomic integrity
(29).

RecQ family members are 3’-to-5° DNA
helicases. In addition to duplexes, they can unwind
triplexes, quadruplexes, and 3- and 4-way junctions (29,
93). The beta-hairpin (Figure 3) is required for unwinding,
HJ resolution, dimer and tetramer formation. The
oligomeric properties may regulate some functions of these
helicases. Monomers unwind DNA, although dimers are
preferred; tetramers are required for HJ resolution by
RecQ1 (23) and hexamers of WRN are needed for
strand annealing (24).

4.6. Rad3/XPD

Rad3 family members in humans include: XPD,
involved in nucleotide excision repair (NER) and RNA
transcription, FancJ, involved in recombinational repair,
Rtell, involved in homologous recombination (HR) by



Superfamily 2 helicases

Figure 3. The crystal structure of the human RecQ1 (Protein Data Bank code 2WWY (23)) shows the beta-hairpin separating the
strands of duplex DNA. The two RecA-like domains are colored in green and gray. The Zn domain is purple. The winged helix

domain is cyan, and the beta-hairpin is red.

unwinding toxic recombinational intermediates, and
ChIR1, involved in sister chromatid cohesion (94). XPD
is part of the transcription factor II H (TFIIH) complex
which initiates transcription of genes regulated by RNA
polymerase II promoters. The helicase activity of XPD
is required in NER, but only its presence, not its
activity, is required for transcription initiation (95).
Mutations in XPD affect nucleotide excision repair,
resulting in photosensitivity and an increased risk of
skin cancer (32). Three distinct disorders can result,
Xeroderma pigmentosum (XP), a predisposition to
cancer, and the aging disorders: trichothiodystrophy
(TTD) and Cockayne Syndrome (CS), depending on
whether the helicase activity, interactions with TFIIH or
both are affected (96). All have photosensitivity, but
only XP has increased risk of skin cancer. CS and TTD
have developmental disorders and premature aging. CS
is more severe with patients exhibiting mental
retardation (96).

All members of the Rad3 family that have been
studies are 5’-to-3° DNA helicases involved in DNA
repair, and genome maintenance. They translocate on
ssDNA and unwind dsDNA (97). Two insertions into
helicase domain 1 distinguish Rad3 family helicases
from other SF2 helicases: an Arch domain (98, 99, 100)
and an iron-sulfer (FeS) cluster (101). A mutation in the
FeS domain of XPD causes TTD (102). A mutation in
the FeS domain of Fanc] causes Fanconi anemia (103)
and a predisposition to early-onset breast cancer (102,
104). The FeS domain forms a secondary ssDNA
binding site and couples ATP hydrolysis to translocation
on ssDNA (97, 101).
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Honda et al. (97) used a single molecule
approach to simultaneously monitor translocation of the
XPD helicase from Ferroplasma acidarmanus in the
presence of ssDNA binding proteins (SSB) RPA1 and

RPA2. Both SSBs have similar DNA binding
affinities, but had different effects on XPD
translocation. RPA1 competed with XPD for binding,

and RPA2 did not interfere with XPD binding to
ssDNA, but slowed down XPD translocation. RPA2
facilitates XPD binding to DNA by bending the DNA.
RPAI1 and competes with XPD for DNA binding by
extending the DNA. When XPD encountered RPAI, it
displaced it from the DNA. However, RPA2 was not
displaced from ssDNA during translocation. XPD
bypassed RPA2 without displacing it from DNA.
Simultaneous visualization of both the helicase and its
obstacle brought them to the conclusion that XPD can
translocate on the protein-coated ssDNA without
disrupting the protein-nucleic acid complex.  SF2
helicases translocate along the phosphodiester backbone
of nucleic acids (4), and RPA binding to ssDNA
primarily involves the bases (105, 106). Since the
helicases contacts the DNA backbone while the SSB
interacts with bases, this allows both proteins to be
bound simultaneously to the same region of ssDNA and
allows the helicase to move by the SSB. Translocation
over the bound protein and displacement of the protein
both provide mechanisms for these helicases to bypass
ssDNA binding proteins (97).

4.7. Swi/Snf
Swi/Snf complexes are involved in diverse
processes in the cell, including replication, DNA repair,
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regulation of RNA polymerase II and III, cell signaling,
cell cycle progression, metamorphosis, and tumor
suppression (107, 108). Many of these processes
involve their ability to remodel chromatin. This occurs
by a variety of mechanisms, including repositioning
histone octamers, unwrapping the DNA around an
octamer, ejection of a histone octamer, or dimer, or
exchange of a histone dimer (108, 107).

Chromatin remodeling complexes are large,
multisubunit complexes that change the structure of
nucleosomes to vary the accessibility of the DNA (109).
They all contain a member of the Swi/Snf family of
helicases, but the other components of the complex
vary, and can be used to subdivide the family (31, 110).
Swi/Snf helicases are subdivided into Snf2, ISWI, CHD,
INO80, CSB, RADS54, and DDMI1 subfamilies of
chromatin remodeling proteins (109, 108). The INO80
subfamily is involved in DNA repair and activation of
transcription (108). It is the only member of the family
which has been shown to have helicase (unwinding)
activity (31). Snf2 subfamily members disrupt
nucleosomes and ISWI subfamily members can
assemble nucleosomes, resulting in repression of
transcription (31). CDH subfamily members have been
implicated in chromatin remodeling and transcription
activation (108, 31). Cockayne Syndrome protein B
(CSB) is involved in NER and remodels chromatin
(111). DDMI is required for maintaining proper DNA
methylation in the plant Arabidopsis thaliana (112).
Rad54, along with Rad51, is involved in HR (31, 113).
Mutations in ATRX, a Rad54 family member, result in
ATR-X syndrome, characterized by alpha-thalassemia
and mental retardation (114). The majority of the
mutations that have been linked to the disease occur in
the helicase domains and the histone H3 binding domain
(115). ATRX localizes to telomeres and other repetitive
DNA sequences, in particular sequences that have the
potential to form quadruplexes (116, 114).

Swi/Snf helicases have a high affinity for
nucleosomes and are able to recognize histone
modifications. The translocation activity of the helicase
can reposition or eject histones from the DNA. This
activity is modulated by other associated subunits of the
remodeling complexes (108, 107). Several mechanisms
have been proposed for nucleosome sliding (117). In
the twist diffusion model (118), a single base pair is
shifted from the Ilinker to wrapped around the
nucleoseome core with an accompanying twist to
accommodate an extra base pair. Because a rotation of
~35° would be required for each base pair, this is not
likely to be the mechanism of histone repositioning by
Swi/Snf (117). Another model is the histone core
swiveling model. It proposes that the nucleosome
rotates relative to the DNA (117). Two variations of the
loop or bulge propogation model have been proposed.
In one, the remodeling protein pulls the DNA from the
nucleosome entry or exit site, resulting in a bulge. In
the second, the protein binds to an internal site and pulls
DNA from the linker. They propose that the helicase
binds to the DNA and upon ATP hydrolysis, the dsDNA
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is translocated, without being unwound, while the
remodeling complex remains bound to the nucleosome
(108, 109). This results in formation of a loop of DNA
on the surface of the nucleosome where the histone-
DNA contacts are broken (19, 119, 120, 18). This loop
moves around the nucleosome, repositioning the
nucleosome. Loops are visible in single molecule
experiments, and the direction of translocation has been
observed to switch (18, 121). It is unknown whether the
helicases can translocate in either direction on DNA or

whether the nucleosome rebinds in the opposite
orientation. In addition to repositioning of
nucleosomes, small DNA loops can also allow

replacement of dimer with a modified dimer or ejection
of dimers or nucleosomes by remodelers or localized
unwrapping (108).

4.8. RIG-I-like

RIG-I-like helicases are involved in the
antiviral immune response (122). Dicer has RNase
activity for dsRNA (123) and a RIG-I like helicase
domain.  The helicase is required for efficient
processing of pre-miRNA, and may allow Dicer to
cleave structured viral RNAs (124, 125). RIG-I
serves a sensor of viral RNA to initiate an immune
response that leads to production of interferon (IFN)
(126). Activation of two N-terminal caspase
activation and recruitment domains (CARDs) occurs
by recognition of 5’-triphosphate (127, 128) or
dsRNA (126). 5’-triphosphates and dsRNA are
present during viral replication but not during most
cellular processes (129). In the presence of viral
RNA, CARD ubiquitination results in IFN expression
(130). RIG-I also has a C-terminal regulatory domain
(RD) and is a DExH box RNA helicase. The RD
inhibits signaling when viral RNA is absent. The
ATPase activity of the helicase is required for
signaling (126). The helicase has dsRNA translocase
activity, but does not unwind the RNA (17). The
CARDS prevent translocation of RIG-I in the absence
of 5’-triphosphate recognition by the RD (17). In the
presence of viral triggers, RIG-I tranlsocates on the
RNA strand in a RNA/DNA heteroduplex or on
dsRNA (17).

4.9. Type I restriction enzymes

Restriction enzymes or endonucleases are
part of the restriction-modification system in bacteria
(131, 132). They protect the bacterial genome
against cleavage by methylating target sequences and
restriction of foreign DNA. They are classified into
three groups (types I-III) based on their recognition
sequence, subunit composition, cleavage position,
and cofactor requirements (133, 134). Type I
restriction enzymes (T1RE) are pentamers made up of
three different subunits: specificity (S), methylase
(M), and restriction (R) with R2M2S stoichiometry
(135, 131). They are encoded by the Host Specificity
for DNA (hsdS, hsdM, and hsdR genes (136). A
dimer of two R2M2S holoenzymes, with each bound
to a target sequence, is the active form of the enzyme
for restriction of the DNA (132).
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Bacterial DNA is methylated, and TIRE
dissociate upon binding to fully methylated DNA (137);
therefore TIRE have no effect on host DNA. Hemi-
methylated DNA is methylated at the target sequence
(137). HsdM and HsdS are sufficient for methylation
(136). When the target sequence is unmethylated, HsdR
restricts the foreign DNA (132).

All TIRE utilize S-adenosyl methionine
(SAM) as the methyl donor for the methylation reaction,
catalyzed by HsdM (138). It is also required for DNA
restriction for most TIRE, EcoR1241 being the
exception (138, 139). The HdsS subunit recognizes and
binds to a non-methylated DNA sequence containing
two 3-5 base pair domains separated by a 6-8 base pair
spacer (138). After binding, the enzyme translocates
dsDNA in an ATP dependent manner toward the enzyme
while it remains bound to the recognition sequence
(140), resulting in formation of dsDNA loops (141).
HsdR contains both a helicase domain, and an
endonuclease domain (138). TIRE are not known to
unwind dsNA (138) but appear to function as a dsDNA
translocases (142). After translocation of 400 to 7000
basepairs (138), while remaining bound to the target
sequence, the DNA is cleaved by nicking of each strand
by one HsdR subunit (143). The cleaved DNA can then
be degraded by exonucleases (ie: RecBCD).

A model describing TIRE was proposed by
Szczelkun (144). The enzyme binds to the DNA at the
target sequence, upon binding of ATP. Two
holoenzymes bind to non-methylated target sequences
and associate to form a dimer. ATP dependent dsDNA
translocation occurs, while remaining bound to the
target sequence, resulting in formation of loops.
Eventually, translocation is impeded, possibly due to a
collision with another protein, and the DNA is cleaved,
resulting in enzyme dissociation.

4.10. RecG-like

RecG-like  helicases are involved in
resolution of recombination intermediates through
translocation on dsDNA. In prokaryotes, Mfd
removes RNA polymerase from stalled replication
forks by destabilizing its interaction with the
transcription complex during translocation (145,
146). PriA recognizes and binds to D-loops formed
during recombination and loads the replisome onto
the branched DNA to allow restart of replication
(147, 148). RecG limits origin independent DNA
replication (149, 150).

Until recently, RecG was believed to
catalyze Holliday junction intermediate branch
migration in a pathway that overlaps functionally
with the RuvABC pathway (151). However, it now
seems likely that RecG may function to limit
replication at sites remote from oriC initiated by PriA
(152). RecG translocates on dsDNA and catalyzes
Holliday junction branch migration (153), in addition
to unwinding various branched DNA substrates, in
vitro (154). RecG decreases replication by
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unwinding D (147) and R (155) loops, which prevents
PriA from loading DnaB helicase at the branch,
leading to assembly of the replisome and replication
(156, 157). By resolving these loops, RecG limits
replication to oriC (152).

PriA, on the other hand, binds to and
stabilizes stalled replication forks, eventually leading
to replication restart (158). PriA has a 3’-terminus
binding pocket that binds specifically to the 3’-end of
the invading strand in the D loop (147) or the nascent
leading strand (159) and displaces the nascent
lagging strand (160). Primasome assembly at stalled
replication forks is dependent upon PriA (148).

5. CONCLUSIONS

Superfamily 2 is a diverse group of
helicases.  Although some sequence motifs are
conserved among all families, there are motifs that
are unique to separate families (1, 25). All SF2
helicases are capable of binding nucleic acids and
have nucleic acid stimulated NTPase activity (3).
However, some families, such as type I restriction
enzymes and RIG-I do not perform the canonical
helicase reaction of unwinding duplex NA (132).
DEAD-box family members unwind RNA, but
without translocation (34). In some cases, DEAD-
box helicases even unwind dsRNA without ATP
hydrolysis (44).

Crystal structures of Hel308 (85), an archaeal Ski2-
like helicase, and RecQl (23, 161), a RecQ-like
helicase, complexed with a single-strand/double-
strand junction contain a beta-hairpin loop in a
position where it could separate the strands of dsNA
(Figures 3 and 4). Interestingly, HCV NS3 and S.
cerevisiae Prp43p, which also unwind duplex nucleic
acids in a translocation dependent process, also
contain a prominent beta-hairpin (Figure 4A). XPD
also unwinds dsNA and translocates on NA, but it
contains a wedge made of two alpha-helices instead
(Figure 4B). Another way that helicases couple
translocation to unwinding is through a formal wedge
domain, such as in the case of 7. maritima RecG. It
has a beta-hairpin on one side of the three-way or
four-way junction and a wedge domain on the other which
separate the dsDNA on each side of the junction
simultaneously (162). The DEAD-box helicase mss116p
unwinds dsRNA without translocation, and its structure
complexed with a single-strand/double-strand junction does
not appear to contain a beta-hairpin (Figure 4C). Structures
of SWI2/SNF2, RIG-I-like Hef, and the type I restriction
enzyme EcoR 1241 also do not appear to have a beta-hairpin
(Figure 4C). These enzymes are known to translocate on
nucleic acids, but not unwind dsNA. Thus, the beta-hairpin
may be a conserved feature among helicases that
translocate on dsNA to unwind the duplex. Pin-like
structures have been proposed to serve the purpose of
splitting the duplex in SF1 helicases PcrA (161) and UvrD
(85) and RecD2 (163). The lack of such a structure in
some SF2 helicases may serve to further distinguish
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Figure 4. A. Families containing helicases that unwind duplex nucleic acids using a mechanism dependent on translocation upon
the substrate contain a beta-hairpin. The Protein Data Bank codes are RecQ1: 2WWY (23), NS3: 1A1V (63), Hel308: 2P6R
(85), and Prp43p: 2XAU (74). B. XPD (Protein Data Bank code 2VSF (100)) has translocase and helicase activity, but does not
have a beta-hairpin. Instead, the wedge appears to be formed from two alpha-helices (100). RecG (Protein Data Bank code
1GMS5 (162)) has a beta-hairpin and a wedge domain which simultaneously separate two arms of a DNA fork. C. Families
which either do not unwind nucleic acids, or unwind without translocating, do not have the beta-hairpin. The Protein Data Bank
codes are Mssl16p: 3161 (41), SWI2/SNF2: 1263 (166), Hef: 1WP9 (167), and EcoR1241: 2W00 (168). In each of the
structures, the N-terminal RecA-like domain is navy and the C-terminal RecA-like domain is green. Accessory domains are
gray, except the beta-hairpin, which is red and wedge domains are purple. Nucleic acid is yellow and nucleotide is green.
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structure-function relationships among this large, diverse
class of enzymes.
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