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1. ABSTRACT

Endothelial progenitor cells (EPCs) play a
fundamental role in the maintenance and repair of damaged
vascular endothelium, as well as in new blood vessel
formation. Based on this function of EPCs, it has been
hypothesized that transfusion of these cells could be an
approach to treat vascular disease. While this concept has
subsequently been proven in animal models clinical trials
have not been encouraging. These discrepancies have
limited translation of EPCs from bench to bedside. In this
review, by analyzing the reported data from the animal
models and clinical trials, we describe the main factors
limiting the clinical effects of EPCs infusion and the
unfavorable in vivo reactions of the receipts. To facilitate
future clinical application of EPCs, a series of strategy to
overcome the obstacles have been suggested.
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2. INTRODUCTION

Research into the repair mechanisms of the
damaged vascular endothelial cell layer and neo-
vascularization have identified potential therapeutic
targets for a variety of vascular disease conditions. In
early experiments in the 1960’s, Stump et al
demonstrated that endothelialization could be found on a
Dacron surface, which was suspended in the blood
stream without direct contact to the adjacent vessel
structure (1). Based on this finding, the authors
hypothesized that there are cells circulating in the blood
stream, with the capability of aggregating to artificial
surfaces. In 1997, Asahara et al. purified a population of
circulating cells with properties of both endothelial cell
(EC) and progenitor cell, therefore termed ‘endothelial
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progenitor cells’ (EPCs), which were capable of
promoting postnatal vasculogenesis (2).

Since then, there has been tremendous
interest in the role of EPCs in the endogenous
maintenance and repair of damaged endothelium, as
well as for their regenerative and therapeutic
potential (3-7). Experimental studies have shown that
EPCs transplantation can restore both endothelial
structure and function in animal models with arterial
disease (6, 7). However, several clinical studies in
patients with myocardial infarction showed limited
efficacy following EPCs infusion (8, 9). The reasons
for the discrepant results are incompletely understood
but have limited the clinical application of
autologous EPCs to treat vascular diseases.

In this review we will discuss the
rational and methods of infusing EPCs as cell therapy
for cardio-vascular as well as peripheral-vascular
disease, review the molecular mechanism involving
EPCs’ function, and provide potential explanations
for the factors limiting clinical application of EPCs.
Based on this data, we finally summarize strategies to
overcome these hurdles.

3. BIOLOGY OF EPCS

Based on the culture method using
peripheral or umbilical cord blood, three subtypes of of
EPCs are defined: colony-forming-unit endothelial cells
(CFU-ECs), circulating angiogenic cells (CACs), and
endothelial-colony-forming cells (ECFCs). However,
the cellular origin of these types of EPCs remains
incompletely understood.,Gunsilius et al. examined
genetic mutation of CFU-ECs from patients with
chronic myelogenous leukemia, which is characterized
by the presence of a BCR/ABL fusion gene in a multi-
potent HSC clone and all the derived progeny. (10)
Their research showed that cultured CFU-ECs, as well
as some ECs in the heart displayed the
translocation..Oppliger Leibundgut et al. found the
JAK2 V617F mutation in CFU-ECs obtained from a
patient with polycythemia vera, which is characterized
by the JAK2 V617F mutation (11). These data provide
proof of the hematopoietic origin of CFU-ECs.

However, ECFCs has been suggested to
have different origin. Yoder Mc et al.(12) cultured
ECFCs from polycythemia vera patients, but found no
JAK2 V617F mutation, while CFU-ECs from same
patients showed this mutation, suggesting that ECFCs
are not hematopoietic in origin.

Other unclear biological aspects of EPCs
include the question if these cells maintain a ‘silence’
status in the circulation or in blood vessel tissue, and
how they can they be activated. Comparing CFU-ECs,
CACs, and ECFCs, it is also incompletely understood
which type of EPCs contributes to what extent in
different stages of repair. Furthermore, the interaction
between these cell types is unclear.
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4. METHODOLOGICAL
THERAPEUTIC USE OF EPCS

ASPECTS OF

4.1. Isolation and Culture Methods of EPCs

Because the number/concentration of these
cells is small, a critical first step is careful isolation and
culture from autologous tissue. A number of methods
has been described to isolate and culture EPCs from
peripheral blood (PB), bone marrow (BM) or the
umbilical cord (13-15), which generally can be
classified into two approaches: culture methods (in vitro
inducing and expanding specific cells, which have
adhesive capacity to fibronectin, using a cocktail of
cytokines) and sorting methods (using fluorescent
labeled antibodies to collect cells based on cell surface
marker, using fluorescence-activated cell sorting).
Because of its superiority in cell expansion, culture
methods are more widely used in both animal models
and clinical studies.

As mentioned in last section, three
subtypes of EPCs have being defined according to their
culture methods: colony-forming-unit endothelial cells
(CFU-ECs), circulating angiogenic cells (CACs), and
endothelial-colony-forming cells (ECFCs)

Briefly, in the CFU-ECs method after 2-
day incubation, there remain two types of cell with the
feature of either adhering to the culture plate bottom or
being suspended in the culture media. Isolation and
culture of the non-adherent mononuclear cells (MNCs)
give rise to the EPCs colonies (2, 16, 17). Typical
colonies emerge in 5-9 days, featured by a core of round
cells, with spindle-shaped cells sprouting at the
periphery. Colonies of this type are commonly named as
CFU-ECs or colony-forming unit-Hill (CFU-Hill) cells

(16).

- CACs is a population of adherent cells
emerging in a 4- to 7-day culture procedure among
unfractionized MNCs (18-21). Because these cells
constitute approximately 2% of the total MNCs (15),
CACs can be obtained in a larger number than CFU-ECs
from primary culture with the ability to promote neo-
vascularization in animal models of critical limb
ischemia or myocardial infarction (3, 22-24).

ECFCs are derived from adherent MNCs
after 7-21 days culture in endothelial conditions and
colonies display cobblestone morphology (15, 25). All
these three subtypes are reported to have the ability of
tube formation in matrigel but only ECFCs express de
novo vessel-forming ability (12, 25).

All three methods can be applied to cell
isolation from blood, bone marrow and umbilical cord
of animals and human beings. In animal experiments,
the major sources of EPCs has been results of studies.
Only ECFCs have the ability of new vessel-forming as
compared with CFU-ECs or CACs. Thus, the ECFCs
may have greater impact on improvement of the
microcirculation of target tissue. However, because of
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Table 1. Summary of key animal experiments describing EPCs infusion to salvage myocardial and hindlimb ischemia

Group Objective of EPCs Source Results
EPCs therapy subtype of EPCs
Asahara T. | - Athymic nude Heterologous | Healthy All EPCs appeared integrated into capillary vessel walls
etal (2) mice; hindlimb CFU-ECs human Engraftment of human EPCs in 13.4 + 5.7% of the mouse
ischemia through donor capillaries in the injured extremity, compared with 1.6 +/-
excising one 0.8% in control mice
femoral artery --
Rabbit model of
unilateral hindlimb
ischemia
Chade - Pigs 6 weeks Autologous Pigs 3 Improved renal microvascular and filtration function
AR.etal | after induction of | CFU-ECs and 5 (ANOVA P<<0.03 for RBF and GFR, ANOVA P=NS for
(24) RAS (renal artery | and ECFCs weeks perfusion)
stenosis) after | Augmented Akt (P<<0.05 vs RAS) and eNOS (P<<0.05 vs
induction | normal) expression
of RAS Improved vascular volume fraction (ANOVA P=0.0002) and
microvascular tortuosity (ANOVA P=0.0007)
Attenuated renal microvascular remodeling and fibrosis (P<<
0.05 vs either normal or RAS)
Kawamoto | - Athymic nude rat | Heterologous | Healthy | Transplanted EPCs accumulated in the ischemic area and
A.etal model of MI 3 CACs human incorporated into foci of myocardial neovascularization
(19) hours after donor Improved LV function (LVDd P=0.032, LVDs P=0.005,
induction by Fractional Shortening P=0.0004, Regional wall motion
ligating the LAD P=0.0021; all vs control)
coronary artery. Increased capillary density (P=0.0009 vs control)
Less fibrosis/entire LV area fraction (P=0.0007 vs control)
Kalka C. - Athymic nude Heterologous | Healthy | EPCs incorporated into neovascular foci
etal (3) mice model of CACs human Increased capillary density (P<<0.002 vs control media,
hindlimb ischemia donor P=0.0003 vs HMVECs)
1 day after Improved blood perfusion (assessed by the ratio of
resection of one ischemic/normal blood flow, P<<0.003 vs either control
femoral artery media or HMVECs)
Enhanced Tissue Salvage (P=0.003 vs control media,
P=0.006 vs HMVECs)

the procedural complexity and relative lower success
rate of ECFCs culture, CFU-ECs and CACs are widely
used in studies, especially in clinical trials.

4.2. Experimental Concepts and Clinical Endpoints for
EPCs Therapy

In contrast to the substitution of the entire
hematopoietic cell population in stem cell therapy for
leukemia, the concept of EPCs therapy is the local
supply of EPCs, adequate to cover the affected area of
target vessel or tissue. Therefore, in reported
experimental and clinical studies, EPCs therapy often
uses a cell infusion method. EPCs have been transfused
into a target artery through a catheter with or without
temporal blocking of the proximal blood flow. Less
frequently, EPCs were directly injected intra-myocardial
or into surrounding tissue of ischemic limb lesion.

With current technology, only complex
immune-pathological methods can verify if and where
labeled EPCs home and survive in the target area, and
how they interact with the impaired vessel endothelium.
These methods are not commonly used in clinical
investigation. Typical endpoints include
reendothelialization of target vessel and
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microcirculation restoring of ischemic area. Functional
criteria of organ, such as LVEF in coronary disease,
distance of intermittent claudication in lower limb
ischemia, are measured as well.

5. THERAPEUTIC EFFICACY OF EPCS IN ANIMAL
MODELS AND CLINICAL STUDIES

5.1. Initial Success in Animal models

In multiple studies using animal models of
ischemic disease, such as acute myocardial infarction
(AMI) or hind limb ischemia, EPCs have demonstrated
exciting therapeutic efficacy (2, 3, 22, 26-30). (Table 1).

In a hind limb ischemia model in nude
mice, EPCs led to apparent engraftment of the human
cells into the mouse capillaries of the injured extremity,
remarkably improved blood flow recovery and capillary
density in the ischemic and contralateral non-ischemic
hind limb, and significantly reduced the rate of limb loss
(2,3). In a pig model of chronic experimental
renovascular disease, intrarenal artery infusion of
autologous EPCs restored renal function, with
ameliorated renal microvascular remodeling and fibrosis
(26). In a nude rat AMI model, ex vivo



EPCs in vascular repair

Table 2. Summary of key clinical studies using EPC infusion to salvage myocardial and hindlimb ischemia

Group or Objective of | EPCs type Source of EPCs Results
Trial EPCs
therapy
TOPCARE- | Human Autologous Same patient who received 1. Primary Endpoint: Safety and Efficacy
AMI Trial patients with | CACs or EPCs infusion Secondary Endpoint, but no control
(29) AMI selected group:
CD34/CD45- - At 4 month: LVEEF significantly
positive BMC increase (50+10% to 58+10%; P<
0.001) and LV end-systolic volumes
significantly decreased (5419 ml to
44420 ml; p<<0.001) with no variation
between CACs and BMC group.
- At 12 mon: increased LVEF (P<<
0.001) and reduced infarct size (P<<
0.001)
Assmus B. Human Autologous Same patient who received At 3 mon: No significant variation of LV
et al (8) patients with | CACs or EPCs infusion function between BMC, CAC and control
stable Ficoll density- group.
ischemic gradient 1.  Global 4. End-diastolic
heart disease | centrifugation- LVEF, volume, P=0.26
and a MI at isolated BMC P=0.31 5. End-systolic
least 3 2. Regional volume, P=0.26
months contractilit | 6. Stroke volume,
before y in central P=0.78
target area, | 7. Left ventricular
P=0.03 end-diastolic
3. Extent of pressure, P=0.61
regional
left
ventricular
dysfunction
, P=0.50
?2control group?
At 6 month: change in LVEF
1. an increase of 0.6% (95%CI, —3.4-4.6;
P=0.77) on SPECT
2. adecrease of 3.0% (95%CI, —6.1-0.1;
P=0.054) on MRI
Janssens S. | AMI Autologous Same patient who received ? control group?
etal (31) Patients with | MNCs from EPCs infusion At 4 mon:
successful BM 1. no significant difference in overall
reperfusion LVEF (95% CI 0.961-1.118, P=0.36)
after 2. no variance in LVDd (P=0.95) and
percutaneous LVDs (P=0.76)
coronary 3. decreased infarct size (P=0.036) and
intervention better regional function in BMC group

expanded EPCs accumulated in the ischemic area,

incorporated into foci of myocardial neovascularization,
and had beneficial effects on the preservation of left
ventricular (LV) function, characterized by significantly
smaller ventricular dimension, better preserved local
wall motion, significantly greater capillary density and
the significantly less extension of left ventricular
scarring (22).

These and other findings in animal models
(Table 1), have significantly raised expectations for
subsequent clinical trials, with the anticipation of rapid
translation into clinical therapeutic applications.
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5.2. Subsequent Disappointing Results in Clinical
studies

However, the results of EPCs infusion in
several human clinical trials have not shown the efficacy
anticipated based on pre-clinical animal studies (Table

2) (8, 31-33).

The TOPCARE-AMI Trial evaluated
intracoronary infusion of either CACs or BM-derived
endothelial progenitor cells (BM-EPCs) in patients with
AMI, treated with coronary stenting (31). Primary
endpoints were feasibility and safety, including
procedural complications, in hospital course, ventricular
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Table 3. Impact of pre-existing atherosclerotic disease and cardiovascular risk factors on EPCs number and function impairment

Diabetes | Hypercholestero- | CAD (36,37) Smoking Ageing
mellitus | lemia (35) (38,39) (40)
(33,34
EPCs number dec. by dec. by 36%* dec. by 40%* dec. vs light dec. in
44%* (P<0.05) (P=0.04) smoker and old
Inversed correlation to | heavy smoker | ApoE™
the number of CAD- (P=0.037, mice vs
risk factors (r=-0.349, | 0.038). inc. control
P=0.002) rapidly after younger
cessation
(P<0.0001)
and dec. again
after
resumption
(P=0.0031).
EPCs Adhesion dec. dec. dec. by 42%* / / /
Function (P<0.05) | (P<0.05) | (P<0.05)
Proliferation | dec. by dec. by dec. by 25%* / / /
48%%* 48%%* (P<0.05)
(P<0.01) | (P<0.01)
Migration / / dec. by 58%%* dec. by 48-57%* (P<< |/ /
(P<0.05) 0.05)
Inversed correlation to
the number of CAD-
risk factors (r=-0.484,
P=0.002)
Tube dec. by dec. by dec. by 45%* / / /
structure 60%* 60%* (P<0.05)
formation (P<0.05) | (P<0.05)

* Percentage is approximate value, being directly cited or calculated from the data of literature. dec.-decrease, inc.-increase

arrhythmias, infarct vessel stent thrombosis, repeated
MI, cerebral infarction, and death of any cause. In
addition, effects on parameters of myocardial
function were recorded. The results demonstrated
successful infusion without side effect. Four month
after treatment, left ventricular ejection fraction
(LVEF) significantly increased and end-systolic
volumes significantly decreased, without differences
between the two treatment groups. Contrast-enhanced
magnetic resonance imaging was performed
immediately after treatment and after four month and
one year revealed an increased LVEF, reduced infarct
size, and absence of reactive hypertrophy, suggesting
functional regeneration of the infarcted ventricles.
However, this feasibility trial did not include a
control group without cell infusion.

Therefore, it remained unclear if the LV
functional improvement was secondary to standard
treatment including acute PCI and aggressive medical
management, alone or if EPCs infusion contributed to
the beneficial outcome.

A subsequent trial by Lunde et al.
randomized patients with acute anterior wall STEMI
treated with PCI to coronary infusion of autologous BM-
EPCs versus placebo (32). The data showed no impact of
BM-EPCs infusion on global left ventricular function,
with a non-significant 0.6% increase by both SPECT
and echocardiography and a non-
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significant 3.0% decrease by MRI in the treatment group at
the 6-month follow up.

In a review article, Rosenzweig et al.
reviewed several other clinical studies employing BM- or
PB- derived EPCs for cellular therapy of cardiac disease
(34). Overall, the results are inconclusive.

6. DOSE EPCS DYSFUNCTION CONTRIBUTE TO
THE DISCREPANCIES BETWEEN
EXPERIMENTAL AND CLINIC RESULTS?

Exploring the experimental details of the animal
models and clinical trials, an important difference lies in the
EPCs donor population: The origin of the (homo- and hetero-
logous) EPCs in animal experiments were healthy human
donors or animals without vascular disease or cardiovascular
risk factor. In contrast the autologous EPCs in clinical
studies were derived from the patient subsequently treated and
therefore a donor with pre-existing cardiovascular disease and
cardiovascular risk factors. We hypothesize that this difference
in EPCs origin has been associated with infusion of
dysfunctional EPCs in the human, clinical trials, which in turn
is important reason for differences in outcomes.

In fact prior data had demonstrated that many
pathological conditions have adverse effects on EPCs number
and function (35-42). (Table 3) The molecular mechanism
responsible for the EPCs dysfunction are incompletely
understood, but cellular signaling processes appear to play a
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central role (Figure 1). The most important of these cellular
signaling processes and their coordination are discussed below

6.1. Extracellular Signal-Regulated Kinase-2 (ERK-2)

ERK-2 belongs to the subgroup of mitogen-
activated protein kinases (MAPKs), a family of conserved
serine/threonine kinases that regulate cellular proliferation,
differentiation, survival, and motility in response to diverse
extracellular stimuli including mitogens, growth factors,
and cytokines (43). ERK-2 can be activated by the key
chemokine regulating EPCs homing and mobilization,
stromal cell-derived factor-1 (SDF-1), through its G
protein-coupled transmembrane spanning receptor CXCR4
(44, 45). In EPCs, CXCR4 blockade reduces migratory and
angiogenic capacities (46), while the CXCR4 sensitizer
shingosine-1-phosphate ~ (SIP)  stimulates functional
capacity (47). Friedrich et al. recently published their
research on ERK-2 for EPCs dysfunction in coronary artery
disease (CAD). Their study shows an ERK-2 signaling
defect in CAD-EPCs. Interestingly, their data also shows
that SDF-1 can specifically, and in a dose-dependent
pattern activate ERK-2, which improves CAD-EPCs
adhesion ex vivo (48). This may identify SDF-1 as a
potential target to overcome EPCs dysfunction.

6.2. Integrin-Linked Kinase (ILK)

ILK is a highly conserved 59-kD multi-
domain protein with serine/threonine kinase activity that
interacts with f1- and B3-integrins, signaling molecules
including lipid second messengers, protein kinase B
(Akt), and glycogen synthase kinase-3 (GSK-3) (49,50).
Thereby, ILK bridges extracellular matrix signals and
inside-out signals with receptor tyrosine kinases and the
actin cytoskeleton resulting in the regulation of diverse
cellular functions including proliferation, survival,
differentiation, adhesion, and migration (49, 51-54). In
EPCs, over-expression of ILK has been proven to
provide protective effects against anchorage or nutrient
deprivation in vitro and enhances neovascularization in
the hind limb ischemic model (55). ILK is also up-
regulated in endothelial cells associated with increased
expression of intercellular adhesion molecule-1 (ICAM-
1) and SDF-1, as well as improved induction of EPCs
recruitment to ischemic areas (56). Werner et al.
examined the role of ILK on EPCs function in patients
with stable CAD (57). EPCs were isolated from blood
and cultured. Their migration and dynamic adhesion
function was studies ex-vivo using modified Boyden
chambers and the laminar flow chamber respectively.
The authors demonstrate that protein expression of ILK
is significantly down-regulated in EPCs isolated from
patients with CAD compared to healthy controls.
However, if the EPCs from CAD patients were
transfected with wild-type (WT)-ILK, subsequent up-
regulation of ILK expression was associated with potent
improvement in EPCs proliferation, migration, and
adhesion ability.

6.3. Kinin B2 Receptor (B2R)

Kinins, generated through kininogen
cleavage by kallikreins, are present in various tissues.
The kallikrein-kinin system (KKS) contributes to the
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revascularization of ischemic tissues (58). The G
protein-coupled receptor B2R mediates the pro-
angiogenic effects of kinins through promoting vascular
cell proliferation and survival (59). B2R is also involved
in the recruitment of EPCs to sites of ischemia and in
their proangiogenic action. In a series of experiments,
Krinkel ef al. demonstrated that bradykinin (BK) exerts
a potent chemo-attractant activity on human EPCs via a
B2R/phosphoinositide 3-kinase (PI3K)/eNOS-mediated
mechanism  ex-vivo  (60). BK-induced EPCs
polarization, formation of filopodia, and migration could
be inhibited by the B2R antagonist icatibant, PI3K
inhibitor LY294002 or eNOS inhibitor L-iminoethyl-
Lornithine (L-NIO). Increased phosphorylation of eNOS
after stimulation of EPCs with BK and a concordant
phosphorylation of Akt and B-catenin translocation to
nuclear/perinuclear regions in BK-treated EPCs were all
suspended in the presence of icatibant. Meanwhile,
expression of B2R on human EPCs from patients with
cardiovascular discase was remarkably reduced
comparing with the healthy controls. Additional animal
experiment verified the importance of B2R in EPCs
recruitment. In a mouse model of hind-leg ischemia
EPCs homing was studied after injection of EPCs from
wild-type and B2R-/- mutant mice. As compared with
controls given wild-type mice-EPCs in the absence of
icatibant, EPCs homing was significantly reduced in
ischemic adductors of icatibant treated mice injected
with EPCs of wild-type mice, and in mice not treated
with icatibant after injection of EPCs from B2R-/- mice.

6.4. Akt (protein kinase B)

Akt, also PKB(protein kinase B), belonging to
Serine / Threonine Protein Kinase, is an important regulator
of various cellular processes as the downstream effector of
PI3K, which can be phosphorylated (activated) by
chemokine SDF-1. Fulton et al. (61) have found that Akt
can directly phosphorylate eNOS on serine 1179 and
activate the enzyme, leading to NO production, whereas
mutant eNOS (S1179A) is resistant to phosphorylation and
activation by Akt. Moreover, using adenovirus-mediated
gene transfer activated Akt increases basal NO release from
endothelial cells, whereas activation-deficient Akt
attenuates NO production stimulated by VEGF. As eNOS
exerts a critical influence on EPCs functions (62, 63), these
results indicate that Akt regulates EPCs’ biological
behavior through eNOS modulation.

6.5. Endothelial Nitric Oxide Synthase (eNOS) and
Superoxide-Producing Enzyme Systems

eNOS is of key importance for the
regulation of mobilization and function of EPCs. Mice
lacking eNOS had defective EPCs mobilization,
resulting in reduced VEGF-induced mobilization of
EPCs (62). The provision of exogenous nitric oxide
(NO), the product of eNOS, can promote microtubule
formation of EPCs within the matrigel assay, however,
when NO production was inhibited via the addition of
L-NAME, a known inhibitor of eNOS, microtubule
formation was significantly impaired (63). In addition,
NO-mediated signaling pathways have been previously
proposed to be essential for EPCs mobilization. Matrix



EPCs in vascular repair

G
o

lucose

DAG

\—b Peroxynitrite ———»

EPC
cytoplasma

Functional Activation
Migration
Homing
Adhesion

Proliferation

!

Figure 1. Cell signaling and regulation mechanism involved in EPC dysfunction. High glucose level will induces the
phosphorylation of eNOS through DAG/PKC pathway, however the product of the reaction is an isotype of phosphorylated
eNOS with attenuated function, hence leading to reduced NO synthesize. Meanwhile, increased O2- induced by high glucose can
oxidize BH4, the co-enzyme of eNOS, causing reduced NO synthesize and even more O2- production, which leads to the
uncoupling of eNOS. The red dashed-line circle presents some of the better documented regulating mechanisms ameliorating
impaired EPCs function. Cytokines SDF-1, VEGF, BK are released by the impaired endothelial cell (EC) and substrate. SDF-
1/CXCR4/ERK2 axis: SDF-1 induces ERK2 via its trans-membrane receptor CXCR4 and activate EPCs function. Akt/eNOS
axis: Akt phosphorylates eNOS in response to cytokines, and ultimately produces NO and lead to EPCs activation. SDF-1/ILK
axis: ILK transfers the signal of SDF-1 and finally activates EPCs function through various pathways, including activating of

Akt/eNOS axis and modulating actin cytoskeleton.

metalloproteinases-9 (MMP-9), which is essential for
VEGF-induced progenitor cell mobilization, is activated
by NO. The number of CFU-EC was significantly
greater in MMP-9+/+ than MMP-9—/— mice following
the kinetics of SDF-1 or VEGF (64). Pro-MMP-9 was
significantly reduced in bone marrow plasma from
eNOS deficient mice, and incubation of the NO donor S-
nitrosopenicillamine increased expression of pro-MMP-
9 in cultivated bone marrow (62).

It has been shown that EPCs have lower
levels of basal and stress-induced intracellular reactive
oxygen species (ROS) than primary endothelial cells,
because they express higher levels of catalase,
manganese superoxide dismutase (MnSOD) and
glutathione peroxidase type 1 (GPx-1) (65, 66). Thus,
normal EPCs are protected against oxidative stress
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consistent with their progenitor cell character.
Accordingly, in GPx-1 deficient mice, EPCs showed a
reduced ability to neutralize oxidative stress in vitro,
which was associated with impaired migration toward
vascular endothelial growth factor (VEGF) and
increased sensitivity to ROS-induced apoptosis, and an
impaired capacity to promote angiogenesis in wild-type
mice, whereas wild-type EPCs were effective in
stimulating angiogenesis in GPx-1-deficient mice (67).
Under certain pathological conditions, for example
diabetes, EPCs produce excessive superoxide anion (O2-
) and show impaired migratory capacity compared with
non-diabetic control subjects, and there is uncoupling of
the eNOS (the phenomenon of a concomitant increase in
eNOS expression and reduced production of NO)
resulting in O2- formation instead of NO, which will
subsequently cause EPCs dysfunction (68). In general,
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eNOS functional impairment coupled with over-
activation of superoxide-producing enzyme systems is
one of essential factors for EPCs dysfunction.

6.6. Interaction between individual cellular signaling
processes

The above described individual cell
signaling pathways appears to be a highly interactive
system, coordinating EPCs function. Although the
interactions between these factors are not completely
understood, recent literature describes up to 3 axes with
a number of branches as illustrated in Figure 1.

7. DOES THE HOST TISSUE ENVIRONMENT
CONTRIBUTE TO THE DISCREPANCIES
BETWEEN  EXPERIMENTAL AND  CLINIC

RESULTS? DOES

EPCs homing and functional integration
require a complex interaction of the injected cells with the
host environment. Therefore, besides the above-described
dysfunction of autologous EPCs used in clinical trials, there
are host-tissue related factors that might limit the efficiency
of EPCs infusion in clinical settings.

7.1. Ageing

Ageing is an important factor associated with
decreased number and impaired function of EPCs. Most
patients enrolled in clinical trials of acute coronary
ischemia have been middle-aged or older (31-34). In prior
studies, EPCs from elderly individuals were significantly
more frequently B-galactosidase positive compared with
EPCs isolated from young subjects, demonstrating
increased cellular senescence, where telomerase activity
was reduced (69). Similarly, bone marrow transplantation
from young, but not old non-atherosclerotic mice,
prevented atherosclerosis progression in apo-lipoprotein E
knock-out recipients (42). Aging also decreases hypoxia-
inducible factor 1-a leading to diminished expression SDF-
1 (70), resulting in impaired intracellular signaling
pathways involved in inducing EPCs’ function.

7.2. Pre-existing Cardiovascular Disease

Despite current incomplete understanding, it
is conceivable that tissue of hosts with pre-existing,
atherosclerotic disease and/or cardiovascular risk
factors, would have impaired ability of homing and
interacting with implanted cells. Specifically, the local
composition of tissue in patients with pre-existing
atherosclerotic disease and superimposed acute events,
likely provides an entirely different internal
environment for the transplanted cells compared to the
acute injury models (previously healthy animals)
typically used in the experimental studies.

As discussed above, endogenous and

infused EPCs homing, adhesion and proliferation
behavior is initiated and regulated by several
chemokines such as SDF-1, and VEGF. These

chemokines are produced and released by damaged
tissue such as the stroma under the endothelial layer and
endothelium itself. For example, it has been
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demonstrated that SDF-1 mRNA and SDF-1 positive
cells were significantly reduced in wound tissue of
diabetic mice (71). These experimental results are
supported by findings in diabetic  patients with
peripheral artery disease, where the expression of
VEGF, SDF-1, and CXCR4 in human limb muscle was
significantly suppressed, below the levels detected in
non-diabetic controls, suggesting a lack of recruitment
signals in the diabetic patients. Furthermore, the levels
of these cytokines are down-regulated in chronic
ischemia, as opposed to up-regulated in more acute
ischemia (72).

8. STRATEGIES TO RESTORE EPCS FUNCTION
AND CYTOKINE ENVIRONMENT

Summarizing the above, the senescence of
autologous EPCs of elderly subjects and the changes in
the cytokine environment in the tissue of subjects with
pre-existing atherosclerotic disease, predispose to a
decreased number and impaired function of EPCs,
resulting in limited efficacy of autologous EPCs
implantation in clinical studies. In order to replicate the
positive results obtained in animal models, it is
therefore necessary to develop strategies to improve
EPCs function. Therapeutic approaches to restore
normality of EPCs function and internal tissue
environment are discussed below.

8.1. Heterologous EPCs Transfusion

The use of heterologous cells from healthy
individual might be an option to compensate for the cell
function deficiency; however, it might also exert
additional risks, such as activation of the immune
response on patients. In extreme condition, cell rejection
might occur posing a high risk for the treated patients.
Moreover, testing the  compatibility  between
heterologous cells and the recipient will add additional
cost. Therefore, the indications of heterologous cell
transplantation are restricted to fields of hematopoietic
system malignancy or benign diseases, immune system
deficiency, and a few solid tumors.

8.2. Pretreatment of Impaired Autologous EPCs

Caballero et al. reported in 2007 that
ischemic vascular damage can be repaired by healthy,
but not diabetic, endothelial progenitor cells (73). On
the basis of functional impairment of EPCs in diabetic
patients, this research implicated that improving and
restoring  the impaired cell function before
transplantation would be critical in the use of
‘abnormal’ autologous EPCs of patients with pre-
existing atherosclerotic disease and/or risk factors.
According to the above-described mechanism involved
in EPCs dysfunction, there have been several pertinent
approaches to improve EPCs’ function in or ex vivo
(Figure 1).

8.2.1. Agents targeting eNOS and superoxide-producing
enzyme systems

Transcriptionally enhancing eNOS
expression in EPCs can activate the nitric oxide system.
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Sasaki et al. discovered that ex-vivo pretreatment of
EPCs with endothelial NO synthase enhancer AVE9488
enhances their functional activity for cell therapy (74).
Their study showed ex vivo treatment for 18-24 h with
AVE9488 increased eNOS mRNA expression in PB-
EPCs, CD34+ cells, and BMC by 2.1-fold (P < 0.05)
and eNOS activity by >3-fold (P < 0.05). The increased
eNOS expression was associated with an enhanced
migratory capacity in vitro (P < 0.01) and improved
neo-vascularization capacity of the infused BMC in an
ischemic hind limb model in vivo (P < 0.001).

Tetrahydrobiopterin (BH4) is an essential
cofactor for eNOS-mediated NO formation (75). BH4
levels reduced by 59% in human EPCs after glucose-
challenge, whereas oxidized biopterin levels raised by
36%. Exogenous treatment of glucose-challenged EPCs
with BH4 increased their intracellular availability by
fivefold compared with untreated controls. As a result,
glucose-mediated exaggerated O2- production was
attenuated. Normalization of BH4 levels by exogenous
BH4 addition completely rescued EPCs migratory
capacity and normalized ROS levels, which indicated
recoupling of uncoupled eNOS by BH4 treatment (64).
Prevention of BH4 oxidation may be of additional value
to rescue the decreased BH4 levels in EPCs from
diabetic patients.

Protein kinase C (PKC) inhibition is
another effective way to resolve the uncoupling of
eNOS and ROS-mediated EPCs dysfunction in diabetic
subjects. PKC is involved in vascular O2- production in
diabetic vessels (76). On a molecular level, high glucose
conditions increase intracellular diacylglycerol (DAG)
levels ultimately leading to PKC activation (77).
Subsequently PKC mediated phosphorylation of nitric
oxide synthase (NOS) III protein may reduce, but not
increase, the activity of the enzyme (78, 79). On the
other hand, hyperglycemia greatly enhances endothelial
superoxide production, leading to increased vascular
formation of peroxynitrite (80, 81). Peroxynitrite in turn
oxidize avidly BH4 leading to BH4 deficiency,
ultimately resulting in production of superoxide rather
than NO (82, 83). Although a similar mechanism for
PKC in eNOS uncoupling has not be verified in EPCs,
inhibition of PKC by chelerythrine has been proved to
attenuate O2- production after treatment of EPCs with
glucose (64).

8.2.2. Regulating the cell signaling pathways controlling
EPCs function

As demonstrated in Figure 1, there are
several key regulatory mechanisms in the signaling
pathways of maintaining normal EPCs behavior. These
key mechanisms could be potential targets for
improving and restoring impaired EPCs functions.
Indeed, beneficial results have already been described in
a few studies.

As described above, the SDF-
I/CXCR4/ERK2 axis plays a critical role in EPCs
homing and adhesion. SDF-1 acts as chemokine, CXC4
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and ERK2 are important second messengers. Walter et
al. demonstrated that the CXCR4 sensitizer S1P
stimulates the functional capacity of CAD-EPCs (47).
Specifically, tyrosine phosphorylation of CXCR4 by
S1P and its synthetic analog FTY720 occurred rapidly
reaching a 2-fold induction after 30 minutes incubation
(1.96-0.57, P < 0.01). Phosphorylation of JAK2, a
known downstream target of the CXCR4 receptor, was
also significantly increased after pre-incubation of EPCs
with S1P or FTY720. As a result, CAD-EPCs’ homing
and recovery of blood flow in hind limb ischemia were
improved. On the ERK-2 level, augmenting ERK-2
signaling was demonstrated by transfecting EPCs from
patients with CAD with a commercially available
activating MEK-2 (MAPKs Kinase 2) cDNA construct.
This led to encoding of activated MEK-2 and robust
activation of ERK-2 signaling, which in turn reversed
the adhesion defect of CAD-EPCs and restored adhesion
activity to control levels (47).

As described above in detail, the SDF-
I/ILK axis is another regulating pathway for EPCs
migration, homing and proliferation. Werner et al
showed that WT-ILK transfection significantly
improved EPCs migration (57). The restoration of ILK
protein expression in EPCs from patients with CAD
reversed the migratory defect of CAD-EPCs as
compared to healthy controls, and there was a
significant increase in colony forming units in cells
transfected with WT-ILK to 1914+12.9% of control-
transfected cells. Moreover, adhesion was significantly
increased in WT-ILK-transfected EPCs

Akt/eNOS axis is proposed to be a reliable
target to restore EPCs function, considering its great
importance in regulating NO release. It has been
demonstrated that Akt itself is activated through PI3K in
response to various stimuli (84). Downstream, Akt
directly phosphorylates eNOS on serine 1179 and
activates the enzyme, leading to NO production. This
activating effect of Akt on eNOS is selective and
specified (68). Transfection of WT-Akt, but not the
kinase-inactive variant into COS-7 cells (which do not
express NOS) results in markedly increased NO
accumulation, which is enhanced by co-transfection of
eNOS (68).

8.2.3. Agents improving EPCs tolerance to the host
tissue environment

Tripterine is a chemical compound extracted
from the Chinese plant Tripterygium wilfordii, which
has demonstrated anti-inflammatory properties in
several animal models (85-89). Our group has tested the
effect of tripterine on vascular endothelial cell (EC), the
progeny of EPCs (90). In inflammatory conditions,
tripterine inhibits the expression of E-selectin, vascular
cell adhesion molecule-1 (VCAM-1), and intercellular
adhesion molecule-1 (ICAM-1) in human umbilical vein
endothelial cells (HUVEC) in a dose-dependent manner.
Effects on endothelial CAM of other proinflammatory
cytokines, such as interleukin-1p and interferon-y, were
also inhibited significantly by tripterine. Moreover,
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tripterine inhibited adhesion of human monocytes and T
lymphocytes to TNF-a-stimulated HUVEC. Therefore,
tripterine can attenuate the damage of EC in
inflammatory  tissue  conditions.  Because an
inflammatory tissue environment is found in many
pathologic conditions (including diabetes,
atherosclerosis, and hyperlipidemia) in which EPCs
dysfunction have been demonstrated, on-going research
of our group examines the hypothesis that tripterine
could also ameliorate the impairment of EPCs in such
inflammatory circumstance (sponsored by National
Natural Science Foundation of China, Grant number
30770614).

8.3. ENVIRONMENT MODULATION
8.3.1. Modification of arteriosclerosis risk factors in vivo
Aggressive modification of
cardiovascular risk factors is generally indicated in
the patient population enrolled in clinical EPCs trials.
Besides its many documented clinical benefits, risk
factor modification has been shown to improve EPCs
function. Specifically, the effect of statins has been
widely investigated and data demonstrates an
increase number of EPCs, accelerated re-
endothelialization and reduced neointimal formation
during treatment (91). Single or combined
administration of oral anti-diabetic drugs and insulin
can increase number of EPCs (92). Pistrosch et al.
demonstrated that the PPARy-agonist rosiglitazone
could improve migratory activity of cultured EPCs
and increase EPCs number (464+33, P < 0.01), in
patients receiving a dose of 4 mg, b.i.d for 12 weeks
(93).

8.3.2. Administration of cytokines in vivo

Since SDF-1 expression and the number of
SDF-1 positive cells are significantly reduced under
certain chronic disease conditions (69, 70), the
administration of exogenous SDF-1 may facilitate the
recruitment of EPCs. In an animal model, exogenous
administration of SDF-la via local wound injections
enhanced EPCs mobilization and homing in diabetic
peripheral cutaneous wounds, as well as wound healing
(69). SDF-1 can be cleaved by exopeptidases and matrix
metalloproteinase-2, thereby generating an inactive
protein. By mutating the SDF-1 cleavage motif, Seger et
al. generated a stabilized SDF-1 mutant, which was
cleavage resistant, and more efficiently achieved
improved cell recruitment and functional recovery after
AMI compared to wild type SDF-1 (94). Besides direct
injecting into ischemic local tissue, there exist physical
methods to improve the endogenous expression of
chemokines. For example, low energy shock wave
application can activate the tissue and stimulated the
expression of SDF-1 and VEGF within the target tissue
and promote homing of intravenously infused EPCs in
uninjured and chronically ischemic rats (95).

In summary, among the above described
strategies, medications used for atherosclerosis risk
factor modification (environment modulation) are the
most convenient methods to improve EPCs function in
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vivo. However, the known fact that chronic
atherosclerotic disease progression and acute events
occur in many patient despite good risk factor control,
demonstrates the need for further investigation.

Pretreatment of the impaired patient-
derived autologous EPCs is currently extensively
investigated as tool to reverse the molecular mechanism
underlying EPCs dysfunction. These approaches can be
conducted ex vivo, and do not disrupt the routine
therapy. In the context of planned EPCs therapy, they
can expand the cell quantity and function. However, the
clinical efficacy has not been documented in
randomized trials.

Heterologous EPCs transfusion is currently
not a major clinical target, secondary to the risk of
immune reject, the need to suppress the immune system,
the high cost, and more complex ethical concerns.

It is important to consider that different
diseases may require different therapeutic strategy
consistent with different mechanism of EPCs
dysfunction, for example, eNOS uncoupling in diabetes
vs. reduced ERK-2, ILK and Akt/eNOS signaling in
coronary artery disease or advanced age.

9. SUMMARY AND FUTURE PERSPECTIVES

In the last decade, EPCs have been
extensively studied and accumulating evidence
highlights their importance in vascular repair.
However, the mechanisms of EPCs participation in
the vasculogenesis and vascular repair are
incompletely understood. There is increasing
evidence that EPCs-based therapy could accelerate
the process of re-endothelialization of damaged
vascular endothelium in various vascular disease
conditions. However, despite encouraging results in
animal models, clinical trials in patient with
atherosclerotic  disease  have so far been
disappointing, emphasizing that there are multiple
critical issues concerning the biology of the EPCs
that are incompletely understood and need to be
investigated further.

The functional impairment of EPCs in
subjects with pre-existing atherosclerotic disease
and/or risk factors poses a primary hurdle in using
autologous cell for implantation. There is increasing
data describing approaches to reverse EPCs
dysfunction. Using modulating procedures on the
genomic level, molecular signaling level, and related
to key regulation enzymes, researchers have
successfully improved or restored functions of
dysfunctional EPCs.

Another important hurdle for autologous
EPCs infusion is the host tissue environment in
patient with preexisting atherosclerotic disease and/or
risk factors. Studies on tissue environment
modulation also achieved some encouraging results.
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Specifically, local or systemic administration of
cytokines involved in EPCs mobilization, such tissue
exhibits improved homing and adhesion ability of
EPCs to impaired endothelium.

Besides EPCs function, a sufficient
number of EPCs is critical in clinical study.
Compared with the limited size of typical

experimental animals such as mouse, rat and rabbit,
human will demand a much larger number of EPCs to
allow sufficient re-endothelialization and recovery of
the ischemic tissue. Up to now, culture methods seem
to be able to expand cell number in vitro to match the
quantity needed in clinic applications. During the
culture process of cell expansion, functional and
environmental adjustment procedure can be
accomplished simultaneously.

Similar to the profound impact of
transluminal interventional therapy of vascular
disease in last century, EPCs-based endovascular
therapy may allow future advances in the treatment of
atherosclerotic disease, which remains a leading
cause of morbidity and mortality worldwide.
However, as described above further evaluation is
necessary to overcome the hurdles separating bench
results from bedside application.
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