Regulation of cystathionine gamma-lyase/H₂S system and its pathological implication

Kexin Zhao^{1,2}, Hongzhu Li³, Shuangshuang Li^{1,2}, Guangdong Yang^{1,2}

¹The Cardiovascular and Metabolic Research Unit, and ²School of Kinesiology, Lakehead University, Thunder Bay, Canada; ³Department of Pathophysiology, Harbin Medical University, Harbin, China

TABLE OF CONTENTS

- 1. Abstract
- 2. Introduction
- 3. Abnormal CSE expression and H2S production in both health and diseases
 - 3.1. Cardiovascular diseases
 - 3.2. Diabetes
 - 3.3. Liver and kidney diseases
 - 3.4. Cancer
 - 3.5. Aging
 - 3.6. Asthma
 - 3.7. Others
- 4. The regulatory mechanisms underlying altered CSE expression and H2S production
 - 4.1. Transcription factor regulation of CSE transcription
 - 4.2. MicroRNA regulation of CSE protein translation
 - 4.3. PLP regulation of CSE activity
 - 4.4. Key residues involved in the catalysis of H2S
 - 4.5. Hormone regulation of CSE activity
 - 4.6. Calcium regulation of CSE activity
 - 4.7. NO and CO regulation of CSE activity
 - 4.8. CSE inhibitors
- 5. Perspective
- 6. Acknowledgements
- 7. References

1. ABSTRACT

Hydrogen sulfide (H₂S) is a highly diffusible gasotransmitter, that influence cellular and organ functions by a number of different mechanisms. Cystathionine gamma-lyase (CSE) is one major H₂S-producing enzyme with L-cysteine as the main substrate in mammalian cells. Since the discovery of endogenously-produced H₂S as a biological mediator, there has been an explosion of interest in CSE expression and regulation. CSE expression and activity and ultimately the amount of H₂S synthesis is controlled by a complex integration of transcriptional, posttranscriptional and post-translational mechanisms. Considering the key role that CSE/H₂S system plays in both health and diseases, a better understanding of the regulation of CSE/H₂S system will help us to develop novel and more effective strategies to target CSE and alter H₂S production inside cells. In this review, we summarize the altered expression and activity of CSE and abnormal H₂S production in various pathophysiological conditions. The current knowledge on the signaling and regulatory pathways for CSE expression and H₂S production are also elucidated. As such, our understanding of the pathogenesis of human diseases will be better achieved and the corresponding new therapy can be devised.

2. INTRODUCTION

Physiological importance of hydrogen sulfide (H₂S) surfaced in the mid-1990s. It is clear now that H₂S, joining with other endogenous gases including nitric oxide (NO) and carbon monoxide (CO), is one member of gasotransmitters (1-6). Since the discovery of endogenously-produced H₂S in various tissues, there has been an explosion of interest in H₂S as a biological mediator. The reactivity of H₂S in biological system is complex and permits H₂S to exert a wide range of actions (1,7,8). H₂S is involved in the regulation of vascular tone, myocardial contractility, neurotransmission, insulin secretion, energy generation, inflammation, and nociception, etc (3,8-18). In the past 5 years, redox modification of cysteine residues by H₂S through S-sulfhydration garnered considerable attention as a mechanism of intracellular signaling (7.8.15.19-21). S-sulfhydration is increasingly recognized for its ability to influence protein function in a manner analogous to Snitrosylation and phosphorylation, and the dysregulation of protein S-sulfhydation may be involved in a wide spectrum of human diseases (22-26).

It is clear now that cystathionine gamma-lyase (CSE, CTH or CGL, EC 4.4.1.1.) acts as a major H_2S -producing enzyme in cardiovascular system, liver, kidney,

Table 1. Altered CSE expression/activty in some pathological cases

Diseases	Species/ Tissues	Alteration	mRNA/ protein	REFERENCES
Hypoxia pulmonary hypertension	Rat/Lung	Decrease	mRNA	121
Hypertension	Rat/Aorta	Decrease	mRNA	3,40
Atherosclerosis	Mouse/Aorta	Decrease	Protein	46
Chronic kidney disease	Rat, Human/Kidney	Decrease	mRNA	68
Diabetes	Rat/Pancreas and Liver	Increase	Both	28,128,129
Diabetes	Mouse/Kidney	Decrease	Protein	69
Ischaemia/Reperfusion Injury	Mouse and Rat/Liver and Kidney	Increase	Proteine	129
Allergic rhinitis	Human/Nasal mucosa	Increase	Both	130
Radioadaptive response	Human/Liver cells	Increase	Protein	131
Drug resistance	Human/Cancer cell line	Increase	Both	1
Liver cirrhosis	Rat/Serum	Decrease	Protein	132
Cecal ligation and puncture-induced sepsis	Mouse/Liver	Increase	mRNA	70
Acute pancreatitis.	Mouse/Pancreas	Increase	N/A	133
Transplant tolerance	Rat/Kidney	Decrease	mRNA	56
Severe Burn Injury-Induced Inflammation	Mouse/Liver and Lung	Increase	mRNA	134
Acute inflammation	Mouse and Rat/Whole body	Decrease	N/A	90
Inflammatory bowel disease	Mouse/Bowel	Increase	mRNA	91
Asthma	Human, Rat/Lung	Decrease	Protein and mRNA	135,136
Hyperhomocysteinemic	Mouse/Brain	Increase	mRNA	137
Myocarditis	Mouse/Heart	Increase	mRNA and protein	138
Colitis	Mouse/ Gastrointestinal tract	Increase	mRNA	139
Partial Ileal Obstruction	Mouse/Ileal smooth muscle tissues	Decrease	Protein	140
Balloon injury	Rat Carotid/ arteries	Decrease	mRNA	44
Aging	Rat/Lense	Decrease	mRNA and protein	79
Preeclampsia	Human/Placenta	Decrease	mRNA	87
Werner syndrome	Human/fibroblast cells	Decrease	mRNA and protein	89

pancreas and prostate (3,7,10,27-29). CSE, also named as cystathionase, is an enzyme in the transsulfuration pathway to catalyze cystathionine to cysteine, ammonia, and αketobutyrate in most eukaryotes and actinomycetes species of prokarvotes (30). CSE has broad substrate specificity. CSE can breakdown cysteine into pyruvate, ammonia and thiocysteine (31,32). Thiocysteine could be further catalyzed by CSE to produce H₂S (33). CSE can also utilize homocysteine as substrate to generate H₂S (34). Deficiency associated with cystathioninuria, CSE is hyperhomocysteinemia, and lower plasma cysteine (35). Either knockout or cell-specific overexpression of CSE gene has enabled a unique appreciation of the ability of H₂S to modulate cellular functions and various diseases (3,9). The expression and activity of CSE is under tight regulation to ensure its proper function. Together with CSE, there are other two enzymes involved in H₂S production in mammals, cystathionine beta-synthase (CBS, EC 4.2.1.2.2.) and 3-mercaptosulfurtransferase (3-MPST, 2.8.1.2.) (36). All these three enzymes can generate H₂S with L-cysteine as the main substrate. It is updated that 3-MPST could catalyze D-cysteine to produce H₂S in the cerebellum and kidney recently, which supplied a novel pathway for H₂S synthesis in mammals (37). CBS is reported to be the predominant H₂S-generating enzyme in the brain and nervous system, while 3-MPST could contributes to H₂S production in vascular system, brain and kidney (1).

The gasotransmitter's roles of H_2S in mammalian have been reviewed everywhere (1,2,4,6,23,38). This review focuses on the altered expression of CSE and abnormal H_2S production in various physiological and/or pathophysiological conditions. The current knowledge on the signaling and regulatory pathways for these abnormal expression and/or function of CSE/ H_2S system is also

elucidated. As such, our understanding of the pathogenesis of human diseases will be better achieved and the corresponding new therapy can be devised.

3. ABNORMAL CSE EXPRESSION AND H₂S PRODUCTION IN BOTH HEALTH AND DISEASES

Down-regulation of CSE/H_2S system was observed in various animal models of arterial and pulmonary hypertension, Alzheimer's disease, gastric mucosal injury, and liver cirrhosis. Over-activation of H_2S was found in diabetes, sepsis, shock, and pancreatitis. In Table 1, we summarized the alterations of CSE expression and activity in some diseases which were reported in the past decade.

3.1. Cardiovascular diseases

 H_2S is capable of inducing vasorelaxation and lowering blood pressure in rats, due to mostly a direct action of H_2S on smooth muscle cells via activation of K_{ATP} channels and partially an endothelium-dependent mechanism (8,10,39). Reduced H_2S production as a result of CSE inhibition in rats increased blood pressure and administration of H_2S attenuated blood pressure elevation (40). The deficiency of CSE in mice leads to decreased endogenous H_2S level, age-dependent increase in blood pressure, and impaired endothelium-dependent vasorelaxation (3).

Vascular neointimal formation is a common consequence following pathological lesion, and arterial smooth muscle cell (SMC) phenotypic switching is a key element in the development of neointimal formation. Accumulating evidence has demonstrated that CSE/H₂S system plays a vital role in regulating SMC differentiation, migration, and proliferation (41-43). Serum deprivation

induced SMC differentiation and increased CSE expression and H₂S production in cultured human aorta SMCs (43). Carotid artery ligation in mice resulted in down-regulation of CSE expression and enhanced neointima formation (42). Earlier study also showed that CSE expression and H₂S production were reduced during the development of balloon injury-induced neointimal hyperplasia in rats, and treatment with H₂S significantly reduced neointimal lesion formation by inhibiting SMC proliferation (44). Although H₂S mediated estrogen-inhibited proliferation of SMCs via selective activation of ERα/cyclin D1 pathways, estrogen had little effect on CSE expression (45). We recently proved that knockdown of CSE decreases endogenous H₂S production and predispose the mice to vascular remodeling and early development of atherosclerosis, pointing to the CSE/H₂S pathway as an important therapeutic target for protection against atherosclerosis (46). Low blood levels of H₂S have been found in haemodialysis patients partially through transcriptional deregulation of CSE gene, which would provide some hints for the mechanisms of hyperhomocysteinaemia in uraemia as well as hypertension and premature atherosclerosis (47).

In vascular SMCs, CSE is localized in the cytosol under normal condition, however high level of calcium induced CSE expression and stimulated CSE translocation to mitochondria (11). Tom20 is involved in the process of CSE mitochondrial translocation, because Tom20 siRNA significantly inhibited mitochondrial translocation of CSE and mitochondrial H₂S production. Increased CSE expression and CSE mitochondrial translocation on specific stress stimulations is probably a unique mechanism to promote H₂S production inside mitochondria to maintain sufficient mitochondrial ATP production (11).

Osteoclast differentiation has been linked to advanced atherosclerotic plaques, and CSE is reported to be involved in early stages of osteoclastogenesis (48). Both CSE protein and mRNA expression is up-regulated in osteoclast-like cells differentiated from RAW264.7, cells in response to receptor activator of nuclear factor κ-B ligand induction, a common in vitro model for osteogenesis (48). Knockdown of CSE by short interfering RNA (siRNA) and blockage of CSE activity by DL-propargylglycine (PPG) attenuated receptor activator of nuclear factor k-B ligandinduced tartrate-resistant acid phosphatase type 5 activity and pit formation. Similarly mechanical force promoted the mRNA expression of CSE in the receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL) in human periodontal ligament cells (hPDLCs), suggesting H₂S could promote osteogenic differentiation (49).

Tons of studies reported decreased CSE expression and H₂S levels in myocardium with ischemia reperfusion (I/R) injury, and supply of exogenous H₂S provides a cardiac protective effect (50,51). CSE/H₂S is also involved in the attenuation of diabetic myocardial injury (52). High glucose reduced CSE expression in the primary neonatal rat cardiomyocytes, and treatment with NaHS significantly reversed the diabetic rat hearts function (53). Besides these, many other factors were shown to protect heart via regulating CSE/H₂S system. Estrogen

decreased oxidative stress and inflammatory status in the myocardium of ovariectomized rats by increasing CSE expression and H₂S production (54). Sulfur dioxide preconditioning could significantly reduce I/R-induced myocardial injury by upregulating CSE/H₂S pathway (55). Silly R *et al.* demonstrated that CSE is down-modulated in transplant tolerance of heart and plays a critical role in regulating IL-12 in monocytes and dendritic cells, possibly involving in the maintenance of the tolerant state (56).

3.2. Diabetes

CSE is a major H₂S-producing enzyme in pancreatic beta cells and regulates beta cell function. Altered H₂S production is involved in the development of diabetes (28.57.58). Overexpression of CSE inhibited insulin release from cultured insulin-secreting beta cells (INS-1E), but lowering endogenous H₂S production by PPG or knockdown of CSE by siRNA had the opposite effect (58). H₂S formation was significantly higher in the pancreas of Zuker diabetic fatty rats compared with nondiabetic animals (57). Cysteine level was also elevated in diabetic patients with diabetic nephropathy renal complications (59). Streptozotocin (STZ) injection induced pancreatic CSE activity and H₂S production as well as hyperglycemia and hypoinsulinemia in mice (28). The application of PPG to inhibit CSE activity protected mice from STZ-induced diabetes. STZ also significantly stimulated H₂S production in INS-1E cells (28). The reduced pancreatic CSE expression and activity in diabetes may be due to high level of glucose. High glucose inhibited H₂S production in INS-1E cells and freshly isolated rat pancreatic islets (12). CSE mRNA expression, CSE activity and protein abundance were also profoundly reduced by high glucose. The accurate regulation of CSE/H₂S system by glucose may be involved in the fine control of glucoseinduced insulin secretion (12).

In liver cells, insulin at the physiological range inhibited CSE expression, but CSE expression was increased in insulin-resistant state induced by exposing the cells to high levels of insulin and glucose (60). Adenovirusmediated CSE overexpression or exogenously applied H₂S decreased insulin-stimulated phosphorylation of Akt and lowered glycogen content in liver cells, suggesting that the interaction of H₂S and insulin in liver plays a pivotal role in regulating insulin sensitivity and glucose metabolism (60). Another studies showed that enhanced CSE activation and H₂S generation contributed to vitamin D-induced glucose uptake and glucose utilization in adipocytes (61). Vitamin D supplement also induced CSE expression and H₂S formation in glucose-treated U937 monocytes, indicating that CSE/H₂S system contributes to vitamin D-modulated glucose metabolism (62).

Quite differently, CSE expression and H₂S production was reduced in insulin-insensitive kidney tissue from hyperglycemic Akita mice, and H₂S would generate therapeutic potential to prevent adverse diabetic renal remodeling (63). In addition, in a rat model of type I diabetes induced by STZ, CSE mRNA expression and endogenous H₂S production was significantly increased in cerebral arteries with reduced cerebral artery endothelial

function (64). Thus, upregulation of endogenous H₂S in diabetes may play a vasoprotective role.

3.3. Liver and kidney diseases

Liver produces a large amount of H₂S compared all other tissues in our body. Enhanced formation of H₂S contribute to the liver injury Lipopolysaccharide (LPS) induced endotoxemia in liver following enhanced H₂S concentration and CSE expression. Pretreatment with NaHS strengthened the LPSinduced liver damage; however, blockage of CSE activity by PPG reversed the increase of liver H₂S concentration and reduced the liver damage. Inhibition of H₂S synthesis may provide a useful therapeutic strategy against the liver injury associated with endotoxemia (65). In another case. the mRNA and protein levels of CSE in the liver were significantly elevated in mice fed a high fat diet, and upregulation of CSE/H₂S system might play an adaptive role against oxidative stress by maintaining total glutathione levels in the liver (67).

In a mouse model of unilateral ureteral obstruction (UO)-induced kidney fibrosis, CSE expression in the kidney was decreased (68). Treatment with sodium hydrogen sulfide (NaHS, a H2S producer) during UOinduced oxidative stress with preservations of catalase, copper-zinc superoxide dismutase, and manganese superoxide dismutase expression, and glutathione level. NaHS treatment attenuated UO-induced increases in levels of TGF-β1, activated Smad3, and activated NF-κB, suggesting that H₂S and its transsulfuration pathway may be a potential target for development of therapeutics for fibrosis-related diseases (68). Methionine sulfoxide reductase A protects the kidney against I/R injury. Interestingly, I/R reduced the expression and activities of CSE in the kidney, and the reductions were more profound in the methionine sulfoxide reductase A knockout mice (69).

CSE expression was also shown to be upregulated or down-regulated in many other cases. In a mouse model of partial obstruction-induced dysfunction of the interstitial cells of Cajal (ICC), CSE expression was lower in the tunica muscularis of the obstructed intestine (70). H_2S reduced but PPG elevated the expression of TNF- α mRNA in the tunica muscularis of the ileum, pointing to the protective role of H_2S in partial intestinal obstruction-induced loss of ICC. In contrast, in a bile duct ligation induced-acute acalculous cholecystitis model in guinea pigs, immunohistochemistry analysis showed that CSE expression is progressively increased in the gallbladder epithelium, suggesting CSE may be involved in the development of acalculous cholecystitis (71).

3.4. Cancer

Hydrogen sulfide (H₂S) has been shown to regulate cancer cell growth and tumor progression. We recently observed that H₂S mediates the anti-cancer effect of sulforaphane in an androgen-independent prostate cancer cell line (PC-3) (27). GYY413 (a slow-releasing H₂S donor) and S-propargyl-cysteine (a CSE activator) have also been shown to generate anti-cancer effects (72,73).

Butyrate inhibits terminal differentiation of a variety of human colon cancer cell lines and induces the incidence of colon cancer (74). Cao et al. demonstrated that butyrate increased cell production of H2S and upregulated CSE expressions in colon cancer cells (75). However, blockade of CBS, but not CSE, decreased butyrate-stimulated H₂S production and reversed butyrate-inhibited cell viability. Another report also showed that silencing of CSE does not affect colon tumor growth or bioenergetics (76). In human neuroblastoma tissue specimens, no CSE activity was detectable. A variety of differentiating agents, including butyric acid, dimethyl sulfoxide, serum-free medium, or sodium citrate, were hard to induce CSE activity and neuroblastoma cell differentiation, suggesting that neuroblastomas have a biochemical block in the transsulfuration enzymes at the level of CSE (77). In addition, treatment of neuroblastoma mouse xenografts with a CSE construct resulted in near complete cessation of tumor growth (78).

3.5. Aging

It is well known that the CSE/H₂S system is involved in development as well as the ageing process. The mRNA and protein levels of CSE are lower in the lenses from old rats, and inhibition of CSE activity leads to cataractogenesis in vitro (79). CSE activity as well as the level of cysteine is lower in the livers of older mice (80). We provided evidence recently showing that CSE protein expression is significantly reduced in mouse embryonic fibroblasts at older passage, which display increased oxidative stress and accelerated cellular senescence (15). H₂S incubation significantly reduced oxidative stress and rescued the cells from cellular senescence. It also has been reported that H₂S improves the function of senescent human umbilical vein endothelial cells, potentially through modulation of SIRT1 activity (81). In caenorhabditis elegans, although H₂S reduced detrimental age-dependent changes, genetic deficiency of CSE did not affect their lifespan, suggesting other H₂S-producing enzyme but not CSE contributes to the lifespan-prolonging and healthpromoting effects of H₂S (14).

3.6. Asthma

CSE has been shown to be one of the major enzymes H₂S in lungs, participating in the regulation of respiratory functions and playing a protective role in the development of asthma. By using ovalbumin (OVA)induced acute asthma model in mice, Zhang et al. demonstrated that OVA challenge decreases lung CSE expression and H₂S production following aggravated hyperresponsiveness and inflammation in bronchoalveolar lavage fluid (82). More importantly, NaHS supplement rescued the mice from the aggravated pathological process of asthma. This study paves a way for developing a new therapeutic potential for asthma via targeting CSE/H₂S metabolism (82,83). In another rat model of asthma, plasma H₂S levels and CSE expression in the lung was also decreased, and budesonide alleviated airway inflammation in asthmatic rats possibly by reversing the expression of CSE and endogenous production of H₂S (84). In human patients with asthma, the serum H₂S level was also significantly lower when compared with normal

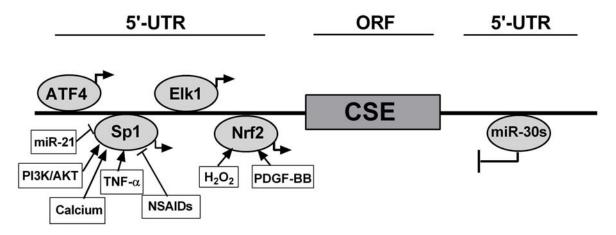
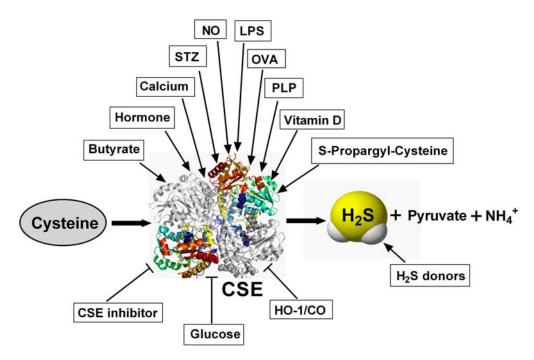


Figure 1. The regulation of CSE at the transcriptional and translational levels. A number of transcript factors, including Sp1, Nrf2, ATF4, and Elk1, regulate CSE transcription through direct or indirect binding with CSE promoter. MiR-21 and NSAIDs are reported to suppress but PI3K and TNF- α stimulate CSE transcription by targeting Sp1 gene. H₂O₂ and PDGF-BB induce CSE transcription by targeting at Nrf2. MicroRNAs, including miR-30s, bind at 3'-UTR of CSE gene for translational repression. UTR, untranslated region; ORF, open reading frame.

controls, implicating endogenous H_2S may be involved in the pathogenesis of asthma and can be used as a marker for asthma diagnosis (85). In a mouse model of tobacco smoke-induced chronic obstructive pulmonary disease, CSE expression was reduced in the lung, and NaHS supplement could protect against tobacco smoke-induced oxidative stress, airway inflammation, and remodeling and ameliorate the development of emphysema and pulmonary hypertension (86).

3.7. Others

Placental CSE expression and plasma levels of H_2S were significantly lower in preeclampsia women. Blockage of CSE activity by PPG reduced placenta growth factor production in human placental explants and decreased fetal growth in mice. In addition, a slow releasing H_2S -generating compound, GYY4137 restored fetal growth (87). Another group also showed that CSE immunoreactivity was reduced in placentas from pregnancies with severe early-onset growth-restriction, and exposure of villus explants to hypoxia-reoxygenation significantly reduced CSE protein and mRNA (88). These suggest that CSE/ H_2S system is required for healthy placental vasculature and a decrease in CSE/ H_2S activity may contribute to the pathogenesis of preeclampsia.


Werner syndrome protein is involved in DNA repair and its mutation causes Werner syndrome, an autosomal recessive genetic disorder with a premature aging phenotype (89). CSE expression was shown to be lower in Werner syndrome fibroblasts with increasing levels of oxidative stress and excess activation of the mTOR (mammalian target of rapamycin) pathway (89). The authors further provided evidence showing that NaHS treatment blocks mTOR activity, abrogates protein aggregation and normalizes the phenotype of Werner syndrome fibroblasts, suggesting CSE/H₂S system would be a target for preventing Werner syndrome (89).

In a rat model of nonsteroidal anti-inflammatory drug (NSAID) gastropathy, NSAIDs reduced H₂S

formation and CSE expression (mRNA and protein) leading to increased inflammation and gastric injury (90). The authors identified CSE as a novel target for NSAIDs and suggested a physiologic role for H_2S in regulating the gastric microcirculation. Altered CSE expression or H_2S production was shown in various inflammation conditions. In some inflammatory diseases, CSE expression and H_2S formation were increased, while decreased in some other inflammatory status (91). These results suggest that the roles of H_2S in inflammatory diseases are dependent on the inflammatory types.

4. THE REGULATORY MECHANISMS UNDERLYING ALTERED CSE EXPRESSION AND $\rm H_2S$ PRODUCTION

The CSE gene has been characterized in many organisms including human, mouse, rat, amphibian, and plants, showing high sequence identity between phylogenetically distant organisms, which indicates the evolutionary conservation of this enzyme (1). The first mammal cDNA of CSE was cloned by screening cDNA library of rat in 1990 (92). Two years later, human CSE cDNA was cloned as well and two isoforms of CSE mRNA were detected based on the sequence analysis (93). These two forms of human CSE mRNA have high similarity except 132 bp internal missing in the shorter one. Overexpression of the short form of CSE did not contribute to activity increase while longer form did (93). The threedimensional structure of human CSE has been explored via X-ray crystallography (94). CSE protein consists of four identical monomers with a covalently bound pyridoxal 5'phosphate (PLP) cofactor in each monomer (95). CSE is an inducible gene in many types of cells and tissues, contributing to the development of various disorders. The signaling and regulatory pathways for abnormal expression and/or function regulation of CSE/H₂S system in these pathological conditions are dynamic and complicated. Many factors have been discovered to regulate CSE expression and activity at multiple levels, including

Figure 2. A numbers of factors are involved in the modification of CSE activity and H₂S production. CSE activity and H₂S production can be activated or burst by tons of compounds, including butyrate, specific hormone, calcium, streptozotocin (STZ), nitric oxide (NO), lipopolysaccharide (LPS), ovalbumin (OVA), pyridoxal-5'-phosphate (PLP), vitamin D, S-propargyl-cysteine, and various H₂S donors, etc. In contrast, glucose, HO-1/CO system, and various CSE inhibitors are shown to suppress CSE activity and H₂S production.

transcriptional, post-transcriptional and post-translational levels, as shown in Figure 1 and 2.

4.1. Transcription factor regulation of CSE transcription

Specificity protein-1 (Sp1) is a zinc finger transcription factor that binds to GC-rich motifs of many promoters (96). It was first reported that the promoter region -157 to +18 of mouse CSE gene displayed strongest activity with Sp1 binding in HEK-293 cells (97). In human aorta SMCs, there were two Sp1 consensus binding sites present in the core promoter region of human CSE gene (43). Incubation of human aorta SMCs with Sp1 binding inhibitor mithramycin inhibited CSE mRNA expression, while overexpression of Sp1 increased the activity of human CSE core promoter and CSE expression (43). The direct binding of Sp1 to human CSE promoter was demonstrated by chromatin immunoprecipitation (CHIP) assay. Moreover, PI3K/AKT regulated CSE transcription and promoter activity by activating on Sp1 in human hepatocellular carcinoma cell lines. CSE expression was reduced by the PI3K inhibitor or Akt deletion, while enhanced with the Akt activator (98). CHIP assay demonstrated that PI3K/AKP stimulated the binding of Sp1 with CSE core promoter. Exposure to NSAIDs inhibited Sp1 phosphorylation, which leads to reduced binding of Sp1 to CSE promoter and lower CSE expression in HEK-293 cells transfected with a vector containing the core CSE promoter (13). Another report demonstrated that TNF-α treatment triples H₂S generation by stimulating binding of Sp1 to the CSE promoter in liver cells, and H₂S generated

by CSE stimulates DNA binding and gene activation of NF- κ B and maintains its anti-apoptotic properties (21). Similarly in pancreatic beta cells, Calcium-dependent CSE expression is mediated via direct binding of Sp1 with CSE promoter as demonstrated by reporter assay (99).

CSE gene is tightly modulated by oxidative stress. It has been reported that H₂O₂ induced CSE protein and mRNA expression in human lung adenocarcinoma cells (A549 cells) or human liver cancer cells (SMMC-7721 cells), possibly through enhanced CSE transcription, because H₂O₂ stimulated CSE promoter activity (100). Moderate oxidative stress also up-regulates hepatic CSE expression in the fetal to neonatal transition (101). Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) as a transcription factor is involved extensively in antioxidant responses (102). In response to oxidative stress, Nrf2 binds to antioxidant response element (ARE) and promotes AREmediated transcription of the genes, including CSE gene (103). A recent reported showed that platelet-derived growth factor PDGF-BB induced CSE expression in rat renal mesangial cells in a dose- and time-dependent manner, and this process was possibly through Nrf2 activation (104). The evidence from electrophoretic mobility shift assay demonstrated that PDGF-BB induced binding of Nrf2 to a corresponding consensus antioxidant element in CSE promoter a redox-dependent manner (104).

Elk1, an ETS domain-containing protein, has been shown to regulate CSE transcription. Knockdown of Elk-1 blunted CSE expression in pancreatic beta cells;

however, the reporter assay showed that Elk1 does not directly bind with CSE promoter, suggesting Elk-1 indirectly regulates CSE expression via other pathways (99). In mouse embryonic fibroblasts, deficiency of activating transcription factor 4 (ATF4) caused ablation of CSE expression (105). After searched promoter region of murine CSE, the authors did not find ATF4 binding sites according to its consensus in the promoter region, suggesting ATF4 may bind with the DNA sequence which is not strictly consistent to the consensus, but with several variant bases (105). CSE transcript can also be regulated by its product H2S through feedback response. Luciferase assay demonstrated that exogenous H2S at 120 µM increases the transcription and expression of CSE, while at a concentration of over 160 µM, the transcription and expression of CSE are completely inhibited, suggesting higher level of H2S may become toxic (106).

CSE gene from Neurospora crassa was cloned and characterized, which contains no introns and encodes a protein of 417 amino acids with conserved PLP binding site (107). Gel mobility shift analysis demonstrated that the presence of four CYS3 transcriptional activator binding sites on Neurospora crassa CSE promoter, and mutation of these binding sites caused inactivation of promoter activity (107).

4.2. MicroRNA regulation of CSE protein translation

Recent discovery of microRNAs (miRs) has revolutionized our understanding of the mechanisms of gene expression regulation (108,109). MiRs are endogenous, small, non-coding RNAs that control gene expression by targeting at the 3' untranslational regions (UTRs) of mRNAs for degradation and/or translational repression. The human genome encodes more than 1000 miRs, and these molecules are proposed to regulate up to one-third of all human genes (109). We first demonstrated that miR-21 repressed CSE mRNA and protein expression by directly targeting at transcript factor Sp1 in human aorta SMCs (110). Furthermore, we provided experimental evidence that miR-21 overexpression reduces H₂S production, stimulates SMC proliferation, and represses expression of SMC differentiation marker. One year later, this discovery was confirmed by Cindrova-Davies T et al., who found that miR-21 is increased in placentas with abnormal Doppler waveforms, and exposure of villus explants to hypoxia-reoxygenation significantly increases miR-21 expression but reduces CSE protein and mRNA expression (88). It also has been shown that miR-30 family members regulate endogenous H₂S production through interaction with CSE mRNA in primary cardiac myocytes, and inhibition of miR-30s increased CSE expression (111,112). Several bioinformatics software predicts that there are more than 20 types of miRs which could target at human CSE mRNA. However, most of these CSE-targeted miRs have not been experimentally validated, and identification of these miRs may provide new insight into how miRs control expression of CSE genes in various pathological conditions.

4.3. PLP regulation of CSE activity

PLP is an active phosphorylated derivative of vitamin B6 (pyridoxine), which acts as a prosthetic group

of certain enzymes, including CSE (113). This co-factor can stabilize carbanionic intermediates in both substitution and elimination reactions involving aminated compounds (114). The supplement of exogenous PLP is crucial for maximal CSE-catalyzed enzymatic activity. Huang et al. proved that crystallization of human CSE apoenzyme is attained only when L-cysteine is added to the crystallization conditions, providing the direct evidence that the binding of PLP to CSE during the generation of H₂S. Binding of the substrate to PLP in the first step of the reaction is common for all PLP-dependent enzymes. It is predicted that the presence of PLP binds to human CSE via the active site Lys212 residue (115). Upon the addition of L-cysteine, the internal aldimine is most likely cleaved off following binding of L-cysteine to PLP (35.114.115). Zhu et al. confirmed that two pathogenic T67I and Q240E missense mutations in human CSE gene weak the affinity of PLP to CSE, and the PLP content of the T67I and Q240E mutants are about 4-fold and 80-fold lower than that of wild-type enzyme, respectively (95). Preincubation of these mutants with PLP restored activity to wild-type levels, and pyridoxine therapy would be a better choice for cystathionuric patients with these mutations (95).

4.4. Key residues involved in the catalysis of H₂S

With the aid of structure-based site-directed mutagenesis of human CSE, Huang et al. explored the critical residues involved in the catalysis of H₂S (115). Mutation of glutation 339 residue in human CSE to a more hydrophobic residue such as alanine or tyrosine leads to an approximately 6-fold enhancement in H₂S production (115). These observations suggest that the extent of hydrophobicity determines the rate of H₂S production by CSE and the affinity of these mutations for the cysteine substrate may be much lower than the wild type (115). The residues of Ser209, Thr211, and Glu349 are most probably not catalytically involved in the production of H₂S, because mutation of these residues did not change H₂S production rate. In contrast, mutation of other residues in human CSE. including Tvr60, Arg62, Tvr114, Asp187, Thr189, Lvs212, and Arg375, displayed a complete loss of H₂S production activity (115). These amino acids are either highly conserved across different CSE homologs or in close proximity to the PLP cofactor or substrate binding site of the enzyme.

4.5. Hormone regulation of CSE activity

Testosterone has a high androgenic and anabolic potency. CSE activity has been shown to be unregulated by testosterone in vascular tissues, which lead to a concentration-dependent vasodilatation of rat aortic rings *in vitro* (116). Further evidence showed that testosterone did not change CSE protein expression in aorta tissues, suggesting that testosterone possibly modulates CSE activity at post-translational level. 17β -estradiol has a higher estrogenic effect, and injection of ovariectomized Sprague-Dawley rats with 17β -estradiol for 12 weeks increased CSE expression and H_2S generation in the myocardium (54). 17β -estradiol also decreased oxidative stress and inflammatory status, suggesting that estrogens might exert cardioprotective effects through up-regulation of CSE expression and H_2S generation (54). In contrast, in

SMCs. 178-estradiol had no effect on CSE expression and H₂S production (45). Dexamethasone as an antiinflammatory and immunosuppressant glucocorticoid hormone, was reported to suppress LPS-induced CSE expression and H₂S production rate in macrophage, suggesting the involvement of CSE/H₂S system in coordinating the balance between pro- and antiinflammatiory mediators (117). Another similar report also showed that inhibition of CSE expression in neutrophils the anti-inflammatory effect contributes to dexamethasone in rat endotoxic shock (118). Some other stress hormones, such as phenylephrine or glucagon were reported to increase CSE activity in fetal hepatocytes, pointing to the critical role of CSE in regulating oxidative stress during the fetal-to-neonatal transition (119). We recently proved that CSE expression was increased in insulin-resistant state induced by exposing hepatocytes to high levels of insulin (500 nM) and glucose (33 mM), suggest that the interaction of H₂S and insulin in liver plays a pivotal role in regulating insulin sensitivity and glucose metabolism (60).

4.6. Calcium regulation of CSE activity

CSE is physiologically activated by calciumcalmodulin. In endothelial cells, H2S formation was markedly augmented by the calcium ionophore A23187, but blocked by the calcium chelator BAPTA and calmodulin antagonist W7 (3). Catalytic activity of pure CSE was increased more than two-fold by calcium and calmodulin but not by either substance alone (3). Using recombinant CSE protein, it was shown that CSE directly binds with calmodulin, which was abolished by the calcium chelator EGTA and W7 (3). In SMCs, both A23187 and thapsigargin induced the increased of intracellular calcium following increased CSE expression and H2S production, all of which sustains mitochondrial ATP production under hypoxic conditions (11). Similarly, blockage of calcium/calmodulin-dependent protein kinase (CaMK) II glucose- and thapsigargin-induced CSE reversed expression in pancreatic beta cells (99). Mikami Y et al. also showed that CSE efficiently produces H₂S at the steady-state low calcium concentrations but is suppressed at high calcium concentrations in the presence of PLP. In contrast, in the absence of PLP, H₂S production maintains the suppressed levels at high calcium concentrations and decreased further at low calcium concentrations, suggesting that calcium may interact or compete with PLP to regulate CSE activity (120).

4.7. NO and CO regulation of CSE activity

Similar to H₂S, NO and CO are another two members in gasotransmitter family. Zhao *et al.* first discovered that incubation of rat aortic tissue homogenate with a NO donor significantly increased CSE activity (10). L-arginine, the substrates to produce NO, also has been shown to augment the expression of CSE mRNA as well as H₂S production in rat lung tissue and significantly attenuated pulmonary artery pressure (121). In contrast, another report showed that L-arginine decreased CSE expression in myocardium and improved myocardial function (122). In line with this, administration of nitroflurbiprofen, a NO donor, resulted in a dose-dependent inhibition of LPS-mediated increase in

liver CSE expression and H_2S synthesis, contributing to the anti-inflammatory activity of this compound and highlighting the existence of 'crosstalk' between NO and H_2S in inflammation status (123).

Interaction of CO and $\rm H_2S$ has also been shown to be involved in multiple conditions. The $\rm H_2S$ content in the medium and CSE expression was markedly increased by ZnPP (a known inhibitor of heme oxygenase-1 (HO-1)) compared with the control group in SMCs, suggesting that endogenous CO/HO pathway inhibits CSE/ $\rm H_2S$ system under physiological conditions (124). Similar to this finding, another study demonstrated that the concentration of $\rm H_2S$ was negatively correlated with CO in nasal mucosa from guinea pigs with allergic rhinitis (125).

4.8. CSE inhibitors

Several chemicals have been reported to inhibit CSE activity, including β,β,β -trifluoroalanine (F₃Ala), PPG, aminoethoxyvinylglycine (AVG), β-cyanoalanine (BCA), aminooxyacetic acid (AOAA), and hydroxylamine (HA), etc. Steegborn et al. investigated the characteristics of F₃Ala, PPG and AVG with purified human CSE protein and concluded that PPG and F3Ala could compete with PLP to bind CSE and formed an irrevisible enzymeinhibitor (EI) complex while AVG is a slow-binding inhibitor (126). Asimakopoulou et al. compared the binding ability of inhibitors to CSE and got the conclusion that AOAA is the most potent inhibitor of CSE with inhibitor constant (IC) 50 of 1.1. + 0.1. µM (127). This challenged our common knowledge that AOAA is a specific inhibitor of CBS, another H₂S producing enzyme. Besides with AOAA, HA and F₃Ala have also been reported to act as CBS inhibitors (1,126,127).

5. PERSPECTIVE

The molecular, biological, biochemical and experimental evidence supports an important role of CSE/H₂S system in both health and diseases. Corruption of CSE/H₂S signaling is considered an early and common mechanism underlying numerous pathologies. Although knowledge about the gasotransmitter's role of H₂S is rapidly increasing, we are still at the beginning of understanding as to when and how mammalian cells generate H₂S. This review summarizes the available progress on how CSE/H₂S system is involved in various pathological disorders. A comprehensive, multi-tiered regulation network contributes to the expression change of CSE as well as H₂S production. There is a great need of significant trails that further explore the importance of CSE/H₂S system in clinical stage. Modulating CSE through changing the bioavailability of its substrate and cofactors, altering its transcription, and interfering with other modulators of CSE/H₂S system, has high potential for effective treatment of various diseases. We also need to carefully evaluate the perspectives of pharmacological enhancement or inhibition of CSE activity as a strategy for new drug design. More studies in the future are needed to develop CSE specific inhibitors/activators that can be used safely and effectively for disease treatment in real clinic stage.

6. ACKNOWLEDGEMENTS

The authors express no conflict of interest. This work was supported by a grant-in-aid from Heart and Stroke Foundation of Canada. G.Y. was supported by a New Investigator award from Heart and Stroke Foundation of Canada.

7. REFERENCES

- 1. R Wang: Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. *Physiol Rev* 92, 791-896 (2012)
- 2. R Wang: Two's company, three's a crowd: can H_2S be the third endogenous gaseous transmitter? FASEB J 16, 1792-1798 (2002)
- 3. G Yang, L Wu, B Jiang, W Yang, J Qi, K Cao, Q Meng, AK Mustafa, W Mu, S Zhang, SH Snyder, R Wang: H₂S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. *Science* 322, 587-590 (2008)
- 4. G Yang: Hydrogen sulfide in cell survival: a double-edged sword. *Expert Rev Clin Pharmacol* 4, 33-47 (2011)
- 5. MM Gadalla, SH Snyder: Hydrogen sulfide as a gasotransmitter. *J Neurochem* 113, 14-26 (2010)
- 6. F Wagner, P Asfar, E Calzia, P Radermacher, C. Szabó: Bench-to-bedside review: Hydrogen sulfide--the third gaseous transmitter: applications for critical care. *Crit Care* 13, 213 (2009)
- 7. AK Mustafa, MM Gadalla, N Sen, S Kim, W Mu, SK Gazi, RK Barrow, G Yang, R Wang, SH Snyder: H₂S signals through protein S-sulfhydration. Sci Signal 2, ra72 (2009)
- 8. AK Mustafa, G Sikka, SK Gazi, J Steppan, SM Jung, AK Bhunia, VM Barodka, FK Gazi, RK Barrow, R Wang, LM Amzel, DE Berkowitz, SH Snyder: Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. *Circ Res* 109, 1259-1268 (2011)
- 9. JW Calvert, M Elston, CK Nicholson, S Gundewar, S Jha, JW Elrod, A Ramachandran, DJ Lefer: Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice. *Circulation* 122, 11-19 (2010)
- 10. W Zhao, J Zhang, Y Lu, R Wang: The vasorelaxant effect of $\rm H_2S$ as a novel endogenous gaseous K(ATP) channel opener. *EMBO J* 20, 6008-6016 (2001)
- 11. M Fu, W Zhang, L Wu, G Yang, H Li, R Wang: Hydrogen sulfide (H₂S) metabolism in mitochondria and its regulatory role in energy production. *Proc Natl Acad Sci USA* 109, 2943-2948 (2012)
- 12. L. Zhang, G. Yang, G. Tang, L. Wu, R. Wang: Rat pancreatic level of cystathionine γ-lyase is regulated by glucose level via specificity protein 1 (SP1) phosphorylation. *Diabetologia* 54, 2615-2625 (2011)

- 13. S Fiorucci, E Antonelli, E Distrutti, G Rizzo, A Mencarelli, S Orlandi, R Zanardo, B Renga, M Di Sante, A Morelli, G Cirino, JL Wallace: Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs. *Gastroenterology* 129, 1210-1224 (2005)
- 14. B Qabazard, L Li, J Gruber, MT Peh, LF Ng, S Dinesh Kumar, P Rose, CH Tan, BW Dymock, F Wei, SC Swain, B Halliwell, SR Stürzenbaum, PK Moore: Hydrogen sulfide is an endogenous regulator of aging in caenorhabditis elegans. *Antioxid Redox Sign* Nov 21, (Epub ahead of print) (2013)
- 15. G Yang, K Zhao, Y Ju, S Mani, Q Cao, S Puukila, N Khaper, L Wu, R Wang: Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. *Antioxid Redox Sign* 18, 1906-1919 (2013)
- 16. H Kimura: Hydrogen sulfide as a neuromodulator. *Mol Neurobiol* 26, 13-19 (2002)
- 17. A Papapetropoulos, A Pyriochou, Z Altaany, G Yang, A Marazioti, Z Zhou, MG Jeschke, LK Branski, DN Herndon, R Wang, C Szabó: Hydrogen sulfide is an endogenous stimulator of angiogenesis. *Proc Natl Acad Sci USA* 106, 21972-21977 (2009)
- 18. HS Smith: Hydrogen sulfide's involvement in modulating nociception. *Pain Physician* 12, 901-910 (2009)
- 19. N Krishnan, C Fu, DJ Pappin, NK Tonks: H₂S-induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. *Sci Signal* 4, ra86 (2011)
- 20. M Nishida, T Sawa, N Kitajima, K Ono, H Inoue, H Ihara, A van der Vliet, BA Freeman, T Shibata, K Uchida, Y Kumagai, T Akaike: Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. *Nat Chem Biol* 8, 714-724 (2012)
- 21. N Sen, BD Paul, MM Gadalla, AK Mustafa, T Sen, R Xu, S Kim, SH Snyder: Hydrogen sulfide-linked sulfhydration of NF-kappaB mediates its antiapoptotic actions. *Mol Cell* 45, 13-24 (2012)
- 22. SM Marino, VN Gladyshev: Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylation. *J Mol Biol* 395, 844-859 (2010)
- 23. O Kabil, R Banerjee: Redox biochemistry of hydrogen sulfide. *J Biol Chem* 285, 21903-21907 (2010)
- 24. MS Vandiver, BD Paul, R Xu, S Karuppagounder, F Rao, AM Snowman, HS Ko, YI Lee, VL Dawson, TM Dawson, N Sen, SH Snyder: Sulfhydration mediates neuroprotective actions of parkin. *Nat Commun* 4, 1626 (2013)
- 25. AM Silva, R Vitorino, MR Domingues, CM Spickett, P Domingues: Post-translational modifications and mass spectrometry detection. *Free Radic Biol Med* 65, 925-941(2013)

- 26. PA Erwin, DA Mitchell, J Sartoretto, MA Marletta, T Michel: Subcellular targeting and differential S-nitrosylation of endothelial nitric-oxide synthase. *J Biol Chem* 281, 151-157 (2006)
- 27. Y Pei, B Wu, Q Cao, L Wu, G Yang: H₂S mediates the anti-survival role of sulforaphane on human prostate cancer cells. *Toxicol Appl Pharmacol* 257, 420-428 (2011)
- 28. G Yang, G Tang, L Zhang, L Wu, R Wang: Pathogenic role of cystathionine gamma-lyase and hydrogen sulfide in type 1 diabetes mellitus. *Am J Pathol* 179, 869-879 (2011)
- 29. EM. Bos, R. Wang, P. M. Snijder, M. Boersema, J. Damman, M. Fu, J. Moser, J. L. Hillebrands, R. J. Ploeg, G. Yang, H. G. Leuvenink, H. van Goor: Cystathionine γ-lyase protects against renal ischemia /reperfusion by modulating oxidative stress. *J Am Soc Nephrol* 24, 759-770 (2013)
- 30. SM Aitken, JF Kirsch: The enzymology of cystathionine biosynthesis: strategies for the control of substrate and reaction specificity. *Arch Biochem Biophys* 433, 166-175 (2005)
- 31. D Cavallini, B Mondovi, C. De Marco, A. Scioscia-Santoro: The mechanism of desulphhydration of cysteine. *Enzymologia* 24, 253-266 (1962)
- 32. MH Stipanuk, PW Beck: Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. *Biochem J* 206, 267-277 (1982)
- 33. JL Hargrove, JF Trotter, HC Ashline, PV Krishnamurti: Experimental diabetes increases the formation of sulfane by transsulfuration and inactivation of tyrosine aminotransferase in cytosols from rat liver. *Metabolism* 38, 666-672 (1989)
- 34. RL Jacobs, LM Stead, ME Brosnan, JT Brosnan: Hyperglucagonemia in rats results in decreased plasma homocysteine and increased flux through the transsulfuration pathway in liver. *J Biol Chem* 276, 43740-43747 (2001)
- 35. J Wang, RA Hegele: Genomic basis of cystathioninuria (MIM 219500) revealed by multiple mutations in cystathionine gamma-lyase (CTH). *Hum Genet* 112, 404-408 (2003)
- 36 RS Beard Jr, SE Bearden: Vascular complications of cystathionine beta-synthase deficiency: future directions for homocysteine-to-hydrogen sulfide research. *Am J Physiol Heart Circ Physiol* 300, H13-26 (2011)
- 37. N Shibuya, S Koike, M Tanaka, M Ishigami-Yuasa, Y Kimura, Y Ogasawara, K Fukui, N Nagahara, H Kimura: A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. *Nat Commun* 4, 1366 (2013)

- 38. AK Mustafa, MM Gadalla, SH Snyder: Signaling by gasotransmitters. *Sci Sign* 2, re2 (2009)
- 39. Y Cheng, JF Ndisang, G Tang, K Cao, R Wang: Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. *Am J Physiol Heart Circ Physiol* 287, H2316-2323 (2004)
- 40. W Zhao, JF Ndisang, R Wang: Modulation of endogenous production of H₂S in rat tissues. *Can J Physiol Pharm* 81, 848-853 (2003)
- 41. G Yang, L Wu, R Wang: Pro-apoptotic effect of endogenous H_2S on human aorta smooth muscle cells. *FASEB J* 20, 553-535 (2006)
- 42. G Yang, H Li, G Tang, L Wu, K Zhao, Q Cao, C Xu, R. Wang: Increased neointimal formation in cystathionine gamma-lyase deficient mice: role of hydrogen sulfide in α5β1-integrin and matrix metalloproteinase-2 expression in smooth muscle cells. *J Mol Cell Cardiol* 52, 677-688 (2012)
- 43. G Yang, Y Pei, H Teng, Q Cao, R Wang: Specificity protein-1 as a critical regulator of human cystathionine gamma-lyase expression during smooth muscle cell differentiation. *J Biol Chem* 286, 26450-26460 (2011)
- 44. QH Meng, G Yang, W Yang, B Jiang, L Wu, R Wang: Protective effect of hydrogen sulfide on balloon injury-induced neointima hyperplasia in rat carotid arteries. *Am J Pathol* 170, 1406-1414 (2007)
- 45. H Li, S Mani, W Cao, G Yang, C Lai, L Wu, R Wang: Interaction of hydrogen sulfide and estrogen on the proliferation of vascular smooth muscle cells. *PLoS One* 7, e41614 (2012)
- 46. S Mani, H Li, A Untereiner, L Wu, G Yang, RC Austin, JG Dickhout, Š Lhoták, QH Meng, R Wang: Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. *Circulation* 127, 2523-2534 (2013)
- 47. AF Perna, I. Sepe, D Lanza, R Capasso, V Di Marino, NG De Santo, D Ingrosso: The gasotransmitter hydrogen sulfide in hemodialysis patients. *J Nephrol* 16, S92-96 (2010)
- 48. T Itou, N Maldonado, I Yamada, C Goettsch, J Matsumoto, M Aikawa, S Singh, E Aikawa: Cystathionine γ-lyase accelerates osteoclast differentiation: identification of a novel regulator of osteoclastogenesis by proteomic analysis. *Arterioscler Thromb Vasc Biol* 34, 626-634 (2014)
- 49. C Liao, Y Hua: Effect of hydrogen sulphide on the expression of osteoprotegerin and receptor activator of NF-κB ligand in human periodontal ligament cells induced by tension-force stimulation. *Arch Oral Biol* 58, 1784-1790 (2013)
- 50. YZ Zhu, ZJ Wang, P Ho, YY Loke, YC Zhu, SH Huang, CS Tan, M Whiteman, J Lu, PK Moore: Hydrogen

- sulfide and its possible roles in myocardial ischemia in experimental rats. *J Appl Physiol* 102, 261-268 (2007)
- 51. D Johansen, K Ytrehus, GF Baxter: Exogenous hydrogen sulfide (H₂S) protects against regional myocardial ischemia-reperfusion injury--Evidence for a role of KATP channels. *Basic Res Cardiol* 101, 53-60 (2006)
- 52. BF Peake, CK Nicholson, JP Lambert, RL Hood, H Amin, S Amin, JW Calvert: Hydrogen sulfide preconditions the db /db diabetic mouse heart against ischemia-reperfusion injury by activating Nrf2 signaling in an Erk-dependent manner. *Am J Physiol Heart Circ Physiol* 304, H1215-1224 (2013)
- 53. X Zhou, X Lu: Hydrogen sulfide inhibits high-glucose-induced apoptosis in neonatal rat cardiomyocytes. *Exp Biol Med (Maywood)* 238, 370-374 (2013)
- 54. X Zhu, Z Tang, B Cong, J Du, C Wang, L Wang, X Ni, J Lu: Estrogens increase cystathionine-γ-lyase expression and decrease inflammation and oxidative stress in the myocardium of ovariectomized rats. *Menopause* 20, 1084-1091 (2013)
- 55. HF Jin, Y Wang, XB Wang, Y Sun, CS Tang, JB Du: Sulfur dioxide preconditioning increases antioxidative capacity in rat with myocardial ischemia reperfusion (I /R) injury. *Nitric Oxide* 32, 56-61 (2013)
- 56. R Vuillefroy de Silly, F Coulon, N Poirier, V Jovanovic, S Brouard, V Ferchaud-Roucher, G Blancho, B Vanhove: Transplant tolerance is associated with reduced expression of cystathionine-gamma-lyase that controls IL-12 production by dendritic cells and TH-1 immune responses. *Blood* 119, 2633-2643 (2012)
- 57. L Wu, W Yang, X Jia, G Yang, D Duridanova, K Cao, R Wang: Pancreatic islet overproduction of H₂S and suppressed insulin release in Zucker diabetic rats. *Lab Invest* 89, 59-67 (2009)
- 58. G Yang, W Yang, L Wu, R Wang: H₂S, endoplasmic reticulum stress, and apoptosis of insulin-secreting beta cells. *J Biol Chem* 282,16567-16576 (2007)
- 59. F Wollesen, L Brattström, H Refsum, PM Ueland, L Berglund, C Berne: Plasma total homocysteine and cysteine in relation to glomerular filtration rate in diabetes mellitus. *Kidney Int* 55,1028-1035 (1999)
- 60. L Zhang, G Yang, A Untereiner, Y Ju, L Wu, R Wang: Hydrogen sulfide impairs glucose utilization and increases gluconeogenesis in hepatocytes. *Endocrinology* 154,114-126 (2013)
- 61. P Manna, SK Jain: Vitamin D up-regulates glucose transporter 4 (GLUT4) translocation and glucose utilization mediated by cystathionine- γ -lyase (CSE) activation and H₂S formation in 3T3L1 adipocytes. *J Biol Chem* 287, 42324-42332 (2012)

- 62. SK Jain, D Micinski: Vitamin D up-regulates glutamate cysteine ligase and glutathione reductase, and GSH formation, and decreases ROS and MCP-1 and IL-8 secretion in high-glucose exposed U937 monocytes. *Biochem Bioph Res Co* 437, 7-11 (2013)
- 63. S Kundu, SB Pushpakumar, A Tyagi, D Coley, U Sen: Hydrogen sulfide deficiency and diabetic renal remodeling: role of matrix metalloproteinase-9. *Am J Physiol Endoc M* 304, E1365-1378 (2013)
- 64. EY Streeter, E Badoer, OL Woodman, JL Hart: Effect of type 1 diabetes on the production and vasoactivity of hydrogen sulfide in rat middle cerebral arteries. *Physiol Rep* 1, e00111 (2013)
- 65. K Shirozu, K Tokuda, E Marutani, D Lefer, R Wang, F Ichinose: Cystathionine γ-lyase deficiency protects mice from galactosamine /lipopolysaccharide-induced acute liver failure. *Antioxid Redox Sign* 20, 204-216 (2014)
- 66. L Li, M Bhatia, YZ Zhu, YC Zhu, RD Ramnath, ZJ Wang, FB Anuar, M Whiteman, M Salto-Tellez, PK Moore: Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. *FASEB J* 19, 1196-1198 (2005)
- 67. SY Hwang, LK Sarna, YL Siow, K O: High-fat diet stimulates hepatic cystathionine β -synthase and cystathionine γ -lyase expression. *Can J Physiol Pharm* 91, 913-919 (2013)
- 68. KJ Jung, HS Jang, JI Kim, SJ Han, JW Park, KM Park: Involvement of hydrogen sulfide and homocysteine transsulfuration pathway in the progression of kidney fibrosis after ureteral obstruction. *BBA-Mol Basis Dis* 1832,1989-1997 (2013)
- 69. JI. Kim, SH Choi, KJ Jung, E Lee, HY Kim, KM Park: Protective role of methionine sulfoxide reductase A against ischemia /reperfusion injury in mouse kidney and its involvement in the regulation of trans-sulfuration pathway. *Antioxid Redox Sign* 18, 2241-2250 (2013)
- 70. X Guo, X Huang, YS Wu, DH Liu, HL Lu, YC Kim, WX Xu: Down-regulation of hydrogen sulfide biosynthesis accompanies murine interstitial cells of Cajal dysfunction in partial ileal obstruction. *PLoS One* 7, e48249 (2012)
- 71. L Zhang, C Pan, B Yang, Y Xiao, B Yu: Enhanced expression of cystathionine β -synthase and cystathionine γ -lyase during acute cholecystitis-induced gallbladder inflammation. *PLoS One* 8, e82711 (2013)
- 72. ZW Lee, J Zhou, CS Chen, Y Zhao, CH Tan, L Li, PK Moore, LW Deng: The slow-releasing hydrogen sulfide donor, GYY4137, exhibits novel anti-cancer effects *in vitro* and *in vivo*. *PLoS One* 6, e21077 (2011)
- 73. K Ma, Y Liu, Q Zhu, CH Liu, JL Duan, BK Tan, YZ Zhu: H₂S donor, S-propargyl-cysteine, increases CSE in SGC-7901 and cancer-induced mice: evidence for a novel

- anti-cancer effect of endogenous H₂S? *PLoS One* 6, e20525 (2011)
- 74. A Orchel, Z Dzierzewicz, B Parfiniewicz, L Weglarz, T Wilczok: Butyrate-induced differentiation of colon cancer cells is PKC and JNK dependent. *Dig Dis Sci* 50, 490-498 (2005)
- 75. Q Cao, L Zhang, G Yang, C Xu, R Wang: Butyratestimulated H₂S production in colon cancer cells. *Antioxid Redox Sign* 12, 1101-1119 (2010)
- 76. C Szabo, C Ransy, K Módis, M Andriamihaja, B Murghes, C Coletta, G Olah, K Yanagi, F Bouillaud: Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. biochemical and physiological mechanisms. *Br J Pharmacol* 171, 2099-2122 (2014)
- 77. CE Klein, B Roberts, J Holcenberg, LM. Glode: Cystathionine metabolism in neuroblastoma. *Cancer* 62, 291-298 (1988)
- 78. E Stone, O Paley, J Hu, B Ekerdt, NK Cheung, G Georgiou: *De novo* engineering of a human cystathionine-γ-lyase for systemic (L)-Methionine depletion cancer therapy. *ACS Chem Biol* 7, 1822-1829 (2012)
- 79. J Sastre, JA Martín, MC Gómez-Cabrera, J Pereda, C Borrás, FV Pallardó, J Viña: Age-associated oxidative damage leads to absence of gamma-cystathionase in over 50% of rat lenses: relevance in cataractogenesis. *Free Radic Biol* Med 38, 575-582 (2005)
- 80. K Nakata, M Kawase, S Ogino, C Kinoshita, H Murata, T Sakaue, K Ogata, S Ohmori: Effects of age on levels of cysteine, glutathione and related enzyme activities in livers of mice and rats and an attempt to replenish hepatic glutathione level of mouse with cysteine derivatives. *Mech Ageing Dev* 90, 195-207 (1996)
- 81. Y Zhang, ZH Tang, Z Ren, SL Qu, MH Liu, LS Liu, ZS Jiang: Hydrogen sulfide, the next potent preventive and therapeutic agent in aging and age-associated diseases. *Mol Cell Biol* 33, 1104-1113 (2013)
- 82. G Zhang, P Wang, G Yang, Q Cao, R Wang: The inhibitory role of hydrogen sulfide in airway hyperresponsiveness and inflammation in a mouse model of asthma. *Am J Pathol* 182, 1188-1195 (2013)
- 83. P Wang, G Zhang, T Wondimu, B Ross, R Wang: Hydrogen sulfide and asthma. *Exp Physiol* 96, 847-852 (2011)
- 84. YH Chen, R Wu, B Geng, YF Qi, PP Wang, WZ Yao, CS Tang: Endogenous hydrogen sulfide reduces airway inflammation and remodeling in a rat model of asthma. *Cytokine* 45,117-123 (2009)
- 85. Y Chen, R Wang: The message in the air: hydrogen sulfide metabolism in chronic respiratory diseases. *Resp Physiol Neurobi* 184, 130-138 (2012)

- 86. W Han, Z Dong, C Dimitropoulou, Y Su: Hydrogen sulfide ameliorates tobacco smoke-induced oxidative stress and emphysema in mice. *Antioxid Redox Sign* 15, 2121-2134 (2011)
- 87. K Wang, S Ahmad, M Cai, J Rennie, T Fujisawa, F Crispi, J Baily, MR Miller, M Cudmore, PW Hadoke, R Wang, E Gratacós, IA Buhimschi, CS Buhimschi, A Ahmed: Dysregulation of hydrogen sulfide producing enzyme cystathionine γ-lyase contributes to maternal hypertension and placental abnormalities in preeclampsia. *Circulation* 127, 2514-2522 (2013)
- 88. T Cindrova-Davies, EA Herrera, Y Niu, J Kingdom, DA Giussani, GJ Burton: Reduced cystathionine γ-lyase and increased miR-21 expression are associated with increased vascular resistance in growth-restricted pregnancies: hydrogen sulfide as a placental vasodilator. *Am J Pathol* 182, 1448-1458 (2013)
- 89. F Talaei, VM van Praag, RH Henning: Hydrogen sulfide restores a normal morphological phenotype in Werner syndrome fibroblasts, attenuates oxidative damage and modulates mTOR pathway. *Pharmacol Res* 74, 34-44 (2013)
- 90. S Fiorucci, L Santucci, E Distrutti: NSAIDs, coxibs, CINOD and H₂S-releasing NSAIDs: what lies beyond the horizon. *Dig Liver Dis* 39, 1043-1051 (2007)
- 91. S Fiorucci, L Santucci: Hydrogen sulfide-based therapies: focus on H₂S releasing NSAIDs. *Inflamm Allergy Drug Targets* 10, 133-140 (2011)
- 92. PF Erickson, IH Maxwell, LJ Su, M Baumann, LM Glode: Sequence of cDNA for rat cystathionine gammalyase and comparison of deduced amino acid sequence with related Escherichia coli enzymes. *Biochem J* 269, 335-340 (1990)
- 93. Y Lu, BF O'Dowd, H Orrego, Y Israel: Cloning and nucleotide sequence of human liver cDNA encoding for cystathionine gamma-lyase. *Biochem Bioph Res Commu* 189, 749-758 (1992)
- 94. PT Ngo, JK Kim, H Kim, J Jung, YJ Ahn, JG Kim, BM Lee, HW Kang, LW Kang: Expression, crystallization and preliminary X-ray crystallographic analysis of XometC, a cystathionine gamma-lyase-like protein from Xanthomonas oryzae pv. oryzae. *Acta Crystallogr Sect F Struct Biol Cryst Commun* 64, 750-753 (2008)
- 95. W Zhu, A Lin, R Banerjee: Kinetic properties of polymorphic variants and pathogenic mutants in human cystathionine gamma-lyase. *Biochemistry* 47, 6226-6232 (2008)
- 96. NQ Tran, DL Crowe: Regulation of the human involucrin gene promoter by co-activator proteins. *Biochem J* 381, 267-273 (2004)

- 97. I Ishii, N Akahoshi, XN Yu, Y Kobayashi, K Namekata, G Komaki, H Kimura: Murine cystathionine gamma-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. *Biochem J* 381, 113-123 (2004)
- 98. P Yin, C Zhao, Z Li, C Mei, W Yao, Y Liu, N Li, J Qi, L Wang, Y Shi, S Qiu, J Fan, X Zha: Sp1 is involved in regulation of cystathionine γ-lyase gene expression and biological function by PI3K /Akt pathway in human hepatocellular carcinoma cell lines. *Cell Signal* 24, 1229-1240 (2012)
- 99. S Taniguchi, T Kimura, T Umeki, Y Kimura, H Kimura, I Ishii, N Itoh, Y Naito, H Yamamoto, I Niki: Protein phosphorylation involved in the gene expression of the hydrogen sulphide producing enzyme cystathionine γ -lyase in the pancreatic β -cell. *Mol Cell Endocrinol* 350, 31-38 (2012)
- 100. M. Wang, Z. Guo, S Wang: Cystathionine gamma-lyase expression is regulated by exogenous hydrogen peroxide in the mammalian cells. *Gene Expr* 15, 235-241(2012)
- 101. JA Martín, J Pereda, I Martínez-López, R Escrig, V Miralles, FV Pallardó, JR Viña, M Vento, J Viña, J Sastre: Oxidative stress as a signal to up-regulate gamma-cystathionase in the fetal-to-neonatal transition in rats. *Cell Mol Biol (Noisy-le-grand)* 53 Suppl: OL1010-1017 (2007)
- 102. P Shelton, AK Jaiswal: The transcription factor NF-E2-related factor 2 (Nrf2): a protooncogene? *FASEB J* 27, 414-423 (2013)
- 103. JM Hourihan, JG Kenna, JD Hayes: The gasotransmitter hydrogen sulfide induces nrf2-target genes by inactivating the keap1 ubiquitin ligase substrate adaptor through formation of a disulfide bond between cys-226 and cys-613. *Antioxid Redox Sign* 19, 465-481(2013)
- 104. MI Hassan, M Boosen, L Schaefer, J Kozlowska, F Eisel, A von Knethen, M Beck, RA Hemeida, MA El-Moselhy, FM Hamada, KF Beck, J Pfeilschifter: Platelet-derived growth factor-BB induces cystathionine γ-lyase expression in rat mesangial cells via a redox-dependent mechanism. *Br J Pharmacol* 166, 2231-2242 (2012)
- 105. JG Dickhout, RE Carlisle, DE Jerome, Z Mohammed-Ali, H Jiang, G Yang, S Mani, SK Garg, R Banerjee, RJ Kaufman, KN Maclean, R Wang, RC Austin: Integrated stress response modulates cellular redox state via induction of cystathionine γ-lyase: cross-talk between integrated stress response and thiol metabolism. *J Biol Chem* 287, 7603-7614 (2012)
- 106. M Wang, Z Guo, S Wang: The effect of certain conditions in the regulation of cystathionine γ -lyase by exogenous hydrogen sulfide in mammalian cells. *Biochem Genet* 51, 503-513 (2013)
- 107. BS Reveal, JV Paietta: Analysis of the sulfur-regulated control of the cystathionine γ -lyase gene of Neurospora crassa. *BMC Res Notes* 5, 339 (2012)

- 108. S Srinivasan, ST Selvan, G Archunan, B Gulyas, P Padmanabhan: MicroRNAs -the next generation therapeutic targets in human diseases. *Theranostics* 3, 930-942 (2013)
- 109. S Maciotta, M Meregalli, Y Torrente: The involvement of microRNAs in neurodegenerative diseases. *Front Cell Neurosci* 7, 265 (2013)
- 110. G Yang, Y Pei, Q Cao, R Wang: MicroRNA-21 represses human cystathionine gamma-lyase expression by targeting at specificity protein-1 in smooth muscle cells. *J Cell Physiol* 227, 3192-3200 (2012)
- 111. YQ Shen, YZ Zhu: p56 MiRNA-30 regulates the production of endogenous H₂S by Cystathionine gamma-lyase (CSE) in primary cardiac myocytes. *Nitric Oxide* 27, S37 (2012)
- 112. YQ Shen, YZ Zhu: Inhibitors of MiRNA-30 family protected the hypoxia-induced injury on cardiac myocytes via increasing the expression of CSE. Heart 98, E24-E25 (2012)
- 113. B Renga: Hydrogen sulfide generation in mammals: the molecular biology of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). Inflamm Allergy Drug Targets 10, 85-91 (2011)
- 114. Q Sun, R Collins, S Huang, L Holmberg-Schiavone, GS Anand, CH Tan, S van-den-Berg, LW Deng, PK Moore, T Karlberg, J Sivaraman: Structural basis for the inhibition mechanism of human cystathionine gamma-lyase, an enzyme responsible for the production of H2S. J Biol Chem 284, 3076-3085 (2009)
- 115. S Huang, JH Chua, WS Yew, J Sivaraman, PK Moore, CH Tan, LW Deng: Site-directed mutagenesis on human cystathionine-gamma-lyase reveals insights into the modulation of H2S production. J Mol Biol 396, 708-718 (2010)
- 116. M Bucci, V Mirone, A Di Lorenzo, V Vellecco, F Roviezzo, V Brancaleone, I Ciro, G Cirino: Hydrogen sulphide is involved in testosterone vascular effect. *Eur Urol* 56, 378-383 (2009)
- 117. XY Zhu, SJ Liu, YJ Liu, S Wang, X Ni: Glucocorticoids suppress cystathionine gamma-lyase expression and H₂S production in lipopolysaccharide-treated macrophages. *Cell Mol Life Sci* 67, 1119-1132 (2010)
- 118. E Łowicka, J Bełtowski: Hydrogen sulfide (H₂S) the third gas of interest for pharmacologists. *Pharmacol Rep* 59:4-24 (2007)
- 119. G Wójcicka, A Jamroz-Wiśniewska, P Atanasova, GN Chaldakov, B Chylińska-Kula, J Bełtowski: Differential effects of statins on endogenous H₂S formation in perivascular adipose tissue. *Pharmacol Res* 63:68-76 (2011)

- 120. Y Mikami, N Shibuya, Y Ogasawara, H Kimura: Hydrogen sulfide is produced by cystathionine γ-lyase at the steady-state low intracellular Ca(2+) concentrations. *Biochem Biophys Res Commun* 431, 131-135 (2013)
- 121. YF Wang, L Shi, JB. Du, CS Tang. Impact of Larginine on hydrogen sulfide /cystathionine-gamma-lyase pathway in rats with high blood flow-induced pulmonary hypertension. *Biochem Biophys Res Commun* 345, 851-857 (2006)
- 122. TT Pan, ZN Feng, SW Lee, PK Moore, JS Bian: Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes. *J Mol Cell Cardiol* 40, 119-130 (2006)
- 123. F Anuar, M Whiteman, JL Siau, SE Kwong, M Bhatia, PK Moore: Nitric oxide-releasing flurbiprofen reduces formation of proinflammatory hydrogen sulfide in lipopolysaccharide-treated rat. *Br J Pharmacol* 147, 966-974 (2006)
- 124. HF Jin, JB Du, XH Li, YF Wang, YF Liang, CS Tang: Interaction between hydrogen sulfide /cystathionine gamma-lyase and carbon monoxide/heme oxygenase pathways in aortic smooth muscle cells. *Acta Pharmacol Sin* 27, 1561-1566 (2006)
- 125. SQ Yu, RX Zhang, JQ Chen, YJ Chen, ZQ Yan, GP Wu, YS Wang, CS Zhu: Mechanism of endogenous carbon monoxide effect on hydrogen sulfide in guinea pigs with established allergic rhinitis. *Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi* 44, 407-411 (2009) in Chinese.
- 126. C Steegborn, T Clausen, P Sondermann, U Jacob, M Worbs, S Marinkovic, R Huber, MC Wahl: Kinetics and inhibition of recombinant human cystathionine gammalyase. Toward the rational control of transsulfuration. *J Biol Chem* 274, 12675-12684 (1999)
- 127. A Asimakopoulou, P Panopoulos, CT Chasapis, C Coletta, Z Zhou, G Cirino, A Giannis, C Szabo, GA Spyroulias, A Papapetropoulos: Selectivity of commonly used pharmacological inhibitors for cystathionine beta synthase (CBS) and cystathionine gamma lyase (CSE). *Br J Pharmacol* 169, 922-932 (2013)
- 128. K Kang, M Zhao, H Jiang, G Tan, S Pan, X Sun: Role of hydrogen sulfide in hepatic ischemia-reperfusion-induced injury in rats. *Liver Transpl* 15, 1306-1314 (2009)
- 129. P Tripatara, NS Patel, V Brancaleone, D Renshaw, J Rocha, B Sepodes, H Mota-Filipe, M Perretti, C Thiemermann: Characterisation of cystathionine gammalyase /hydrogen sulphide pathway in ischaemia/reperfusion injury of the mouse kidney: an *in vivo* study. *Eur J Pharmacol* 606, 205-209 (2009)
- 130. SJ Park, TH Kim, SH Lee, HY Ryu, KH Hong, JY Jung, GH. Hwang, SH Lee: Expression levels of

- endogenous hydrogen sulfide are altered in patients with allergic rhinitis. *Laryngoscope* 123, 557-563 (2013)
- 131. Y Pan, D Yuan, J Zhang, C Shao: Cadmium induced radioadaptive response via an ATM-independent H(2)S /cystathionine γ -lyase modulation. *Mutat Res* 707, 67-73 (2011)
- 132. G Tan, S Pan, J Li, X Dong, K Kang, M Zhao, X Jiang, JR Kanwar, H Qiao, H Jiang, X Sun: Hydrogen sulfide attenuates carbon tetrachloride-induced hepatotoxicity, liver cirrhosis and portal hypertension in rats. *PLoS One* 6, e25943 (2011)
- 133. M Bhatia, FL Wong, D Fu, HY Lau, SM Moochhala, PK Moore: Role of hydrogen sulfide in acute pancreatitis and associated lung injury. *FASEB J* 19, 623-625 (2005)
- 134. J Zhang, SW Sio, S Moochhala, M Bhatia: Role of hydrogen sulfide in severe burn injury-induced inflammation in mice. *Mol Med* 16, 417-424 (2010)
- 135. YH Chen, R Wu, B Geng, YF Qi, PP Wang, WZ Yao, CS Tang: Endogenous hydrogen sulfide reduces airway inflammation and remodeling in a rat model of asthma. *Cytokine* 45, 117-123 (2009)
- 136. R Wu, WZ Yao, YH Chen, B Geng, CS Tang: Plasma level of endogenous hydrogen sulfide in patients with acute asthma. *Beijing Da Xue Xue Bao* 40, 505-508 (2008) in Chinese
- 137. N Tyagi, S Givvimani, N Qipshidze, S Kundu, S Kapoor, JC Vacek, SC Tyagi: Hydrogen sulfide mitigates matrix metalloproteinase-9 activity and neurovascular permeability in hyperhomocysteinemic mice. *Neurochem Int* 56, 301-307 (2010)
- 138. W Hua, J Jiang, X Rong, R Wu, H Qiu, Y Zhang, Q Chen: The dual role of the cystathionine gamma-lyase /hydrogen sulfide pathway in CVB3-induced myocarditis in mice. *Biochem Bioph Res Commun* 388, 595-600 (2009)
- 139. I Hirata, Y Naito, T Takagi, K Mizushima, T Suzuki, T Omatsu, O Handa, H Ichikawa, H Ueda, T Yoshikawa: Endogenous hydrogen sulfide is an anti-inflammatory molecule in dextran sodium sulfate-induced colitis in mice. *Dig Dis Sci* 56, 1379-1386 (2011)
- 140. X Guo, X Huang, YS Wu, DH Liu, HL Lu, YC Kim, WX Xu: Down-regulation of hydrogen sulfide biosynthesis accompanies murine interstitial cells of Cajal dysfunction in partial ileal obstruction. *PLoS One* 7, e48249 (2012)
- **Abbreviations**: 3-MPST, 3-mercaptosulfurtransferase; ATF4, activating transcription factor 4; CBS, cystathionine beta-synthase; CHIP, chromatin immunoprecipitation; CSE, cystathionine gamma-lyase; H₂S, hydrogen sulfide;

Regulation of CSE/H2S system

HO-1, heme oxygenase-1; I/R, ischemia-reperfusion; LPS, lipopolysaccharide; miRs; microRNAs; NO, nitric oxide; OVA, ovalbumin; PLP, pyridoxal 5'-phosphate; PPG, DL-propargylglycine; siRNA, short interfering RNA; SMCs, smooth muscle cells; Sp1, specificity protein-1; STZ, streptozotocin

Key Words: Hydrogen sulfide, Cystathionine gammalyase, Transcriptional regulation; Post-translational modification, Disease

Send correspondence to: Guangdong Yang, The School of Kinesiology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, Canada P7B 5E1, Tel: 807-346-7937, Fax: 807-346-7873, E-mail: gyang@lakeheadu.ca