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1. ABSTRACT

In recent years, there has been a great upsurge in
the application of data clustering, statistical classification,
and related machine learning techniques to the field of
molecular biology, in particular analysis of DNA
microarray expression data. Clustering methods can be
used to group co-expressed genes, shedding light on gene
function and co-regulation. Alternatively, they can group
samples or conditions to identify phenotypical groups,
disease subgroups, or to help identify disease pathways. A
rich variety of unsupervised techniques have been applied,
including partitional, hierarchical, graph-based, model-
based, and biclustering methods. While a number of
machine learning problems and tools have found
mainstream applications in bioinformatics, in this article we
identify some challenging problems which, though clearly
relevant to bioinformatics, have not been extensively
investigated in this domain. These include 1) unsupervised
clustering with unsupervised feature selection, ii)
semisupervised learning, iii) unsupervised learning (and
supervised learning) in the presence of confounding
variables, and iv) stability of clustering solutions. We
review recent methods which address these problems and
take the position that these methods are well-suited to
addressing some common scenarios that occur in
bioinformatics.
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2. INTRODUCTION

In recent years, unsupervised -clustering,
statistical classification, feature selection, and related
machine learning techniques have found an increasingly
influential role in bioinformatics, as evidenced by the large
number of papers involving these topics which are
appearing in journals such as Bioinformatics, a number of
recent books (37), research compendia (28), and
commercialization efforts. While supervised classification
plays an important role, this paper will focus primarily on
unsupervised learning methods, as well as hybrid
(semisupervised) techniques. Clustering methods can be
used to identify co-expressed genes, shedding light on gene
function and co-regulation. Alternatively, they can group
samples or conditions in order to identify phenotypical
groups, sub-groups of a disease, patient sub-groups that
respond to drug treatment in different ways, or to segment
time course data for disease pathway analysis. Some
examples of clustering techniques applied to bioinformatics
include e.g. (2),(66),(19). Clustering methods have also
been applied to computer-aided diagnosis, e.g. (61). A
variety of clustering methods have been applied in these
contexts, including partitional, hierarchical, graph-based,
model-based, and biclustering techniques. There are several
excellent recent surveys of clustering methods (64),
clustering applied to gene expression data (28), and
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biclustering methods (36). This paper aims to be
complementary to these articles, covering several machine
learning issues with, we argue, high relevance to
bioinformatics, and yet which have not been extensively
addressed in past studies. These include i) unsupervised
clustering with unsupervised feature selection, ii)
semisupervised learning, iii) unsupervised learning (and
supervised learning) in the presence of confounding
variables, and iv) stability of clustering solutions. We next
identify these problems, review existing work, and in some
cases propose new approaches.

3. UNSUPERVISED CLUSTERING WITH
INTEGRATED FEATURE AND ORDER
SELECTION

3.1. Introduction

Microarray expression data sets consist of the
simultaneous measurement of expression levels for
thousands (as many as tens of thousands) of genes, for each
tissue sample in an experimental study. The samples may
come from different patients. Alternatively, they may come
from the same patient but under different experimental
conditions. Consider the objective of clustering samples (or
conditions). In a typical study, there may be less than a
hundred samples. Thus, this problem amounts to clustering
a very sparse data sample, within a very high-dimensional
space. This is a nontrivial problem even if both the number
of groups in the data (e.g. (disease present, disease absent))
and the relevant gene feature subspace (consisting of the
genes that are most characteristic of particular groups and
those most discriminating between groups) are known.
Even given this information, there is the difficult choice of
clustering dissimilarity measure (equivalently, the choice of
parametric statistical form for a mixture model/model-
based clustering solution (3)) and the challenging nature of
clustering as an optimization problem (27), with sensitivity
to parameter initialization for local optimization methods
and high complexity for global optimization methods.
These aspects are hurdles to achieving accurate, effective
solutions. However, in the most general unsupervised
setting (and in many practical bioinformatics contexts), the
number of clusters and the relevant gene subspace are both
unknown and need to be estimated in an unsupervised
fashion, jointly with the (accurate) partitioning of the data
samples into groups. This is an extremely challenging
version of the clustering problem, and yet one which has
been assailed by several recent methods, as will be
reviewed in the next section.

3.2. Review of recent methods

Most approaches to unsupervised clustering and
feature selection perform some type of alternating
optimizations, with clustering performed given selected
features and then, alternately, with feature selection treated
as a supervised problem, to maximize some measure of
discrimination between the (current) clusters treated as
classes. The general notion behind these methods is that
removing noisy features should improve clustering
accuracy and cluster separation which, in turn, should make
it easier to find “clean" features that well-discriminate these
clusters. Thus, both clustering and estimated gene space
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accuracy should tend to improve with the successive
optimizations.

Some early approaches were in fact developed
specifically for microarray data. In (62), the authors first
chose an initial set of genes based on their individual power
to discriminate components in a two-component Gaussian
mixture model for the data. They then alternately
performed graph-based clustering and feature filtering
steps, with the latter based on a supervised selection
criterion and on a Markov model, with (redundant) genes
rejected if they fall in the “Markov blanket" of other genes.
In (54), the authors first clustered in the gene dimension,
forming k gene subspaces from the gene clusters. For each
subspace, they then partitioned the samples into two
clusters. They then defined “cross-product” groups, i.e. sets
of samples which all fall in cluster i in gene space 1 and

cluster j in gene space 2 Vi, J . There are 2¥ such sample

groups, denoted C,C,...,.C e mutually exclusive and

collectively exhaustive of the samples. They then further
pooled selective pairs of cross-product groups to form
“heterogeneous” groups — these are pairs of cross-product
groups whose cluster labels are different from each other,
for every gene subspace. Thus, a heterogeneous group is a
set of samples that is well-discriminated into two distinct
groups, for each gene subspace. Heterogeneous groups were
used to guide gene selection — each gene’s vector across
samples was correlated with a representative vector from a
heterogeneous group. Essentially, the genes most highly
correlated with the group were retained and the remainder
discarded. This sequence of steps represents one iteration of
the method. The next iteration begins again with gene
clustering (starting from the now reduced set of genes). (54)
only addressed clustering samples into 2 groups.

There are several disadvantages to the
aforementioned methods. First, neither method solves the
sample clustering and feature selection tasks in a way that
is consistent with minimization of a common objective
function. Thus, there is no mathematically well-defined
sense of convergence for these methods and also no
reference objective function for assessing solution quality
(except for comparison to ground-truth biological
knowledge (if available) on the groups and relevant genes).
Second, these methods do not estimate the number of
clusters in the data — this must be known a priori or set by
the user. Third, both methods require the (user-subjective)
choice of threshold parameter values. These values will
certainly affect the results — e.g., (54) uses a threshold to
control the number of retained genes. Finally, both methods
are greedy in the sense that each iteration further reduces
the number of genes, with no ability to “resurrect" a
rejected gene in subsequent iterations, even if the current
clustering would warrant this gene’s reinclusion. Recently,
several new methods have been proposed from within the
machine learning community which address some of the
aforementioned shortcomings. These methods are next
described.

There are three basic strategies in the literature
for combined clustering and feature selection. The simplest
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Figure 1. BIC curve for a naive Bayes mixture applied to
Reuters text documents. Note that the predicted (minimum
BIC) order is one component, a grossly inaccurate estimate
for this data set with 22 topics.

(but in principle the least accurate) is to first perform front-
end dimensionality reduction and then cluster in a now
(vastly) reduced feature space. For example, in the text
domain, (35) used a singular value decomposition (SVD) to
first reduce from thousands down to 20 features. However,
the choice of 20 features was author-selected and appears
somewhat arbitrary. Moreover, principal component
analysis (PCA) and related approaches are optimal with
respect to minimum mean-squared error approximation of
the original data, but may not best preserve group
discriminability. Clearly, it should be better to choose
features given knowledge of the clusters being sought,
rather than “blind" feature selection. Finally, use of
PCA/SVD for dimensionality reduction maps the data to a
new space. Thus, some interpretability in the original space
is lost — in our case, information on which genes are truly
relevant to a given cluster may be obscured by this process.

A second strategy is wrapper-based, wherein one
generates numerous clustering solutions, for different
candidate feature subspaces (which may be chosen either
randomly or through some directed search), with all
solutions compared with respect to a common clustering
fitness function. One such approach is (18), which used
greedy forward search for feature selection, EM for mixture
learning, and a clever “cross-projection” criterion that
allows “level playing field" comparison between clustering
solutions defined on different feature spaces. The wrapper-
based advantage over the previously mentioned methods is
that now there is a common criterion for assessing the
clustering solutions (and also, thus, for guiding the search
for solutions). However, the set of possible feature spaces
is vast — if each cluster uses the same feature space, there
are 2” possible spaces, with D the number of dimensions
(genes). Greedy forward or backward feature selection
methods will search a very small portion of this set and are
likely to find quite suboptimal solutions. Random selection
likewise will require generation of a vast number of
candidates, with clustering needing to be performed and
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fitness evaluated for each one, to find good solutions. This
may entail vast (and impractical) computational
complexity. Moreover, the choice of the number of clusters
further greatly expands the search space (and requires
model order selection criteria that are effective for high-
dimensional data, as next discussed).

A final approach is developed from the viewpoint
that feature selection is simply another facet of model
selection, along with choosing the number of components
(model order). Order selection is often performed using
statistical penalty functions such as minimum description
length/Bayesian Information Criterion (BIC) (45). BIC is
defined as follows:

BIC(M):®(2wlogN—log Ply|0(M)] )

where X = {x; i=1, ..., N} is the data set, N the number of
samples, M the model order, ®(M) the parameter set at this
order (whose values specify a parametric statistical model),
and |-| the number of free parameters in the set. The first
term in BIC penalizes complex models while the second
(log-likelihood) indicates how well the model explains the
data. In (22),(23) the question was raised of whether one
can jointly optimize all parts of the solution — the selected
features, the number of components, and the sample
partitioning — with respect to a single objective function,
this model penalty function. Criteria such as BIC, which
involve a data fitness term and a model complexity term,
seek the order that can be supported by the given (finite)
amount of data. Why should the same principle not also be
applicable to the choice of features? There are several
recent works which follow a related strategy (5),(34),(23).
The first two, however, were not intended for high-
dimensional data — (5) only considered D = 10 and (34)
only tried D up to 47. We will focus on (23), which was
motivated particularly by the high-dimensional text
document domain and which developed a suitable model.

(23) considered “naive Bayes" mixtures (diagonal
covariances in the Gaussian case). In such models, there are
k parameters per dimension (k£ = 2 in the Gaussian case) for
each component in the model. In a text document database
with 2000 articles and ~ 10,000 data (word) dimensions
(and 20 ground-truth components/topics), this amounts to
more than 200,000 parameters for only 2000 data points'.
Standard application of BIC in this case will grossly
underestimate the model order because the model
complexity cost of each additional component is too high,
relative to its benefit to the log-likelihood. An example
from (23) is shown in Figure 1 where the BIC-estimated
order is one (component), even though there are 22 ground-
truth topics. The situation is even worse for microarray
data, where the dimensionality is similar but the number of
data points is at least an order of magnitude smaller in most
studies. As explained in (23), the fundamental problem here
is not the criterion, BIC. It is the fact that there are
insufficient degrees of freedom in the naive Bayes mixture
for trading data fitness for reduced complexity. (23)
proposed structured naive Bayes mixtures that allow
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Figure 2. BIC curves for several variants of naive Bayes
mixtures applied to Reuters text documents. The best
approach, from (3), gives each component flexibility in the
choice of its feature space and optimizes all model
parameters. This method estimates a model order of 25
components for this 22 topic data set.

sharing of parameters components, i.e. the
likelihood model:
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Here, P[x0;Jand P[x,|6,] are component-specific and
shared distributions, respectively, with vy {0, 1}a binary
switch variable, where

Vie= {0 if component juses a shared model for x,

1if component juses a tailored model for x,

These variables specify the informative features for each
component. We emphasize these variables are model
parameters that need to be learned. In the text domain,
these variables determine topic-specific keywords and for
microarrays they determine the “informative” genes for
each cluster, j. This type of “parsimonious” mixture was
previously introduced in (24). A crucial aspect is an
efficient method for coding the model parameters, which
was developed and described in (23).

In (23) it was proposed to directly minimize BIC
in determining all parts of this model — the order M, the
component parameters, the switching variables, and the
data partitioning. All of this was done in a purely
unsupervised fashion. There are several benefits to this
model. First, it offers large flexibility in trading off model
fitness for complexity — the {v;} switches are additional
parameters, but they allow sharing distribution parameters
across multiple components, which can greatly reduce the
number of model parameters and thus the model
complexity. If a component does not use a shared model for
a given feature, we say the feature is “informative" for the
given component. As the number of “informative" features
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are reduced, more components can be supported by the
limited data and, thus, accurate model order selection can
be achieved using BIC, even on huge feature spaces. An
example from (23) is shown in Figure 2 where optimizing
BIC for various model orders yields an optimal model at
order 25 for a document data set with 22 ground-truth
topics. Order 25 is also best in a generalization (test set
likelihood) sense. Even though D =10,000 in this case, the
total number of “informative" features is only ~ 500. Thus,
choosing the model to minimize BIC yields a sparse set of
informative features. This is suggestive, for microarrays, of
finding a sparse set of informative genes associated with a
disease group. In addition to facilitating accurate cluster
number estimation (and accurate data partitioning (23)) in high
dimensions, the model in (23) is also interesting in that each
component/cluster has its own set of informative features, i.e.
its own feature space. Most methods tie the feature
space across all the clusters. However, for example,
individual genes may only be relevant to a subset of
disease groups/clusters. This is captured by the model
in (23). In Figure 2, it can be seen that tying the
feature space across components performs poorly,
underestimating the number of topics in the data.
Allowing a customized “informative feature space”
for each component is more efficient in allocating the
model complexity across components and gives much
better results. This flexibility in defining the feature
space for each component is related to the
representation capability of biclustering — note that
biclusters are defined by subsets of genes and subsets
of conditions (36). The mixture model in (23)
likewise captures a subset of conditions/samples
within a cluster that is defined over a customized
informative gene subset. Unlike many biclustering
methods, though, (23) postulates a stochastic
generation model for the data array. Moreover, based
on optimization of BIC, this method gives a
statistically principled approach (and accurate
approach for the text domain (23)) for estimating the
number of clusters.

The mixtures in (23) are learned via a generalized
EM algorithm, embedded within a model order reduction
procedure, which directly minimizes BIC at each order.
Thus, the solution is locally optimal with respect to BIC. At
each order, within the optimization, both switch values are
evaluated (multiple times) for each gene — thus,
“uninformative” genes can switch to “informative”, or vice
versa, for a given cluster (unlike the greedy methods, which
solely shrink the “current” feature space). This method was
tested and demonstrated favorably against several other
unsupervised techniques such as (34),(56),(51) on UC
Irvine Machine Learning data sets and on text. We believe
this approach should be useful for microarray data. One
limitation, however, is the naive Bayes (component-
conditional feature independence) assumption. Given a
solution for the Gaussian case and its associated data
partition, one can estimate (nondiagonal) covariances and
change the model to include these correlation terms.
However, this new solution will increase model complexity
and could increase the BIC cost.
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Figure 3. An example of coarse-to-fine data partitioning
obtained using VISDA.

4. SEMISUPERVISED CLUSTERING

4.1. Introduction

In some cases, the data set may contain some
partial class information which, while insufficient to allow
the learning problem to be treated as supervised
classification, can still help to “guide” clustering solutions,
so as to be most relevant to the ground truth classes present
in the data. One possibility is that the class of origin may be
known for a labeled subset of the training set, e.g.
(46),(40). Parameter estimation based on unlabeled data, in
addition to labeled samples, can in some cases improve the
accuracy of class-conditional models that will be used in a
pseudo-Bayes classification rule. However, there is a
cautionary tale here (14). There are also purely
“discriminative” learning methods for building classifiers
while trying to make use of mixed labeled/unlabeled data
e.g. (9),(11). Another point of view developed in (38) is
that the labeled data can be effectively used to “label” the
learned clusters, identifying the subset of clusters that
contain known content (i.e., clusters which own at least
some labeled data, in addition to possibly owning unlabeled
samples). Clusters that do not contain any labeled samples,
by contrast, may contain novel content, i.e. heretofore
“unknown” classes. A semisupervised class discovery
procedure was thus defined, which identifies putative
unknown classes (purely unlabeled clusters in the data)
relative to the existing, known classes in the data (38). In
principle, this approach could be used to identify new
subtypes of a disease — in a semisupervised patient sample
where all patients are known to be sick, but with only a
subset labeled by accurate disease diagnosis, learned
compact clusters of samples that are strictly unlabeled may
be taken as putative new disease subtypes (with this
tentative hypothesis tested through further analysis). While
there has been some investigation of related ideas on
biological data (50), semisupervised class discovery has not
been substantially investigated in the biological domain.

Another case of significant interest in biosciences
is wherein there is partial supervision in the form of user
interaction to guide the search for grouping structure in the
data. One such approach, known as visual and statistical
data analyzer (VISDA), was developed in (59). This is a
top-down, hierarchical, soft (mixture-based) clustering
scheme that, at each level of the hierarchy, linearly maps
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the (high-dimensional) clusters at the current level to a 2-D
subspace. This allows users both to visualize the current
clusters and to assist accurate estimation of the number of
sub-groups (and their initial centroids) for clustering at the
next level of the hierarchy. The EM algorithm is applied to
optimize the clustering at each level, with the minimum
description length criterion, along with user interaction,
used to estimate the number of clusters. Both the

hierarchical nature of this clustering and the user
interaction, which allows coarse-to-fine structure
exploration, have obvious appeal for bioscience

applications. While user interaction is one form of “partial
supervision”, VISDA also has a semisupervised mode
wherein there is label knowledge for some samples. The
labels are represented by color-coding the samples in the 2-
D visualization space. This can further assist accurate sub-
clustering at the next level. VISDA has recently been
adopted as a standard data analysis tool by the National
Cancer Institute, as part of the caBIG initiative (60). An
example of (visualizable) top-down clustering of high-
dimensional data obtained by VISDA is shown in Figure 3.
An application of VISDA to create a pathologically
plausible hierarchy of thirteen distinct muscular dystrophy
phenotypes was reported in (68). The learned class
hierarchy is shown in Figure 4.

Also relevant to molecular biology is the case
where supervising class labels are not available but where,
instead, there may be a set of must-link (ML) and cannot-
link (CL) constraints, each indicating a pair of samples that,
respectively, should or should not be assigned to the same
group (58). For example, for gene clustering, it may be
known that a particular pair of genes is involved in the
same biological function (and hence should belong to the
same cluster or class). It may likewise be known that
certain pairs of genes should rot belong to the same cluster.
For clustering expression profile samples, it may be known,
e.g. using supplementary measurement modalities other
than gene expression such as radiological images or DNA
sequence motifs, that a pair of samples should (should not)
belong to the same group. Some related work applied to
gene expression data is (41), where knowledge of a
common function for a subset of the genes was
incorporated, for gene clustering, via a tied mixture model,
wherein all genes in the subset use the same mixture priors
in associating to the mixture components (clusters) in the
model. This approach represents a particular method for
“soft" imposition of constraint knowledge while peforming
clustering and it imposes “must-link” information only.
More generally, one can incorporate both must-links and
cannot-links. In general, these constraints can help to
overcome cluster initialization sensitivity, suboptimality in
the choice of the clustering distortion metric (e.g., they may
be used to learn this metric (63)), and as will be discussed,
they can even help to estimate the number of classes in the
data. Several such methods are next reviewed in more
detail.

4.2. Review of recent methods

Constraint information could be elicited from
domain experts via on-line interactive databases, where
(multiple) users/experts may specify must-links and cannot-
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Figure 4. A pathologically plausible tree hierarchy for 13
muscular dystrophy phenotypes obtained using VISDA.

links for given (or user-selected) pairs of examples. In this
setting, it may be more appropriate to specify must-link and
cannot-link information, rather than class labels, because users
(even experts on a given domain) may not agree on the number
of classes, class names, or even defining class attributes.
Constraints can be solicited without even explicitly agreeing
on class definitions or on the number of classes. A number of
prior works address clustering with constraints. (58) develops a
variant of K-means that enforces the learned clusters to be
consistent with the given constraints. (49) introduced
constraints within graph-based clustering applied to image
segmentation. (31) developed an approach suitable for
hierarchical clustering. (48) incorporates hard constraints
within mixture model-based clustering. In recent work (67), a
new approach was proposed for learning Gaussian mixtures
while agreeing with ML and CL constraints. This approach
differs from prior works in several respects. First, prior
works do not make a distinction between clusters and
classes. In these works, e.g. (58),(48), the individual
clusters are treated as distinct classes, to be learned
consistent with the specified ML and CL constraints.
However, some individual classes may not be accurately
modeled by a single cluster — they may require multiple
clusters, i.e. a mixture, for their accurate representation.
An illustrative example is shown in Figure 5. Whether
or not this is the case depends on the feature space, the
chosen distortion metric, and on the class definitions, i.e.
whether they are very narrowly or broadly defined. In the
latter case, we would expect multiple clusters to be helpful
for modeling some classes. Learning the metric (4),(63)
may mitigate model bias associated with assuming one
cluster per class. However, multiple clusters will still afford
greater flexibility. Second, most prior works assume the
number of clusters (and hence the number of classes) is
known. In (67), neither the number of clusters nor the
number of classes need to be assumed known — the cluster
number is estimated via a model selection criterion (BIC),
with the class cardinality first upper-bounded by the
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estimated number of clusters, and then estimated as a
byproduct of the learning, so as to satisfy the constraints.

4.3. Formulation

Suppose there are K clusters in the data,
belonging to (at most) L, classes, with K > L. Let the
matrix [Cj] specify the constraint information, where Cj
€ {—1,1,0} indicating, respectively, that samples i and j are
must-linked, cannot-linked, or without a constraint. We can
then compose a clustering cost function (complete,
penalized negative data log-likelihood) that embodies both
fitting the data and satisfying the constraints (67):

MV, log[akﬂl\kf(x[ |6, )]+
= (3)

6 o)

where M, e {0,1} indicates whether sample i belongs to
cluster/component &, ¥y, € 0,1} indicates whether or not
component k (M) belongs to class / (C)), a; is component
k’s mass, f{(*|6;) is k’s density, based on its parameter set 0;,
and where Py > 0 is a constraint violation penalty. The
probability mass function (PMF) {f} gives the probability
a given component belongs to each of the classes — these
PMFs start out uniformly distributed but the effect of the
penalty term is to drive them to {0, 1} values. Note that
these PMFs allow more than one component per class, i.e.
whenever ﬁl\k = ﬁl\k’ = 1, k * k. AlSO, ifﬁ”k =0 V k, then
class I’ is not used. L., minus the number of unused
classes gives the estimated class number. (67) identifies
conditions under which the constraint information is
sufficient for uniquely specifying the number of classes in
the data. An Expectation-Maximization (EM) learning
algorithm (16) that builds in a mean-field approximation is
used to optimize this penalized log-likelihood in learning
the mixture solution.

4.4. Illustrative Experiment

Figures Sa-c give an illustrative example. The
data set is 2-D, consisting of 3 isotropic Gaussian
components (with assumed known variance) and 2 classes,
with one class owning 2 components; 15% of the points
come with (ML or CL) constraints. The method in (48)
assumes one mixture component/cluster per class and
requires specifying the number of classes. This method
learns general covariances for individual components, so
that the cluster shape can be adapted to better satisfy the
given constraints. If this method assumes 2 classes (Figure
Sa), it has difficulty capturing 2 ground truth components
within one of its learned classes/clusters. On the other
hand, if 3 classes are assumed (Figure 5b), ML constraints
within one of the ground truth classes (between 2 ground
truth components) make it difficult to capture the true
cluster structure. In Figure Sc, we show the result of (67),
which allows multiple components per class. The proper
number of mixture components (three) is accurately
estimated via BIC applied to a mixture first learned without
using the constraint information. We then allowed a
maximum number of 3 classes and applied the EM
algorithm with mean-field approximation to minimize the
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Figure 5. Mixture model solutions (given constraint
information) for (48) assuming 2 classes (a)) and 3 classes
(b)) and for the approach from (67) (c)), which directly
estimates 2 classes in the data.

penalized likelihood (3). The optimization chose f3,=0, k=
1,2,3. Thus, the method accurately estimated the true
number of classes as two. The method also gave superior
mixture model fitting, as seen from Figure 5c. More
comprehensive experimental results are given in (67).
There, a semisupervised class discovery approach,
analogous to (38), was also proposed for the case where
supervision consists of constraints — in this case, a learned
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cluster that does not own any samples that possess
constraint information is treated as a putative new class.

5. CLUSTERING IN THE PRESENCE OF
CONFOUNDING VARIABLES

5.1. Introduction

A fundamental assumption in much of the
clustering literature is that there is a single source of
clustering/grouping tendency in the data — e.g., in a medical
patient study, in applying a clustering method one would
expect to discern groups representative of disease
categorization: disease presence, disease absence, and
perhaps disease subtypes. Likewise, in clustering a text
document database, one would expect to reveal the underlying
topics. However, there are other possibilities. One is that there
is no clustering tendency. Another is that there are multiple
sources of clustering tendency for a given data set. In the case
of text documents, one can group by topic or by author (or by
writing style). Several methods have recently been proposed
for successively generating multiple clusterings, exhibiting
nonredundant group structures, from a given data set. The
main perspective in these papers is that there are multiple
informative sources of group tendency and that the desired
structure depends on the user’s application/interest.
However, another point of view which, we argue, has great
relevance for bioinformatics is that some sources of group
structure are attributable to confounding variables,
variables of no interest for the given application but which
do have influence on measured variables. These variables
may be an irrelevant/nuisance source of group structure, as
well as a source of measurement variability/noise.

As one example, in a microarray study involving
e.g. leukemia, the proportion of patients who are smokers
may be unusually high. Smoking may have strong
influence on measured gene responses. Thus, unsupervised
clustering may reveal smoking/nonsmoking, rather than the
disease groups. As another example, multiple institutions
frequently conduct studies on the same diseases, under
similar experimental protocols (same treatment course,
same measured variables). The number of patients in a
single study is generally quite small (from tens to several
hundred) due to high cost/subject availability issues, which
severely limits statistical confidence in hypotheses made on
the basis of learned models. One is thus tempted to pool
data from multiple studies, in order to increase the
statistical power of the sample. However, even given
identical experimental protocols, there are often systematic

differences in equipment and in sample
processing/measurement whose effects on measured
variables may  dwarf those  stemming  from

presence/absence of disease. Thus, clustering such pooled
data may simply split the data by institution, rather than
unearthing the disease structure. Several recent papers have
developed methods which seek to account for confounding
effects while clustering data. We will review some of these
methods shortly and also suggest some alternative
approaches.

While confounding variables present a severe
challenge to unsupervised clustering, wherein the predicted
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(group) variable of interest is unknown and needs to be
“discovered”, they also present a barrier to knowledge
extraction in a supervised classification context, despite the
fact that the predicted variable is in this case known. In
bioinformatics, it is often just as important to identify
biomarkers for disease as it is to build models that
accurately predict disease presence in a patient. Supervised
feature selection techniques, e.g. (32) are often used to
identify the biomarkers as a small subset of the full gene
space (25). However, confounding variables can “deceive”
feature selection algorithms. For example, consider a
patient study where, coincidentally, a high proportion of
patients with leukemia also happen to be smokers 2. If one
simply ignores this possible confounding influence, the
selected biomarkers may be more indicative of the
confounder than of the disease. Clearly, if the confounding
variable is measured, feature selection should try to account
for/correct for its effects in the data. We will discuss
several strategies for achieving this in section 5.3.

5.2. Review of recent methods

Several works in bioinformatics have addressed
how to best combine multiple small batches of microarray
samples collected by different institutions, on different
platforms, or on the same platform but at different times or
using different protocols. In principle, pooling sample
batches to increase the number of data samples can help to
achieve improved accuracy of subsequent unsupervised
clustering or (supervised) statistical classifier design.
Likewise, improved statistical power can be achieved if the
goal, rather than data clustering, is to make inferences on
the individual genes or gene subgroups involved in a
disease process. However, the institution, platform, or
protocol are confounding variables which may introduce
systematic biases in microarray measurements. Several
different approaches have been proposed to “correct”
systematic biases prior to pooling the multiple microarray
sample batches (1),(8),(29). These methods assume that the
different batches represent the same underlying data groups
— either a single population (e.g. a “disease” group) or a
mixture of populations (e.g., a “disease” group and a
“control” group). The premise is thus that marked statistical
differences exhibited by the different sample batches are
primarily attributable to the systematic differences in the
measurement environments associated with each of the
sample batches. The methods in (1),(8), and (29) modify
the samples in each data batch so as to “correct” these
systematic biases. The method in (1) is based on a
singular value decomposition (SVD) of the pooled data.
The premise is that the variation along the principal
direction(s) in the pooled data is primarily a result of
systematic bias. Thus, the microarray batches should be
separately altered such that, once pooled, the variation
along the principal direction(s) is greatly decreased (or
even wholly removed). In (8), the authors point out that
this SVD-based approach will fail if the variation due to
systematic bias is only comparable to or smaller than
that due to group differences (between “disease” and
“control”) — in this case, “correcting” the sample
batches in the principal direction(s) will in fact remove
information that is needed to distinguish the different
data groups.
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A key limitation of the method based on SVD is
that it does not exploit the batch index of origin, known for
each sample in the pooled data set. (8) capitalized on this
information by essentially treating the problem as one of
statistical classification, with each data batch representing a
different class. The direction in the data that allows best
discrimination of the sample batches from each other is
(reasonably) assumed to be the direction along which
variation is primarily due to systematic bias. The authors in
(8) thus proposed to correct the component in each sample
batch that lies along this “discriminating” direction. The
corrected batches will then overlap along this direction and
no longer be discriminable from each other. The method in
(8) was dubbed distance-weighted discrimination (DWD).
There are two further aspects of DWD. One is that the
“correction” amounts to removing the sample mean of each
batch, projected along the “discriminating” direction.
Effectively what is being assumed here is that the
systematic bias only amounts to differences between batch
means. The variance along this direction which remains
following batch correction is thus expected to be “genuine”
variation in gene responses across the pooled sample
population. Second, the authors proposed a special criterion
for choosing the “discriminating” direction. One possibility
is to apply the linear support vector machine (SVM)
method (15), i.e. learn a hyperplane classifier that
maximizes margin (minimum distance) to the decision
boundary and then choose the “discriminating” direction as
the normal to the learned hyperplane. However, in (8) the
authors argue that correcting in this direction introduces
artificial statistical character in the data — in particular,
“bunching up” of samples at the margin distance to the
hyperplane. Instead of using the SVM solution, the authors
proposed to choose the hyperplane to maximize the sum,
over all samples, of inverse distances to the hyperplane. (8)
demonstrates on real microarray data sets that their method
achieves good “mixing” of data batches from two different
microarray platforms and substantially better mixing than
that achieved by the SVD method. The authors state that
their approach works best when there are at least 25-30
samples per batch.

In (29), the authors sought to develop a method
that corrects systematic effects when the batch size is even
smaller, while achieving robustness to outlier samples.
Toward this end, they proposed an empirical Bayes (EB)
method that explicitly models systematic effects via batch-
specific means and variances for each gene. Their approach
standardizes gene measurements across the batches by
correcting based on mean and variance estimates for each
batch. Improved parameter estimation (for the small sample
case) and outlier robustness are achieved by “borrowing
strength” across genes, based on empirical Bayes
estimators that assume priors on parameters that are
identically distributed across genes for a given batch (and,
thus, with hyperparameters estimated using measurements
for all genes in the batch). The authors demonstrated their
approach on four small microarray batches obtained from
the same platform but at different times. Each batch
consisted of the same two groups — a “control” group and
“treatment” group. They showed that if one simply pools
the four batches, subsequent hierarchical clustering groups
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samples based on their batch of origin, rather than based on
“control”/“treatment”. By contrast, clustering data
standardized by the EB method yielded the proper cluster
structure. Moreover, EB was shown to be more robust to
outliers than a simpler standardization procedure that does
not perform Bayesian estimation. Finally, an advantage of
EB over DWD is that EB is naturally suited to pooling two
or more batches, while DWD, based on the solution of a
binary classification problem, is naturally suited only to
pooling pairs of batches.

One concern with all of the above methods is that
they each perform some type of irrevocable modification of
the measurements in the batches as a precursor to batch
pooling (and subsequent clustering, classification, or other
data analysis). Such “correction” is inherently a source of
information loss (10). Equivalently, these procedures will
introduce statistical artifacts in the data if the underlying
assumptions about systematic effects (e.g. that they alter
means and variances of gene expression) are incorrect. We
next discuss several machine learning approaches that
address confounding effects specifically in clustering
without requiring any modification of the original data
measurements and which, again unlike the previous
methods, do not make parametric modeling assumptions
about systematic effects.

Several machine learning works that seek
clustering solutions nonredundant with certain known (but
irrelevant) structure in the data were developed as
extensions of the information bottleneck (IB) algorithm
(56). The objective of IB is to compress one random
variable X while preserving as much information as
possible about a related random variable, Y (or a collection
Y = (Y,Ys,..., Yp)). In the context of clustering DNA
microarray samples, X € {1,2,...,T} could represent the
patient (sample) index, with Y,i=l,....D the response of
gene i. In this case, the index set is being “compressed”
(partitioned) into subsets. While there are IB formulations
that work with continuous-valued random variables, in
general this requires the choice of a parametric density
form. The basic IB approach works with discrete-valued
random variables and thus avoids this issue. Thus, in the
case of continuous-valued gene expression, some
discretization (e.g., quantization) may be needed to apply
IB. The IB approach creates a random variable on the
cluster index set C € {1,2,..., M}, M < T, and views this as
a “compressed” version of X. IB chooses probability mass
functions (i.e., a soft partition) {{P[C=c|X = x],c =
L,...M}x = 1,.,T}to preserve maximum mutual
information /(C;Y) with ¥ while compressing X as much as
possible, i.e., minimizing /(C;X). That is, IB poses and
solves the constrained problem: max /(C;Y) subject to
1(C;X) < I, with this optimization solved with respect to
the soft data partition.

The IB framework, based on mutual information,
is a convenient one for seeking clustering solutions that are
nonredundant with some known group structure in the data.
Suppose we have a random variable K which represents a
confounding influence/known grouping of the data, e.g. K

€ {“smoking”, “non-smoking”}. (13) proposed to avoid
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redundant clusterings by penalizing the information the
learned clustering possesses about K. Specifically, they
posed the new problem: max I(C;Y)—yI(C;K), subject to
1(C;X) < I, again optimizing with respect to the soft data
partition. They demonstrated the efficacy of this approach
in a document clustering context.

(20) argued that in practice it may be difficult to
choose a proper value for y. They proposed an alternative
IB extension which accounts for the known information K
in another natural way: by conditioning on it rather than by
penalizing solutions that contain information about K.
Specifically, (20) first proposed the problem: max /(C;Y|K),
subject to I(C;X) < I,. A potential difficulty with this
problem, as noted in (20), is that this objective is invariant
to arbitrary permutations on the cluster index set {1,2,...,
M} given a particular value K = £, i.e., the solution lacks
global coordination across different conditioning values, K
= k. (20) addresses this by imposing the additional
constraint /(C;X) < I,;,, which favors solutions with global
coordination of cluster labeling (i.e., same meaning for
cluster label wvalues for each value K = k). (20)
demonstrated results on clustering face images by gender
and on document clustering. The authors in (20) also
developed an alternative nonredundant scheme based on
ensemble clustering, e.g., (57),(53). Here, they first
partitioned the data into L groups, with group / consisting
of the samples with confounding value K = /. They then
performed clustering within each group, yielding L
different (local) clustering solutions, each with J clusters.
Each of these (local) solutions was then extended to define
a partition of the entire data set. Thus, at this stage, there
are L different partitions of the whole data set, each with J
clusters. Finally, they applied ensemble clustering
techniques to form a consensus clustering from the L
different partitions. The key idea here is that the initial
division of the data set by confounding value removes the
influence of the confounding/redundant variable.

While the above described methods do represent
advances for a very challenging learning problem, there are
some limitations to these approaches. By conditioning on
K, the method in (20) requires estimation of the “third
order” probabilities P[Y;|C = ¢,K = k]. For bioscience
applications with limited data samples there may be
insufficient data to accurately estimate these probabilities.
Consider in particular the case where data is pooled from
multiple institutions in order to increase statistical power.
Conditioning as in (20) effectively undoes this data
pooling. Similarly, the method in (21) divides the data into
separate sets based on the confounding value K = k& and
separately clusters each such set. However, if the data with
some value K = k is very limited, this data set may be
insufficient for learning a reasonable clustering solution
and the extension of this (local) solution to a partition for
the entire data set may be unreliable. Also, some clustering
algorithm solutions cannot be easily extended to give
partitions on new data (in this case, the whole data set), in
particular agglomerative hierarchical clusterings.

Another limitation of the previous approaches
concerns application to microarray data. As dicussed
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earlier, one is often not only interested in the underlying
phenotypical groups but also in the dominant genes
(biomarkers) associated with each such group. The methods
in (13),(20),(21) do not perform any feature selection. If
such selection were coupled to these methods, it should be
done in such a way as to account for confounding
influences and for the fact that confounding variables may
have much greater influence on some features than others.
A given feature Y; could be conditionally independent of K
given C, independent of C given K, independent of both, or
dependent on both but to varying degrees. Moreover, as
discussed in section 3.2 for the method in (23), there could
be various tied parameter structures e.g. with a customized
model only given particular values of C or X, i.e. P[Y}|C =

C']. One way to account for unequal confounding
influences on particular features is via a (soft) feature
partitioning (joint with the sample partitioning), with
individual  features probabilistically —associated to
(essentially, given probabilistic membership with) both the
class variable and to the confounding variable(s). In this
case, rather than maximizing /(¥;C), one would try to

maximize the sum ijl(})il(C;K)"‘(l_Pi)](K5Yi))’

with respect to both the soft data partition and the
probabilistic memberships {P; € [0,1]}, which amount to
soft feature partitions. A feature ; much more strongly
influenced by the confounding variable should have P; ~ 0.
This approach would be quite analogous to (23) which
involves joint unsupervised clustering and feature selection.
However, in this case, the feature selection is guided by
“supervision”" from the known confounding value. While
these ideas are conjectural, they may give a way to extend
(13) and (20) so as to embed feature selection.

5.3. Supervised feature selection

While feature selection is an extremely
challenging problem in the unsupervised case (where the
classes are a priori unknown and need to be estimated
jointly with their primary features), it is also well-known to
be a difficult combinatorial optimization problem even in
the supervised case (17), with a number of proposed
methods, of varied computational complexity, ranging from
greedy search methods to annealing and genetic algorithms.
The selection has been done on the basis of supervised
criteria, e.g. class separation measures such as Fisher
distance and mutual information. More complex techniques
build classifiers and then evaluate classification accuracy
(e.g. error rates) for numerous candidate subsets of the full
feature space, e.g. (32),(42). To our knowledge, though,
there is little prior work which accounts for confounding
variables (with known values on the training set examples)
in choosing the features. This problem is discussed in (65).
One possibility, borrowing from (20) is to apply standard
supervised criteria, but modified to condition on the known
confounding values. For example, mutual information is
often used, selecting the features Y; with maximum
information about the class variable C, i.e., I(C;Y;). This
can be altered, to select the features with maximum
I(C;Y|K). However, as we noted in the last section,
conditioning entails estimating third order probabilities,
whose accuracy may be poor for small microarray training
sets. Other criteria such as Fisher distance can likewise be
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modified by conditioning on K but may suffer from similar
problems. The approach proposed in (65), considering the
case of multiple patient sites as the confounding influence,
is to perform feature selection separately on the data from
each site, compare the chosen features across sites, and
then definitively select the features that are chosen at more
than one site (e.g. pick the features deemed informative at
least at two out of three sites). This approach should be
reliable if there is a sufficient number of samples at each
site. However, statistical power is lost by dividing the data
into site-specific groups. An alternative scheme proposed
here, which does not divide the pooled data, is based on
treating the confounding variable (e.g. the patient site) as
an additional variable to be predicted. In other words, we
suggest to form an objective function P, +APy,, with P, the
empirical count of errors on the training set in predicting
the class variable (alternative measures of predictive
performance could also be used) and with P, the count of
errors in predicting the confounding value. We impose the
constraint that a feature can only be used in one of the
prediction tasks (this can potentially be relaxed to allow
soft memberships in both prediction tasks). We then learn
classifiers (e.g. SVMs or multilayer perceptrons) for both
prediction tasks and jointly optimize the partitioning of
features between the two tasks, with these optimizations
performed to minimize P.+AP).,. The feature partitioning
may be performed e.g. via a locally switching optimization.
Here, one first chooses an initial feature partition. One then
considers switching a single feature from one task to the
other, with the switch retained if it reduces the “sum of task
errors" objective function (the predictors will need to be
trial-retuned for each trial-switch, to gauge the effect of
switching a feature from one prediction task to the other.).
One can trial-switch features, cycling through all the
features, until there are no further changes. This thus yields
a locally optimal feature partition. Features that are more
predictive of K than C should be removed by this process.
The advantage of this proposed scheme over previously
mentioned methods is that it does not compromise
statistical power by conditioning on K or by dividing the
data into groups for different K=k —i.e., all the data will be
used. A potential disadvantage, at least as this procedure is
defined above, is that it requires hard-partitioning features
to the two prediction tasks — in doing so, some residual
predictive power associated with rejected features may be
lost.

6. STABILITY OF CLUSTERING SOLUTIONS

6.1. Introduction

Clustering techniques have a long history in the
life sciences, with early work including e.g. hierarchical
clustering methods applied to numerical taxonomy of
species/cladistics (52) and recent work on clustering gene
expression data e.g. to identify underlying disease groups
(28), to hierarchically organize disease groups (47),(19), to
find groups of co-expressed genes (indicative of co-
regulation), and to identify patient subgroups with different
response to drug treatment. Since clustering results help
drive formation of scientific hypotheses, it is extremely
important that they be reproducible/robust. In particular,
hypotheses should not strongly depend on the particular
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realization of measurement noise, on a reasonable level of
sample population variability, nor on the particular
parameter initialization for the clustering algorithm.
Solutions that are robust in this sense are often referred to
as “stable” solutions. Unfortunately, many clustering
algorithms are sensitive to these factors. Partitional
clustering methods such as K-means and Expectation-
Maximization (EM) for learning Gaussian mixture models
converge only to locally optimal solutions, and ones
“nearest” to the initial clustering solutions. A poor
initialization may yield a poor final clustering result.
Moreover, there are in general many local optima and thus,
potentially, high solution variance, depending on the
scheme used for clustering initialization. Moreover, the
degrees of freedom in the solution (and the difficulty in
finding good solutions) may increase with increasing data
dimensionality and the number of sought clusters. Thus,
finding robust, accurate solutions for high-dimensional
microarray data is a challenging prospect.

While partitional clustering methods are often
used, the most popular approach in life science applications
is hierarchical clustering (26). This is the approach of
choice for inferring hierarchical relationships between
classes/groups in forming scientific hypotheses about
species similarity, species evolution, and related
applications. Yet, ironically, hierarchical clustering
methods are well-known to yield results that are highly
unstable in the presence of sample variability. The wide use
of this inherently unstable approach underscores the need
(and the recent impetus in the research literature) for
evaluating clustering algorithms and solutions with respect
to criteria that capture some notion of stability. There is
also clear motivation for incorporating design objectives
and algorithmic steps which encourage the formation of
stable solutions. In the sequel, we will review stability
analysis methods for clustering evalution and design and
also discuss some other promising approaches.

6.2. Review of recent methods

A stability criterion gives a measure of solution
reproducibility that can be used to compare (and hence to
favor) one clustering algorithm/solution with respect to
another. One application for such a criterion is in
addressing the vexing, longstanding problem of estimating
the number of clusters present in a given data set (the
model order) (27). Here, the stability measure is used to
evaluate solutions with varying order. Several such
approaches have been proposed in the literature
(55),(6),(33). (55) considers a 2-fold cross validation
setting, with one fold as “training” and the other as “test”.
Solutions at the same order are generated for both the
training and the test sets. One then evaluates the “prediction
strength” of the training solution — for each test cluster, one
measures the proportion of data pairs that are also assigned
to the same cluster when the training set cluster centers are
used to form a solution on the test set. The “prediction
strength” at this model order is the minimum such
proportion, over all test set clusters. The chosen cluster
number is the highest model order with prediction strength
above a specified threshold. In (55), it was recognized that
there is an analogy to the bias-variance dilemma in the
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prediction strength measure as the model order is increased.
(6) developed a similar method, the primary differences
lying in the following aspects: 1) in (6), the authors
proposed to measure partition similarity based on the sum
of i) the number of data pairs in the same cluster in the two
partitions and ii) the number of data pairs in different
clusters in the two partitions; 2) (6) generated numerous
pairs of data sub-samplings, with cluster stability evaluated
(at each order) based on the cumulative distribution
function (cdf) of the paired similarities. The largest model
order below which there is a significant transition in the cdf
is selected as the chosen order. (6) noted that, unlike
penalty function methods, e.g. Bayesian Information
Criterion (45), their approach does not require an
underlying statistical model for the data. Both (55) and (6)
recognized the significance of their approaches for and
considered application to hierarchical clustering. The
method in (33) is related to (55) and differs from (6) in that
the pair of data subsamples is non-overlapping.
Overlapping subsamples are required in (6) since the
similarity measure is evaluated over the overlap subset.
However, (33) argues that this may introduce bias in the
stability measure since overlapping samples will inherently
lead to similar data partitions, at every model order. (33)
achieves similarity evaluation with nonoverlapping subsets
by effectively building a classifier on one data subsample,
to predict the clustering on the second subsample. At each
model order, the average prediction accuracy, over
numerous data splits, defines the stability measure.

In addition to estimating the number of clusters,
other solution parameters can also be optimized via
stability criteria. In (7), it was proposed to estimate the
feature dimensionality, via the number of principal
components, by optimizing a stability criterion. For a small
number of clusters, the most stable partitions were achieved
by retaining only a few principal components, whereas a
larger number of clusters required more features to achieve
best stability. In general, some dimension reduction
(relative to the full feature dimensionality) always gave the
most stable clustering results. Although it has not been
experimentally validated, this is suggestive that methods
such as (23), which embeds feature (and cluster number)
selection within clustering in high dimensions, should yield
stable clustering solutions, relative to alternative schemes.

While feature selection can help to “stabilize”
clustering in high dimensions, this may be insufficient for
algorithms that are inherently unstable such as
agglomerative (bottom-up) methods, which start by
merging individual data samples. Intuitively, this type of
method should be highly sensitive to variations in the data
set. Top-down (splitting) algorithms (12), (26),(59) for
growing the hierarchy are expected to be more stable since
the initial splits involve large subsets of the data and thus
should be less dependent on the particular data realization.
However, top-down methods are typically greedy
algorithms, with no mechanism for “undoing” poor splits at
the top of the tree, which may be caused by (poor) cluster
initialization. This is a source of instability for top-down
hierarchical clustering. There are, however, methods which
are top-down and, at the same time, non-greedy — in fact,
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these methods are essentially insensitive to parameter
initialization and seek to find the globally optimal solution.
Deterministic annealing for clustering (44) grows a
partitional clustering solution, with the number of clusters
increasing in a nongreedy fashion via phase transitions in
an annealing process, which directly occur so as to
minimize a free energy objective function. The cluster
bifurcations specify a natural hierarchy of clustering
solutions. Deterministic annealing has been demonstrated
to give some ability to avoid local minima of the clustering
distortion (44). A related approach, but one which
additionally enforces a tree-structured partition on the set of
learned clusters, was developed in (39). It is expected that
these “top-down” annealing methods should be inherently
more stable than traditional (both bottom-up and top-down)
hierarchical schemes.

Rather than attempting to choose a hierarchical
learning algorithm that is inherently stable, an alternative
for forming reliable clusterings is to generate a population
of unstable solutions and choose, as a stable one, the most
“representative” one from this population, such as the
population mode. For example, in (19), one of the
objectives, in addition to building a classifier for fourteen
distinct cancer diseases, is to learn a taxonomic hierarchy
of these disease classes. Toward this end, the authors
applied their (top-down) tree learning algorithm to
numerous data subsamples and then generated a histogram
of tree structures. The mode of the histogram is a quite
reasonable choice as the most stable tree structure. (19)
addressed the (supervised) case where the class labels are
known and where the hierarchy consists of a hierarchy of
classes. In this context, the number of distinct tree
structures learned from the different subsamples is in
practice fairly limited and a distinct mode of the
histogram is expected to be found. An interesting
question is how to appropriately extend this approach to
the case of purely unsupervised hierarchical learning. In
this context, clustering solutions obtained for two
different data subsamples will not be identical — at best,
the solutions may be fairly similar. Thus, rather than
finding the mode of the solution population, the most
representative solution should amount to something like
a solution “centroid”. Finding a stable representative

from a family of hierarchical solutions may be
investigated in future work.
7. CONCLUSIONS

In this paper, we have identified several

emergent, fundamental problems in unsupervised
learning/clustering that are highly relevant to applications
in bioinformatics and to life sciences in general. We have
reviewed recent machine learning approaches for
addressing these non-standard problems. To date, there has
been only limited investigation of some of these approaches
on biosciences data and experimental investigation has not
been the focus here. This paper is primarily a review and a
“position paper”, arguing for increased investigation of
these topics. We have also proposed several new ideas, in
particular for addressing the confounding variables
problem, which we will pursue in future work.
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