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1. ABSTRACT

Islet transplantation is now a therapeutic option
for patients with unstable type 1 diabetes mellitus (T1DM)
with hypoglycemic unawareness. The benefits of this
treatment include improvement in metabolic control with
normalization of Alc and prevention of severe
hypoglycemia. Insulin independence and improved quality
of life can be reproducibly obtained by transplanting
adequate islet numbers. Current obstacles to the
widespread application of beta-cell replacement therapies
include limited islet availability and the need for chronic
immunosuppression. The emergence of promising
interventions may be of assistance in improving islet
recovery and favoring engraftment of smaller islet masses
with comparable or better efficacy. In the future,
regenerative efforts will contribute to overcoming this
limitation as well. Combining these approaches with the
development of safe immune interventions to induce self
tolerance or to induce the permanent acceptance of
transplanted tissues will be necessary to achieve long-term
success. The steady progress and promising results of
recent clinical trials justifies a great optimism toward the
widespread application of beta-cell replacement as a
treatment of choice for patients with diabetes.
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2. INTRODUCTION

The steady progress of beta-cell replacement
strategies in the clinical setting and the new therapeutic
options emerging from the experimental setting are quite
encouraging (1, 2). Replacement of beta-cell function may
be of assistance in the restoration of physiologic metabolic
control and thereby reduce the risk of progressive diabetic
complications in patients with TIDM. Transplantation of
islet beta-cells by implantation of vascularized pancreata or
isolated islets has proven effective in recent clinical trials

Q).

The islets of Langerhans are endocrine cell
clusters that represent approximately 1% of pancreatic
tissue (4). Each islet contains different cell subsets
specialized in the production and secretion of the hormones
(alpha-cells: glucagon; beta-cells: insulin; delta-cells:
somatostatin; PP-cells: pancreatic polypeptide) that control
glucose metabolism within the physiologic range. In type 1
diabetes mellitus (T1DM), an autoimmune destruction of
pancreatic beta-cells leads to insulinopenia with consequent
hyperglycemia and ketoacidosis.  Standard treatments,
which include diet, exercise and exogenous insulin, cannot
replace the physiologic control provided by the beta-cells.
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Nonetheless, aggressive insulin administration has proven
effective in delaying as well as preventing the onset of
dreadful  diabetic complications (i.e., neurologic,
ophthalmologic, cardiovascular, renal and metabolic) in
patients with TIDM (5). The underlining risks of an
intensive  insulin regimen include life-threatening
hypoglycemia, particularly in patients who have lost the
autonomic ~ warning  symptoms  associated  with
hypoglycemia (4).

3. CLINICAL ISLET TRANSPLANTATION

3.1 Current indications

Transplantation of pancreatic islets was first
performed in patients with surgically-induced diabetes (i.e.,
pancreatectomy for the palliative treatment of pain
secondary to chronic pancreatitis) as autologous
intrahepatic islet transplantation (islet autotransplantation)
(6). Encouraging outcomes have also been observed in
recipients of allogeneic islets (islet allotransplantation) in
patients without autoimmune diabetes (7).

The main indication for allogeneic islet
transplantation is TIDM. This therapeutic option is offered
to patients with imminent or end-stage renal disease
(ESRD) who have received or will receive a kidney
transplant (islet transplantation simultaneous or subsequent
to kidney transplantation) (8). Additionally, islet
transplantation can be considered for patients with
preserved renal function who have a history of severe and
acute metabolic complications requiring medical attention
(i.e., hypoglycemia, hyperglycemia and ketoacidosis)
and/or clinical and emotional problems with exogenous
insulin therapy that are incapacitating and/or consistent
failure of insulin-based management to prevent diabetic
complications (8).

3.2. Islet processing

Pancreatic islets are isolated from the donor
pancreas using a mechanically-enhanced enzymatic
digestion procedure. The goal of this process is to
fragment the pancreatic gland while preserving islet cell
cluster integrity using a dissociation chamber in a closed
circuit (9). The digestion phase is followed by a
purification step that enriches the endocrine fraction (10,
11). This step reduces the contaminating non-endocrine
tissue and minimizes the final volume of the pancreatic
digest to be transplanted.

Despite the numerous technological
improvements of recent years, the efficiency of islet cell
processing yields a mass that is significantly less than the
estimated mass of endocrine tissue present in a human
pancreas (approximately 40-50%) (12). This may be the
consequence of multiple factors which include donor-
related variables (age, weight, cause of death, etc.),
pancreas recovery and preservation techniques, ischemia
time and the isolation process. In addition, the donor
pancreas itself, due to the peculiar susceptibility of the
pancreas to noxious insults, unleashes the activation of
enzymes that result in autolysis of the gland. The
combination of these insults may lead to the reduction of
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the quality and quantity of islets recovered. Notably, the
need for multiple donor glands per recipient is generally
observed in the clinical setting, representing one of the
major limitations of islet transplant due to the shortage of
donor organs.

3.3. Transplant procedures

Islet preparations with variable degrees of
endocrine fraction purity (between 30-90% pure islets) are
implanted into the recipient liver sinusoids via portal vein
infusion. The transplant procedure is currently performed
as a percutaneous, transhepatic cannulation of the portal
vein under sonographic and fluoroscopic guidance (7, 13-
15).  This procedure has been associated with low
morbidity and no mortality (14-17). When transhepatic
access is contraindicated, a tributary of the portal system is
cannulated via mini-laparotomy or via laparoscopic
intervention (18).

3.4. Post-transplant metabolic monitoring

Transplantation of allogeneic pancreatic islets is
performed in patients with stimulated C-peptide levels of
<0.3 ng/ml, so that graft function can be monitored by
measuring C-peptide in the blood (19, 20). Additionally,
graft function is monitored by assessing exogenous insulin
requirements, glycated hemoglobin (Alc), fasting and
postprandial glycemic values, and mean amplitude of
glycemic excursions (MAGE) as well as by the means of
metabolic tests at baseline and periodically during the
follow up. These include intravenous and oral glucose
tolerance tests complemented with arginine stimulation and
mixed meal tolerance tests to estimate glucose clearance
and insulin (and C-peptide) release during metabolic
challenge (18, 20-22). Metabolic tests are relatively
sensitive tools for the monitoring of graft function but
require a cumbersome set-up and significant patient
compliance. More practical management tools include the
monitoring of basal glycemic and C-peptide values to
estimate graft function (i.e., C-peptide to glucose ratio).
This could provide critical data that is less taxing to the
transplanted patients and useful to detect the onset of graft
dysfunction in order to take appropriate measures (20).
Furthermore, useful algorithms to estimate clinical outcome
after islet transplantation include the ‘Ryan beta-score’ that
accounts for glycemic control, diabetes therapy and
endogenous insulin secretion.  This scoring system
correlates well with measures of beta-cell function (23).
Post-transplant monitoring also includes assessment of the
impact of beta-cell replacement on the frequency and
severity of hypoglycemic events (21, 24).

3.5. Clinical outcomes

Recent clinical trials have shown the significant
benefits of replacing beta-cell function by allogeneic islet
transplantation. These include improvements in glycemic
control with normalization of Alc and substantial reduction
of insulin requirements after islet implantation (18, 25-45).
Insulin independence is reproducibly attained by
transplanting an adequate islet mass (approximately 13,000
IEQ/kg of recipient’s body weight), and generally using
more than one donor pancreas per recipient. Insulin
independence can be observed following single donor islet
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transplantation (35, 36, 46), but generally requires
sequential or pooled islet preparations obtained from two to
three donor pancreata (28, 30, 35, 36, 47, 48). A dramatic
reduction in insulin requirements and MAGE is generally
observed after the first islet infusion, often paralleled by a
normalization of Alc (28, 30, 35, 36, 38, 48). After
completion of the infusion protocol and achievement of
insulin independence, glycemic profiles normalized in most
cases (28, 30, 35, 36, 48) as documented by the use of
continuous monitoring systems (38).

One of the major benefits of islet transplantation
is the impact on severe hypoglycemia that can be prevented
even when exogenous insulin is required to maintain
adequate glycemic control (28, 30, 35, 36, 48). This
phenomenon has been associated with a restoration of
normal suppression of glucagon by hyperinsulinemia
during euglycemic clamps (49).  Although lack of
hypoglycemic hormonal counterregulation and autonomic
symptom recognition during hypoglycemic clamp studies
has been reported (50), new evidence of normalization of
glycemic thresholds for activation of counterregulatory
hormone and symptom response has been presented,
despite the persistence of impaired glucagon and
epinephrine  responses during hypoglycemia (51).
Interestingly, prevention of severe hypoglycemia can
persist long-term as long as residual graft function is
present (18, 19). Both improved glycemic metabolism and
absence of severe hypoglycemia have a beneficial impact
on the quality of life of islet transplant recipients (52-54).

The potential benefits of islet transplantation on
diabetic complications are currently under evaluation.
Initial promising data on small cohorts of patients justify a
cautious optimism. Improved cardiovascular and renal
function, as well as improvements in symptoms related to
neuropathy and retinopathy, have been reported following
islet transplantation (55-59). Future randomized clinical
trials on larger patient cohorts will be of assistance in
determining the real impact of islet transplantation on the
progression of diabetes-related complications.

3.6. Complications

Intrahepatic islet infusion is associated with low
morbidity (14-17, 36, 60-64). Bleeding has been the most
common procedural complication reported followed by
portal vein thrombosis (17). However, advances in islet
infusion techniques (7, 14, 65), intrahepatic catheter tract
coagulant techniques (15, 36) combined with the use of
peri-procedural  anticoagulation (36) make these
complications completely preventable. In addition, islet
graft function has not been affected by procedural
morbidity. The use of chronic immunosuppression bears
intrinsic side effects that are expected based on the safety
profile of the drugs commonly utilized in ongoing clinical
trials. An increased frequency of upper respiratory and
urinary tract infections is commonly seen in
immunosuppressed patients. Tacrolimus-associated side
effects have included neurotoxicity (64, 66), nephrotoxicity
and cutaneous complications (67) that in selected cases
require conversion to other immunosuppressive drugs (i.e.,
mycophenolic acid) (68).  Sirolimus has led to the
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generation of oral ulcers generally at the initiation of the
treatment, as well as interstitial pneumonia and
dyslipidemia requiring medical treatment (64). Sirolimus-
induced colitis has been observed in association with supra-
therapeutic trough levels (69). An increased incidence of
ovarian cysts was observed in islet transplant recipients
treated with sirolimus and tacrolimus (70). Development
of proteinuria has also been described in patients with
impaired glomerular filtration and/or microalbuminuria
before initiation of immunosuppression (45, 71-74).

Allosensitization in recipients of allogeneic solid
organs has been associated with poor graft outcomes (75).
In the case of islet allotransplantation, the data remains
inconclusive as to whether allosensitization can influence
graft outcome (27, 47, 76-80). In recent trials,
allosensitization was not common in patients under
immunosuppression (30, 35, 36, 48, 79, 80), while it was
observed  consistently  after  discontinuation  of
immunosuppression in recipients of islet transplant alone
(81). Although the actual impact of allosensitization in
islet transplant recipients is currently unclear, a concern
that it might preclude or adversely affect the outcome of
future allogeneic transplants is warranted.

4. OVERCOMING CURRENT CHALLENGES
THROUGH TRANSLATIONAL RESEARCH

4.1. Increasing islet availability

There is an urgent need for the definition of ways
to improve islet recovery from a single human donor
pancreas and to maximize utilization of donor organs for
transplantation (82). This could be achieved by the
implementation of stricter donor selection criteria (83, 84),
introduction of more aggressive donor management before
organ recovery (82), standardization of peri-surgical
recovery techniques that favor pancreatic integrity (84), and
improved organ preservation methods (85-87).

Islet cell processing has steadily improved thanks
to the availability of more efficient dissociation enzymes
(88, 89) and reagents that contribute to the preservation of
islet mass during the isolation procedure (90). Major
efforts are currently being focused toward the
standardization of islet cell processing in order to obtain
more reproducible results amongst centers (91, 92). To this
aim, the concept of regional islet cell processing centers as
part of ‘islet consortia’ represents an appealing option (94)
as it has shown promise in recent clinical trials in Europe
and the United States. This has allowed for better
utilization of donor pancreata that may be shared between
centers (40) as well as obtaining higher proportions of
glands yielding adequate islet numbers for transplantation
(82, 84). Development of safe shipping protocols between
centers that allow for the preservation of functional
integrity, viability and sterility during the transfer of islet
cell products will contribute to a widespread application of
the consortium in future years (93).

Expansion of the donor pool to include a greater
utilization of organs from marginal donors and donors after
cardiac death is possible as demonstrated by recent reports
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(94-96). An additional avenue is the use of living-related
donors (97, 98); however this should be considered only
after a thorough evaluation of donor risks (99). Living islet
donors may be possible when the currently observed
progression to graft dysfunction in recipients treated with
combined sirolimus and tacrolimus (35, 48, 78) is
overcome with safer and more efficacious immune
interventions.

From the preclinical standpoint, promising novel
approaches are emerging in the areas of organ recovery,
islet processing and cytoprotection. Lack of oxygen during
islet isolation and subsequent culture triggers oxidative
stress-induced intracellular pathways that lead to cellular
functional impairment and death. Oxygen carriers (i.e.,
neuroglobin and hemoglobin) (100, 101), perfluorocarbon-
based preservation solutions (87), targeted anti-oxidative
and cytoprotective molecules (i.e., glutamine, superoxide
dismutase mimic, carbon monoxide, beta-estradiol, heme
oxygenase-1, etc.) (100, 102-106), ischemic
preconditioning techniques (107, 108) and modulators of
stress-activated protein kinases (i.e., c-jun, MAPK) (109-
111) are only a few of the interventions proposed to
maximize organ quality.

4.2. Alternative sources of insulin-producing cells

The diabetes epidemic is a growing heath care
problem and an increasing number of patients would
benefit from beta-cell replacement. Even if more human
pancreata become available through the expansion of the
donor pool and better utilization of currently available
cadaveric organs is realized, the number would be
insufficient to meet the high demand. To help solve this
limitation, a number of potential sources of islet cells are
currently being evaluated for future clinical applications.

Xenogeneic islets obtained from porcine donor
pancreata are considered a potentially viable source as
porcine and human insulin differ by a single amino acid.
The ease of breeding and large availability of donor pigs
would represent an unlimited and readily available source
for islet transplantation in humans (112-115). Current
hurdles encompass immune barriers and potential
transmission of porcine endogenous retroviruses to
immunosuppressed recipients (115). The generation of
genetically engineered porcine strains with biochemical cell
surface receptor modifications holds promise (116-121),
but might not be sufficient to overcome the immune
response against xenografts. In addition, the harsh immune
interventions needed to preserve graft function in humans
might not be suitable for patients with TIDM (122-125). A
possible strategy to overcome these limitations is the
implementation of immunoisolation strategies for
xenogenic islets that could be of assistance at reducing the
need for powerful systemic immunotherapies to prolong
graft survival (126-129).

Great progress has been made in recent years to
differentiate beta-cells from a wide variety of embryonic or
adult stem cell subsets. Potential options to obtain insulin-
producing cells in vitro include differentiation of
mesenchymal (130, 131), hematopoietic (132) and
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pancreatic ductal cell progenitors (134-136), as well as
stimulating intra-islet precursors or replicating adult beta-
cells (136). The differentiation potential of amniotic-
derived stem cells is also appealing to this aim (137).
Transdifferentiation of hepatocytes has been performed in
experimental models and could represent an additional
approach to generate insulin-producing cells (138-140).
Expansion of adult human islets in vitro may represent
another option. Currently, the efficiency of expansion and
differentiation protocols is less than optimal.  The
proportion of functioning insulin-producing cells that have
been obtained is marginal and far from physiologic (141,
142). The enormous progress of developmental biology
and cell physiology will be a harbinger to new advances
that may be applicable in the clinical arena in the near
future.

4.3. Developing Predictive Islet Potency Tests

The limited success of islet transplantation in the
past decade might have been due to the lack of predictive
tests for the assessment of human islet cell products. This
deficiency likely contributed to the high rates of
transplanted islet primary non-function and the need for
large islet numbers to attain insulin independence. Along
with islet numbers, the most commonly used pre-transplant
islet cell potency analysis has been through the use of
viability tests using membrane-exclusion dyes and in vitro
glucose-stimulated insulin release assessment (19, 143).
Based on these methods, islet preparations with comparable
quality and potency have yielded a very broad spectrum of
outcomes, suggesting the poor predictive value of these
tests on islet graft function after transplantation (143, 144).
In order to overcome such limitations, there has been a
massive effort in the islet transplant community to develop
more sensitive assessments. A test that is able to accurately
define the quality of human islet preparations for
transplantation would identify suboptimal preparations that
should not be transplanted, despite the availability of
adequate islet numbers. Development of sensitive tests for
the assessment of beta-cell specific viability in combination
with beta-cell numbers in human islet preparations would
theoretically provide a higher predictive tool than current
methods.  Experimental preliminary studies of islet
transplantation in diabetic immunodeficient mice have
shown the ability of such an approach to predict human
islet cell potency in vivo (143). The translation of this
model to the clinical setting is currently underway.

Measurements of the metabolic parameters of
isolated islets via the assessment of oxygen consumption
rates (145-147) and the ATP/ADP ratio (148) may add a
supplementary insight into the well being of isolated islets.
Therefore, a combination of tests that define the metabolic
state, viability and functional competence of isolated
human islets may yield a more stringent algorithm that will
improve islet transplantation outcomes.

4.4. Enhancing islet engraftment

Multiple factors contribute to the high islet
numbers required to attain insulin independence after islet
transplantation. The generation of inflammation at the time
of islet infusion into the hepatic portal system (islet-blood
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interaction) (149, 150) and after embolization into the liver
microenvironment (151), along with the lack of
vascularization (and therefore of oxygenation) may
contribute to the early functional impairment and loss of
islet cell mass (152).

There is an ongoing effort to develop effective
interventions able to reduce non-specific inflammation
while favoring islet engraftment. Strategies proposed
include the induction of cytoprotection to isolated islets to
render them less susceptible to noxious stimuli in the early
post-implantation period. Additionally, modulation of the
inflammation at the site of implantation could enhance islet
engraftment. Furthermore, accelerating neovascularization
after implantation could prove effective in promoting islet
cell mass engraftment as well.

Incretins or incretin analogues, such as glucagon-
like peptide (GLP-1), are another possible intervention
currently being tested (153, 154). Exenatide, a synthetic
GLP-1 analogue already used clinically, has demonstrated
an ability to reduce exogenous insulin requirements of
patients experiencing delayed islet graft dysfunction (155,
156). In addition, the use of exenatide at the time of islet
transplantation might be of help in preserving islet mass
and favor engraftment. Clinical trials to test this possibility
are currently underway.

Exploring alternative sites for islet implantation
could alleviate the multiple stresses encountered at the islet
implant microenvironment thereby favoring engraftment
and long-term function. Over recent years, multiple sites
have been tested. The use of the highly vascularized and
portally drained omentum is an appealing islet
transplantation site (157-162). A subcutaneous site has
several advantages, including ease of access and peri-
transplant monitoring, even though initial trials have
yielded only partial success.  Application of tissue
engineering techniques to create a more suitable site for
islet engraftment includes the use of pro-angiogenic factors
to prevascularize the local microenvironment prior to islet
implantation. Promising results have also been generated
using implantable subcutaneous devices that allow for
long-term function of islet tissue (163, 164). The
encouraging success of these alternative sites in animal
models could be transferred to the clinical arena shortly.

4.5 Refining post-transplant monitoring

A gold standard for the monitoring of islet mass
and function has yet to be developed but would be an
invaluable clinical resource to guide the management of
patients who are status post islet transplant. Current
monitoring techniques are invasive and physically taxing to
patients.  Furthermore, these tests cannot clearly and
specifically assess beta-cell mass or discriminate between
mass and function, even though sophisticated modeling
may be of assistance in achieving a good approximation
(165, 166). Development of non-invasive methods for a
more accurate evaluation of beta-cell mass and function
may help overcome the current limitations and offer the
option of repeating the test to monitor changes in beta-cell
mass over time. Emerging data suggests that monitoring of
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insulin mRNA levels in the blood of islet transplant
recipients in the peri-transplant period may represent a
valuable tool since its elevation is associated with loss of
islet cells soon after intrahepatic islet infusion as well as
preceding alterations in graft function (167, 168). The use
of novel noninvasive radiologic imaging techniques may be
useful for this purpose and promising initial data is
emerging through the use of magnetic resonance imaging
(169-174) and positron emission tomography (175-178).

Another important aspect is post-transplant
immune monitoring of islet transplant recipients. The
limitation of the random and scattered distribution of
multiple donor islet preparations into the recipient’s liver
renders the use of biopsies unfeasible in this patient
population. Current analytical tools rely on the monitoring
of panel reactive antibodies to human leukocyte antigens,
mixed lymphocyte reactions in vitro, autoantibody to
glutamic acid decarboxylase (GAD-65), autoantibody to
insulin (IA-2) and lymphotoxic gene expression (179-181).
The predictive value of these tests on rejection episodes
and recurrence of autoimmunity is underway, but the
definition of quick and reliable analytical tools that could
guide clinical management is required to prevent immune-
mediated loss of islet mass.

4.6 Immune interventions toward the induction of
tolerance

The present and future of islet transplant, as well
as that of solid organ transplantation, lies in the efficient
manipulation of the immune system. In particular, there is
a need in the islet transplant setting to overcome both the
autoimmune process toward islet cells as well as the
rejection against allogeneic tissue (91).

Current  immunosuppression  protocols — are
efficacious in prolonging islet survival by thwarting the
immune system, but they lack specificity and are associated
with a plethora of untoward side effects for the patients as
well as for the implanted tissue—the drugs are anti-
angiogenic as well as beta-cell toxic (182-184). Therefore,
the drugs themselves reduce islet engraftment and may
contribute to the progressive loss of function. Preventing
the effects of immunosuppressive drugs appears to hinge on
the efforts to restore self tolerance or to induce acceptance
of transplanted allogeneic tissues. The implementation of
targeted immunomodulatory approaches that selectively
impair lymphocyte cytotoxicity and favor the development
of regulatory phenotypes might be a viable approach
toward the induction of long-term islet survival and
possibly tolerance (2). Recent data from preclinical
experimental models have demonstrated great promise that
sustained graft survival is possible in the absence of
chronic immunosuppressive drugs (185-189).  Also,
induction of hematopoietic chimerism in experimental
systems can allow for indefinite survival of donor-specific
allogeneic tissues (190, 191) and might represent a viable
option for transplanted patients (192-195).

Recent clinical trials have shown some promise
in preventing the progression of the autoimmune
destruction of islet cell mass if implemented at onset of
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autoimmune diabetes, at least in short term follow-up (196-
199). Implementation of similar approaches after overt
diabetes ensues might not be sufficient enough to restore
normal insulin production.  Potential complementary
interventions may include means to enhance islet cell
regeneration in the native pancreas, transplantation of
autologous insulin-producing cells obtained in vitro from
putative cell precursors as well as allogeneic islets.

5. PERSPECTIVE

The field of beta-cell replacement therapies has
grown considerably during recent years. Great progress
has been achieved by transplanting isolated islets in
patients with TIDM with unstable diabetic control and
hypoglycemic unawareness. Islet transplantation has
afforded this patient population with better metabolic
control, normalization of Alc, prevention of severe
hypoglycemia and substantial improvement in quality of
life.

The realization of beta-cell replacement therapy
as a cure for TIDM may be feasible by surmounting the
current shortage of islets available for transplantation and
by developing safe immune interventions that restore self-
tolerance and attain permanent engraftment of insulin-
producing cells. The steady progress and promising results
of recent clinical trials justify great optimism for the
widespread application of beta-cell replacement therapy as
a treatment of choice for patients with diabetes.
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