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1. ABSTRACT

Cancer stem cells (CSCs), also known as tumor-
initiating cells (TICs), are cancer cells that possess
capability of proliferation, differentiation, and self-renewal.
It is widely believed that CSCs play critical role in the
initiation, metastasis, and relapse of cancers, but the origin
of CSCs remains unclear. Up to date, several hypotheses
have been described, and cell fusion and horizontal gene
transfer, which may occur during development and tissue
repair process, are considered as important origins of CSCs.
In addition, critical gene mutations in stem cells, progenitor
cells or even differentiated cells may also contribute to the
formation of CSCs, and cell microenvironment is critical to
CSC self-renewal and differentiation. The ongoing efforts
to identify the CSCs origins may shed more light on
understanding of cancer initiation and progression, as well
as the development of novel cancer therapies.
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2. INTRODUCTION

The concept that cancer arises from cancer stem
cells (CSCs) has changed the way how people think about
cancer. For decades, cancer initiation and progression is
considered as a multistep process, including progressive
genetic alterations that drive malignant transformation of
normal cells (1, 2). However, current view suggests that
most cancers arise from a single clonal cell that is
malignantly transformed and shows increasingly aggressive
phenotypes. In most cases, CSC may represent the clonally
selected cell, giving rise to cancer. As the extension of
studies on CSCs, the tumor biology of this specific type of
cells is increasingly understood, but their origins remain
puzzling. A typical question is whether a cancer always
begins from normal stem cells which lose the control of
proliferation and differentiation, and the difficulty to
experimentally address this question may be derived from
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the limited quantity of normal stem cells or progenitor cells
in a given tissue.

During the tumorigenesis, pro-oncogenes, tumor
suppressor genes and genes involved in DNA repair or
mitosis play important roles. Critical mutations,
amplifications, deletions of these genes usually lead to
deregulation of normal cell biology, initiating malignant
transformation(3, 4). This review article introduces recent
understanding of CSC origins, including genetic events
leading to cell transformation, cell fusion, horizontal gene
transfer, and cell microenvironment promoting CSC
formation and clonal selection. It is understood that the
fusion of stem cells and somatic cells that have gained
some mutational hits can lead to genomic instability and
initiate CSC transformation (5, 6). During life-long time, the
mutation hits may occur and are accumulated in proliferating
stem cells, progenitor cells, and even differentiated somatic
cells. The hybrid of such somatic and stem cells may provide
the cell with self-renewal capability and transformational
features. Published data have shown that circulating
hematopoietic stem cells can fuse with cells that reside in
specific tissues, which provide a possible origin of cancer stem
cells (7). Up to date, a series of cell fusion factors have been
identified, and some of the factors are related to cancer
initiation and progression signalings (8). Genomic instability is
another mechanism of CSC formation, and the deficiency of
important oncogenes, cancer suppressor genes and cell cycle
regulators are important factors for the formation of CSCs. For
instance, cell growth checkpoint abnormalities have been
suggested to cause chromosomal aberrations and CSC
formation (9). The third theory of CSC formation is horizontal
gene transfer. The horizontal gene transfer usually happens in
prokaryotic cells, but it is reported that in eukaryotic cells,
DNA in apoptotic cells may transfer to recipients by this
mechanism, leading to nuclear programming and cancer
initiation (10). Finally, microenvironment is important for the
formation and clonal selection of CSCs. In some cases, such as
the context of tissue repair, signals are given to replace dying
cells. Cancer can be considered as a wound that never heals.
Therefore, if the microenvironment signals are constitutively
given, the repair process lasts forever, initiating cancer. In this
review article, we will discuss in detail the cancer stem cells
in terms of their origins, cell biology, tumorigenicity, and
roles in cancer therapy.

3. NORMAL STEM CELLS AND CANCER STEM
CELLS

3.1. Normal stem cells

To better understand the biology of CSCs, we
should first define normal stem cells (NSCs). Normal stem
cells are cells that have ability to self-renew and generate
different lineages of specifically differentiated tissue cells
(11, 12). The most important features of stem cells are self-
renewal and differentiation. In general, a stem cell divides
by asymmetric cell division into a new self-renewal stem
cell and a transit amplifying cell (progenitor cell). Self-
renewal of stem cells allows maintenance of the
undifferentiated stem cell pool over lifetime, and this is the
most important feature of stem cells distinguished from
regular cells (13). In response to local or systematic signals,

820

stem cells are triggered to massive proliferation. Disruption
of asymmetric stem cell division will lead to a rapid
escalation in stem cell number, which may leads to
developing cancer(14, 15). Another characteristic of stem
cells is their capability of differentiating into different
tissue-specifically specialized cells. For instance, in blood
system, stem cells differentiate into transiently amplifying
progenitor cells, which are rapidly amplified and produce
various lineages of differentiated cells, such as lymphocytes
and macrophages (16). The differentiated cells eventually die
or are replaced by new cells, but the stem cells keep the same
in life-long time. In many tissues or organs, the stem cells are
perhaps the most long-live cells and have more pluripotent
capability than progenitor cells or specialized cells. Because of
this feature, the number of stem cells is strictly regulated.

There are two classes of normal stem cells; one is
adult stem cells, and the other is embryonic stem (ES) cells
(17). Adult stem cells have the common features of stem cells,
but possess narrowed lineage specificity, mainly differentiating
into tissue-specialized cell types. The primary roles of adult
stem cells in a living organism are to maintain and repair the
tissues where they exist. Therefore, the adult stem cells are also
termed somatic stem cells (18). The fate of adult stem cells
was thought to be limited in the tissue of origin, but new
evidence shows that under certain physiological conditions,
some tissue adult stem cells may undergo a fate other than that.
For example, stem cells from bone marrow can differentiated,
other than blood cells, into hepatocytes (19), skeletal muscle
(20), cardiomyocytes (21), and neural cells (22). There are two
major subpopulations of stem cells in bone marrow; one is
hematopoietic stem cells that give rise to red blood cells,
platelets, monocytes and lymphocytes, and the other is non-
hematopoietic stromal cells (BMSC), which can differentiate
into myogenic, osteogenic, chondrogenic and adipogenic
lineages (23, 24).

Embryonic stem cells are pluripotent stem cells
derived from the inner cell mass of the blastocyst, an early-
stage embryo (25-27). Embryonic stem cells are
distinguished by two distinctive properties: pluripotency
and ability to replicate indefinitely. Embryonic stem cells
are pluripotent, with potentials to differentiate into any type
of cells in the body. During the embryonic development,
embryonic cells can differentiate into all derivatives of the
three primary germ layers: ectoderm, endoderm and
mesoderm; and it has been shown that embryonic stem
cells can differentiate into 220 cell types in the adult body
(28, 29). Another characteristic of embryonic stem cells is
their capability to proliferate indefinitely under certain
conditions (30). Because of their plasticity and unlimited
self-renewal, embryonic cells are employed as tools in
research and regenerative medicine. The difference
between embryonic stem cells and adult stem cells is the
pluripotency. Embryonic stem cells are able to generate any
type of cells in the body, while adult stem cells are usually
limited to the cell types of origin (31, 32).

3.2. Cancer stem cells

Cancer stem cells (CSCs) are cancer cells that
have the ability to self-renew and give rise to other type
malignant cells (13, 33, 34); they are phenotypically and
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Table 1. Biological roles of cell fusions

Function Biological behavior References

Fertilization Fusion of sperm and eggs (114)

Muscle Fusion of mononucleated myoblasts to form multinucleated muscle fibers (78)

development

Bone development Differentiation and fusion of macrophages to form osteoclasts (115,116)

Placenta Fusion of trophoblasts to form syncytiotrophoblasts to better transport nutrients and hormones across the | (117-119)

development maternal-fetal barrier

Immune response Fusion of macrophages to form giant cells (116)

Tissue repair Bone marrow cells migrate to damaged muscle, fuse with (120, 121)
muscle cells, restore muscle function

functionally diversified tumor cells. Some controversies
about CSCs exist since current studies are not successful in
fully exploring their similarities and differences from
normal tissue stem cells (35).

One important observation which leads to the
hypothesis of CSCs is the heterogeneity of cancer (36).
There exist many different types of cells in a tumor,
including cancerous and infiltrating normal cells. This fact
is contradictory to the hypothesis that a tumor is originated
from a single cell clonal selection (37, 38). Another
observation helps to build the cancer stem cell theory is that
a large number of regular tumor cells are required to form a
tumor in immunodeficient animal (39, 40). This does not
support the assumption that cancer cells have a great
potential to proliferate new cells and can clonally expand to
grow tumors even with a small amount of cells. Based on
these observations, one possible explanation is that some
tumor cells have greater potentials to differentiate into
various types of tumor cells and have unlimited
proliferation capability. The number of this specific type of
cells is not large in a tumor, and therefore, they are called
side population.

The first compelling evidence for the existence of
cancer stem cells was published in 1997 (41).
Transplantation of primary acute myeloid leukemia (AML)
cells into NOD/SCID mice led to the finding of SCID
leukemia initiation cells (SL-IC), which is capable of
initiating and sustaining leukemia growth in vivo.
Thereafter, a series of transplantation experiments
demonstrated that the SL-IC has high self-renewal capacity
and is termed AML stem cells, also named leukemia stem
cells (LSCs) (41). Further studies have revealed that the
CSCs also exist in solid tumors and have strong
tumorigenicity. In animal tumor modeling, millions of
regular cancer cells are required to generate a tumor, but
the cell number required to produce a tumor is largely
decreased to hundreds when CSCs are used (42).
Additional evidence for the existence of cancer stem cells
is stemmed from tumor histological studies. Tumors are
characterized with heterogeneity and contain multiple cell
types, which is consistent with the features of CSCs that
have multi-differentiative potentials, generating multiple
cancer cell types.

Surface protein markers are often used to isolate
normal stem cells or CSCs by fluorescent tagged methods
(43-46). For instance, the AML stem cells are marked with
CD34 protein, but lack CD38 (CD34"/CD38"). New protein
marker recently identified for AML stem cells include IL-
3R*, CDY0,, CD71°, HLA", DR’, and CD117 (47). Cell
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surface protein markers are also identified in CSCs of
various solid tumors. For instance, in breast cancer, CD24"
/low/CD44" cells were reported to have higher tumorigenic
potential (48). In addition to CD44, the surface protein
CD133 (prominin-1) is identified as a cancer stem cells
marker in several types of tumors, such as prostate (49) and
head and neck carcinoma (50), but not in breast (48). A
general rule to identify a CSC surface protein marker is to
sort cancer cells in different populations and then implant
various subsets of cells into immunodeficient mice to
assess xenograft tumor formation and growth.

4. ORIGINS OF CANCER STEM CELLS

CSC origins remain to be fully understood, but
several hypotheses have been described, including cell
fusion, horizontal gene transfers, genetic instability, and
cell microenvironment influences.

4.1. Cell fusion

Cell-cell fusion is involved in numerous
biological processes and plays an important role in
fertilization, formation of placenta, bone and muscle
tissues, immune response, tissue repair and regeneration
(Table 1). Cell fusion has a close relationship with cancer
initiation and progression. It has been shown that
circulating hematopoietic stem cells can fuse with several
types of cells, including hepatocytes, cardiac myocytes,
oligodendrocytes and Purkinje cells, and the cell fusion
may contribute to cancer development and progression as a
consequence of hybridization between leukocytes and
somatic cells (51-58). Recent studies found that
hybridization of tumor cells with lymphocytes leads to the
formation of metastatic cells; and also, the cell fusion may
promote the phenotypic and genotypic diversity of tumors,
thereby stimulating cancer progression (5, 59-62).

Figure 1 depicts the hypothesis of cell fusion as
an origin of cancer stem cells. A fusion of two cells leads to
the formation of a multinucleated or mononucleated cell.
Multinucleated giant cells (syncytia) are normally formed
during the development of the bone, muscle, and placenta
(63). The fusion of a stem cell and a differentiated cell
forms a heterokaryon. The heterokaryon was first observed
in Sendai virus-mediated fusion of murine Erlich ascites
cells and human HeLa cells in vitro (64). The formed
heterokaryons remain stable over time and have the
function and characteristic of each fusion partner.
Therefore, the fusion cell from a stem cells and a
transformed differentiated cell may possess both of their
characteristics, and gain self-renewal activity and
transformed ability. Another consequence of the cell fusion
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Figure 1. Cell fusion as an origin of cancer stem cells. In the presence of cell fusion factors, a normal stem cell may fuse with a
transformed cell to form a mononucleated cell (synkaryon) or a multinucleated cell (heterokaryon). The heterokaryon is
considered as an intermediate of the synkaryon with chromosome loss. The hybrid fusion cell possesses self-renewal activity and

transformed capability, and thus are cancer stem cells.

is to form a synkaryon, a single nucleated cell, with the
heterokaryon as an intermediate step (63). Therefore, the
synkaryon is generally featured by chromosome loss. A
classic example of synkaryon formation is the fusion
between murine myeloma cells and B-cells from an
immunized mouse, which forms hybridomas (54). The
chromosomal loss during a fusion process between stem
cells and transformed cells may lead to the formation of
cancer stem cells. Thereby, increased cell-cell fusion rates
may be closely related to cancer initiation. It is believed
that many tumor cells are fusogenic, and the hybrid cells
produced by fusion between tumor and normal somatic
cells are often more malignant than the parental tumor cells
(5, 6, 65). For instance, human stem cells from a grafted
kidney cancer migrate to the skin and fuse to adopt a
keratinocyte phenotype and undertake transformation (65).

Due to the striking similarities between CSCs and
normal stem cells, it is perceived to presume the normal
stem cells as targets for malignant transformation. A
possible tumor initiating model may be the fusion of stem
cells with cells that have obtained a set of genetic
alterations relative to cancer development. Such fused cells
may have the features of large chromosomal aberrations
and aneuploidy, or harbor unique cell-survival programs
from normal stem cells, driving tumor initiation (66). This
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feature of cancer stem cells explains the tumor
chromosomal derangements (Figure 2) that may happen at
early stages of cancer development. In another word, a
trans-differentiation of a normal cell into a cancer cell may
occur, due to cell fusion, at the early cancer development
stages or during progressive tumor growth, leading to
cellular aneuploidy and heterogeneity of cancers. Further
study efforts are required to clarify the extent of normal
stem cell contribution to CSC formation and cancer
initiation and progression. Of note, cell fusion may also
happen between different tumor cells or between tumor
cells and normal somatic cells. Although probably rare, it
may be important for tumor progression (67).

Several cell type-specific or species-specific cell
fusogenic factors have been identified, which helps to
understand the mechanism of the cell fusion. In mammalian
cells, fusogenic proteins identified include CD44, CD47
and the macrophage fusion receptor PTPNS1 (68). Cell
fusion occurs in various organisms, from yeasts to
mammalian cells, and for study convenience, C. elegans
have been used to study its role in organ development and
identify fusion mechanism and fusogenic factors (69).
Tysnes’s group has recognized several cell fusion
regulators in C. elegans and putative human homologs. For
instance, HOXAS (homeobox AS) in humans is the
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Figure 2. Chromosomal aberrations in cancer stem cells. Chromosome abnormalities that are often involved in cancer initiation
and progression include deletion, duplication, inversion, and translocation. Deletion indicates the loss of a chromosomal
fragment, which results in gene loss or deficiency. Duplication is a chromosomal aberration resulted from abnormal chromosome
crossovers, in which a segment of chromosome has been copied twice. Duplication may create fusion proteins or amplification of
oncogenes. Inversion denotes that a segment of chromosome is reversed end by end. All these three chromosomal abnormalities
are derived from homologous chromosomes. Another chromosomal aberration is called translocation that occurs between non-
homologue chromosomes, resulting in exchange of two chromosome segments. Of note, these chromosomal derangements may
produce loss of heterozygosity, leading to cell susceptibility to carcinogens.

homolog of 1in-39 in C. elegans, and 1in-39 is a fusogenic
factor (70-72). Interestingly, cross-regulatory interactions
are evident between various homeobox genes and the Wnt,
Hedgehog and Notch signaling pathways, all of which are
crucial pathways regulating cancer development (73-76).
Therefore, the cell fusion process may contribute to the
formation of CSCs and cancer initiation.

In addition to fusogenic factors, some cytokines
and chemokines are also implicated in the cell fusion
process, facilitating cell fusion or increasing cell fusion
frequencies. Interleukin-4 (IL-4) is a good example that
promotes myoblast fusion with myotubes through its
receptor-mediated mechanism (77, 78). Gliomas express
high levels of the IL-4 receptor, which may raise IL-4-
mediated cell-cell fusion.

4.2. Horizontal gene transfer

Horizontal gene transfer serves as another
mechanism in the origin of CSCs (79, 80). The horizontal
gene transfer often occurs in bacteria and fungi, which
helps the organisms to establish various adaptations, such
as resistance to antibiotics(81-83). A horizontal gene-
transfer process includes three steps: delivery of the donor
DNA to recipient cells, insertion of the acquired sequences
into the recipient’s genome; and finally, expression of the
incorporated genes in a manner beneficial for the recipient
(84, 85). The first two steps may occur through the
mechanisms, such as transformation, transduction or
conjugation (83). In eukaryotic cells, horizontal gene
transfer refers to DNA transfer from apoptotic cells to
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recipient cells by phagocytosis or endocytosis (Figure 3).
Mutations in somatic cells may trigger apoptosis and DNA
fragmentation. The later may be taken up by other somatic
cells by phagocytosis or endocytosis, leading to nuclear
reprogramming and new aggressive cell formation (86).
Fragmented DNA could also be taken up by other tumor
cells (87). Experimental studies have shown the transfer in
co-cultivation of Epstein—Barr virus (EBV) from the
integrated cells into the nucleus of the phagocytosing cell,
in which EBV-encoded genes are expressed at both mRNA
and protein levels (86); and apoptotic bodies from tumor
cells can induce p53-deficient fibroblasts to form colonies
in vitro and tumors in vivo (80). It is currently understood
that whole chromosomes or fragments could be transferred
via the phagocytosis to recipient tumor cells (79, 80). This
extensive phagocytic capacities of tumor cells indicate the
genetic material transfer may play a critical role in tumor
initiation and progression (88). Tunneling nanotubes
(TNTs) is a structure of complex networks between cells,
aiding in the selective transfer of membrane vesicles and
organelles between cells (89). This finding supports the
concept that cell-to-cell communication and molecule
transfer, including genetic materials, may occur actively.

4.3. Genomic instability

Genetic  instability —and  alterations are
fundamental basis of cell transformation and cancer
initiation. Genomic alterations may occur at the
chromosome level, so called aneuploidy, which includes
chromosomal gain, loss or derangement (66). Genetic
alterations may also happen at the molecular level, such as



Origin of cancer stem cells

Mulaticn Apoptotic cells

Cancer stem cell

- @)

Cancer initiation
and progression

Stem Cell

“ﬂ\g’. %ﬂw
o

Nuclear reprogramming

Horizontal gene transfer

Figure 3. Horizontal gene transfer. Somatic cells may undergo programmed cell death (apoptosis) in response to genetic or other
stress. Normal stem/progenitor cells may take up the fragment of DNA from apoptotic cells via phagocytosis or endocytosis,
leading to genetic material reprogramming and cancer stem cell formation. This process is termed horizontal oncogene transfer.
During lytic viral infection, the viral oncogenes can also been taken up by stem cells through this mechanism.

point mutations in tumor suppressors or proto-oncogenes
(90). Chromosomal instability leads to an imbalance in
chromosome number and loss of heterozygosity (LOH).
The LOH of important tumor suppressors may enhance the
susceptibility of cells to carcinogens or mutagens,
accelerating tumorigenesis (91, 92).

In reality, most mutations are eliminated from the
pool of replicating cells by cell defense system, such as
apoptosis, but some mutations may be accumulated at a
somewhat low frequency. However, the low frequencies
may be accelerated by carcinogens or due to the alterations
of the cell defense system. In some cases, mutation rates
are not changed, but certain epigenetic events make the
cells divide more frequently than usual, which leads to an
accumulation of genetic mutations. For instance, selective
advantages in the tumor microenvironment as aberrant
humeral, cell-substratum and cell-cell interactions allow
clonal expansion (93), and mutations that occur in stem
cells would have cumulating advantages due to their
relative long-live terms. As for aneuploidy, it is
controversial that aneuploidy occurs as a cause or effect of
cancer development. The evidence that supports aneuploidy
as a cause of cancer initiation includes the aneuploidy and
carcinogenic transformation of normal cells induced by
chemical carcinogens (94, 95).

It is accepted that gene mutations and
chromosome derangements in stem cells, progenitor cells,
and even differentiated cells may give rise to CSCs and
tumor initiation, but the extent in cancer development to
which genetic and epigenetic factors contribute remains to
be defined. The chromosomal derangements and mutations
may be both critical during the initial stages of
tumorigenesis, but in view of the rare rates of tumorigenic
transformation of normal cells, some unidentified factors
may also be involved in tumor initiation.

4.4. Microenvironment

Mutations and chromosome derangement in stem
cells, progenitors or differentiated cells may trigger CSC
formation, but microenvironment of cells is also critical for
their selective clonal expansion. Numerous factors in the
host microenvironment regulate stem cell differentiation
and transformation, and trigger the initial steps of
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tumorigenesis. Recent studies have shown that the
narrowed lineage specificity of tissue-specific stem cells is
regulated by the microenvironment, and under specific
conditions, such as an injury or infection, the
microenvironmental cells may provide specific signals that
counteract the restrictions (96, 97).

A gold study in neuroscience demonstrates the
important effect of microenvironment in differentiation
pluripotency of tissue-specific stem cells. By labeling with
green fluorescent protein (GFP) the neural stem cells
isolated from the central nervous system in mice,
researchers found that when cultured with myoblasts, the
labeled stem cells differentiated into GFP-labeled muscle
cells (98-100). This data indicates the tissue specific stem
cells have lineage plasticity controlled by tissue specific
microenvironment. Differentiated cells also have potential
to de-differentiate into cancer stem cells under certain
microenvironment. For instance, the combination of EGFR
pathway activation and suppression of pl6 and pl9
provokes a high-grade glioma phenotype of both neural
stem cells and differentiated astrocytes (101).

Inflammatory microenvironment has strong
stimulatory activity to tumor initiation, through the
production of inflammatory cytokines/chemokines and
DNA-damaging components (96) (Figure 4). In mice, it has
been shown that Helicobacter felis infection in the stomach
induces bone marrow stem cell influx for the repair of the
gastric epithelia lining. Due to the lineage difference, this
process may be deregulated, leading to stomach cancer
(41). Inflammatory cytokines such as IL-6 may participate
in cancer stem cell formation and regulation of their
dynamic equilibrium with non-stem cancer cell (102). In
regular conditions, cancer stem cells can rapidly convert to
non-stem cancer cells, but the conversion of non-stem
cancer cells to cancer stem cells is less efficient. The IL-6
secreted by cancer stem cells can facilitate the
dedifferentiation of non-stem cancer cells into cancer stem
cells. It has been suggested that the inflammatory cytokines
and other factors, such as IL-6 and NF-kappa B, contribute
to the maintenance of the proportion of cancer stem cells
and non-stem cancer cells in a given cell line (103).
Factually, infiltration of immune cells (e.g. macrophagy
and lymphocytes), growth factors, proteases, cell free
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Figure 4. Inflammatory microenvironment triggers the formation and clonal selection of cancer stem cells. Injury or infections
may induce inflammation responses. Stem cells that reside in the specific tissue may proliferate and repair the tissue injury, but
inflammatory cytokines and microenvironment may deregulate the normal stem cells into cancer stem cells. Inflammatory
environment may also dedifferentiate cancer cells into cancer stem cells.

signaling molecules and other components of the
microenvironment are all stimulators of stem cell
differentiation, or on the opposite, of cell fusion, DNA
mutations and chromosome deregulations, triggering CSC
formation and tumor initiation. Therefore, better
understanding of the roles and effects of tumor initiating
microenvironment would be helpful for researchers to
develop more effective cancer intervention strategies.

5. CONCLUSIONS

Cancer stem cells may originate from tissue-
specific stem cells, bone marrow stem cells, or even
differentiated somatic cells that undergo a dedifferentiation
process. Although more efforts are needed for a
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comprehensive understanding of the mechanism of action,
the cancer stem cell transition of these cells is a
complicated process and may include a set of molecular
and cellular events, such as cell fusion, horizontal gene
transfer, DNA mutation and aneuploidy, and/or
microenvironmental factors. Accumulated mutations in
proto-oncogenes and suppressors, chromosome gain/loss
and rearrangement in stem cells may give rise to cancer
stem cells; the cell fusion between stem cells and cancer
cells allows the fused cell to harbor both self-renewal
activity and transformation ability; and apoptosis triggered
by cell fusion and genetic damage/alterations may stimulate
horizontal gene transfer. Microenvironment may play a
crucial role in all of these processes and selective clonal
expansion of the formed cancer stem cells. A better
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understanding of the roles and action mechanisms of the
host microenvironment in regulating proliferation, self-
renewal and differentiation of normal and malignant stem
cells may shed light on the knowledge of cancer initiation
and progression. It is currently clear that a successful tumor
therapy relies on the ablation of cancer stem cells and the
prevention of new cancer stem cell formation, and therefore
novel agents are developed for cancer treatment that target
CSC signaling pathways Notch (MK-0752, R4733, and
TR-4) (104-106), PI3K (CAL-101 and XL-147) (107),
AKT (perifosine and Archexin) (108), and Hedgehog
(BMS-863923 and IP1-926)(109). Differentiation therapy is
also applied into cancer treatment. This concept is to induce
CSC differentiation into normal adult cells. It was reported
that teratocarcinomas CSCs can be induced to differentiate
into normal adult tissue in the embryonic development
environment, and all-trans-retinoic acid (ATRA) is under
clinical tests for differentiation induction through a nuclear
receptor RAR-mediated pathway (110-112). Interestingly,
salinomycin, a potassium ionophore, showed capability of
selectively killing breast cancer stem cells and inducing
epithelia differentiation of mammary tumor cells, shedding
light on tumor elimination (113). Taken together, genetic
alterations in signaling pathways and differentiation status
in tumors both should be considered for efficacy of cancer
therapies. As an increasing understanding of CSC origins
and tumor biology, more curative cancer therapeutic modes
will be expectable.
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