

International Journal of Pharmacology

ISSN 1811-7775

science
alert

ansinet
Asian Network for Scientific Information

Research Article

Role of PPAR α and PPAR γ in Mediating the Analgesic Properties of Ibuprofen *in vivo* and the Effects of Dual PPAR α/γ Activation in Inflammatory Pain Model in the Rat

¹Mohammad Alsalem, ²Ahmad Altarifi, ¹Heba Kalbouneh, ³Heba Al-Zer, ⁴Belal Azab and ²Khalid El-Salem

¹Department of Anatomy and Histology, Faculty of Medicine, The University of Jordan, 11942 Amman, Jordan

²Faculty of Medicine, Jordan University of Science and Technology, 22110 Irbid, Jordan

³Department of Conservative Dentistry, Faculty of Dentistry, The University of Jordan, 11942 Amman, Jordan

⁴Department of Biology, Faculty of Science, The University of Jordan, 11942 Amman, Jordan

Abstract

Background and Objective: Ibuprofen is commonly used to treat various inflammatory pain disorders. Its analgesic properties are attributed mainly to inhibiting cyclooxygenases enzymes and blocking the production of prostaglandins. The aim of this study is to evaluate the role of PPAR α and PPAR γ in mediating the anti-nociceptive effects of ibuprofen *in vivo*. The anti-nociceptive effects of PPAR α and PPAR γ dual activation are also investigated. **Methodology:** Hot plate analgesia meter and the von Frey filament test were used to evaluate the anti-hyperalgesic effects of ibuprofen on CFA inflammatory pain model in rat and the role played by PPAR α and PPAR γ in mediating these effects. Behavioral tests were performed at two different time points (1 and 6 h) representing the slow and rapid-onset effects of ibuprofen. **Results:** Ibuprofen (100 μ g) significantly restored both the Paw Withdrawal Latency (PWL) and Paw Withdrawal Thresholds (PWT) after CFA injection at the 2 time points selected. Co-administration of the PPAR α antagonist GW6471 (50 μ g) or the PPAR γ antagonist GW9662 (50 μ g) significantly reduced the anti-nociceptive effects of ibuprofen on PWT 1 h post-drug administration. However, co-administration of GW6471 but not GW9662 significantly reduced the inhibitory effects of ibuprofen on PWL 1 h post-drug administration. Co-administration of GW6471 or GW9662 significantly reduced the inhibitory effects of ibuprofen on both PWL and PWT at 6 h post-drug administration. The dual PPAR α/γ agonist tesaglitazar (5 μ g) only reversed thermal PWL at 6 h post-drug administration. **Conclusion:** The PPAR α and PPAR γ at least partially mediate the analgesic properties of ibuprofen. The dual activation of PPAR α/γ receptors could provide a promising strategy to control chronic pain conditions characterized by thermal hyperalgesia.

Key words: Peroxisome proliferator-activated receptor α , peroxisome proliferator-activated receptor γ , ibuprofen, tesaglitazar, pain

Received: July 14, 2016

Accepted: August 25, 2016

Published: October 15, 2016

Citation: Mohammad Alsalem, Ahmad Altarifi, Heba Kalbouneh, Heba Al-Zer, Belal Azab and Khalid El-Salem, 2016. Role of PPAR α and PPAR γ in mediating the analgesic properties of ibuprofen *in vivo* and the effects of dual PPAR α/γ activation in inflammatory pain model in the rat. Int. J. Pharmacol., 12: 812-820.

Corresponding Author: Mohammad Alsalem, Department of Anatomy and Histology, Faculty of Medicine, The University of Jordan, P.O. Box 13924, Postal Code 11942, Amman, Jordan

Copyright: © 2016 Mohammad Alsalem *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

INTRODUCTION

The three peroxisome proliferator-activated receptors (PPARs) subtypes, PPAR α , PPAR β and PPAR γ ^{1,2} are nuclear receptors which act as transcriptional regulators of large number of genes to modulate many metabolic events such as lipid metabolism³, inflammation⁴ and insulin sensitivity⁵. The PPAR α is highly expressed in the liver, skeletal muscle and dorsal root ganglia neurons^{6,7}. It can be activated by large number of molecules such as natural fatty acids and fibrate class of hypolipidemic drugs⁸ and its activation produces profound anti-nociceptive effects in animal models of inflammatory and neuropathic pain, which are consistent with the PPAR α expression in the pain pathway^{7,9}. Similarly, PPAR γ is widely expressed in areas involved in pain processing including neurons of dorsal root ganglion and dorsal horn of spinal cord¹⁰. Activation of the PPAR γ has a well-documented anti-inflammatory activity¹¹. Rosiglitazone (PPAR γ agonist) inhibited protein expression of iNOS, cyclooxygenase-2 and nitrotyrosine formation in RAW 264 cells induced by TNF¹². In whole animal studies, PPAR γ agonists showed significant anti-nociceptive effects, for example, pioglitazone reduces mechanical allodynia and thermal hyperalgesia in peripheral nerve injury model in mice¹³.

Ibuprofen is a non-steroidal anti-inflammatory drug (NSAID) widely used to relieve mild to moderate pain and inflammation in many disorders including: Arthritis, primary dysmenorrhea and headache. Yet its use is accompanied by unwanted side effects including gastrointestinal and cardiovascular side effects^{14,15}. Ibuprofen possesses anti-inflammatory, antipyretic and analgesic activity and its therapeutic effects are attributed to inhibition of cyclooxygenases (COX-1 and COX-2) enzymes that blocks the production of prostaglandins (PGs) from the membrane-bound phospholipid Arachidonic Acid (AA)¹⁶. Although, COX enzymes are the major targets of NSAID¹⁶, they are not the only pharmacologically pertinent site of action¹⁷, it is also suggested that some NSAIDs effects are mediated by PPARs¹⁸.

Ligand binding assays and x-ray crystallography techniques have shown that many non-steroidal anti-inflammatory drugs including, indomethacin and ibuprofen bind to PPAR γ ^{19,20}. Oral administration of ibuprofen reduced the number of activated microglia and reactive astrocytes in the CNS of APPV717I mice in a PPAR γ dependent fashion²¹. Although, there is currently no evidence

that NSAIDs directly bind to PPAR α , it was previously reported that the anti-nociceptive effects of some NSAIDs are mediated through PPAR α ²².

The mechanisms by which PPARs produce their effects fall into two categories: First, the genomic or classical pathway, which involves regulation of gene transcription and consequently changes in protein synthesis, responses mediated by this pathway typically have latencies of hours or even days^{1,23}. Second, the rapid non-genomic pathway which occurs in minutes and normally peaks at 1 h²⁴. Despite the well-documented interaction between NSAIDs and PPARs, the role played by PPAR α and PPAR γ in mediating the anti-nociceptive effects of ibuprofen *in vivo* is not determined. In addition, the mechanism and the time course by which ibuprofen modulates the activity of PPAR α and PPAR γ are poorly understood. The aim of this study is to assess the role of PPAR α and PPAR γ in mediating the anti-nociceptive effects of ibuprofen *in vivo* and further evaluate the time course of these effects by repeating the behavioral tests at different time points, which could reflect different mechanisms of action. Finally, since both receptors have well-documented role in pain modulation, the anti-nociceptive effects of their dual activation *in vivo* will be also evaluated.

MATERIALS AND METHODS

Animals: Behavioral experiments used adult male Sprague Dawley rats (100-250 g, Jordan University of Science and Technology Laboratories). Rats were group housed in the Animal House Unit (The University of Jordan) in a temperature controlled environment $22 \pm 1^\circ\text{C}$ at 12 h:12 h light:dark cycle. Procedures were approved by the scientific research committee at the University of Jordan. Experiments were carried out in accordance with the animal (Scientific Procedure) Act 1986 and international association for the study of pain guidelines.

Induction of inflammatory pain model: For inducing inflammatory pain, animals received subcutaneous injections of complete Freund's adjuvant (CFA; 50% in saline, with 5 mg mL⁻¹ heat-killed *Mycobacterium tuberculosis*, 0.1 mL) or vehicle into the plantar surface of the left hind paw. Control animals received equal amount of vehicle (0.1 mL of saline). After determining the baseline nociceptive responses, the animals were tested every other day for 21 days after CFA injection.

Assessment of thermal hyperalgesia: Rats were placed individually on a hot plate analgesia meter (Columbus instruments, USA) maintained at a constant temperature of $55 \pm 0.1^\circ\text{C}$ after observing them for 5 min in the cage. The Paw Withdrawal Latency (PWL) was recorded as the time taken to exhibit distinct pain behavior either by hind paw licking or hind paw flicks (whichever occurred first). Rats that did not respond within 30 sec were removed from the hot plate to prevent tissue damage²⁵.

Assessment of mechanical allodynia: The von Frey filament test was used to measure sensitivity to a punctuate pressure stimulus. Rats were placed in a plastic cage with a wire mesh bottom which allowed full access to the paws. Behavioral accommodation was allowed for at least 25 min, until cage exploration and major grooming activities ceased. Subsequently, von Frey filaments (2-15 g with logarithmically incremental stiffness; Bioserb, Vitrolles, France) were applied to the mid-plantar aspect of the left hind paw using the "up-down" method to determine the withdrawal threshold, the von Frey hair was presented perpendicular to the plantar surface and held for approximately 6-8 sec²⁶. Data are expressed as Paw Withdrawal Thresholds (PWT) in grams.

Pharmacological treatments: For the assessments of the effects of different drugs on the CFA-induced nociceptive behavior, ibuprofen (100 μg), tesaglitazar (5 μg), ibuprofen (100 μg) plus GW6471 (50 μg , a selective PPAR α antagonist) or ibuprofen (100 μg) plus GW9662 (50 μg , a selective PPAR γ antagonist) were injected into the plantar surface of the left hind paw at day 7 after CFA injection, when inflammation in the left hind limbs was fully developed. The doses of ibuprofen and the PPAR ligands were selected based on previous publications^{22,27}. All drugs were diluted in 50 μL of (3% tween 20 in saline). Control animals (CFA without drug treatments) receive (0.1% ethanol or 0.1% DMSO plus 3% tween 20 in saline). Then nociceptive testing was performed at 1 and 6 h post-drug administration. In all behavioral experiments the observer was blinded to the treatments.

Drugs: The CFA was purchased from Sigma-Aldrich, ibuprofen, tesaglitazar, GW6471 and GW9662 were purchased from Tocris Bioscience (UK). Drugs were initially dissolved in ethanol (100%) or DMSO to form a stock solution and then diluted in (3% tween 20 in saline). Ethanol concentrations in the solutions used in the present study did not exceed 0.1%.

Data analysis: For the studies measuring CFA-induced thermal hyperalgesia data are presented as Means \pm SEM of PWL in seconds and for CFA-induced mechanical allodynia data are presented as Means \pm SEM of PWT in grams. Two-way ANOVA analysis of variance was used with time and treatment are the main factors. Significant ANOVA ($p \leq 0.05$) was followed by Holm-Sidakpost *post hoc* test using GraphPad statistical program (Prism 6). Also one-way ANOVA test followed by Dunnett's *post hoc* was used as appropriate.

RESULTS

Intraplantar injection of CFA produced a prominent local edema and redness after a few hours. In agreement with previous reports²⁸, both thermal PWL and mechanical PWT were significantly reduced 1 day after CFA injection. This reduction persisted for about three weeks (Fig. 1).

At day 7 after CFA injection, when PWL and PWT were significantly reduced, ibuprofen (100 μg) was injected into the plantar surface of the left hind paw, anti-nociceptive properties of ibuprofen were evaluated 1 and 6 h post-drug administration. Ibuprofen significantly restored both PWL and PWT (Fig. 2, 3) at the 2 time points selected. Recent studies have implicated a role of PPAR α and γ in mediating the anti-inflammatory effects of ibuprofen²⁸. This report investigated whether the inhibitory effects of ibuprofen on thermal hyperalgesia or mechanical allodynia were mediated by PPAR α or γ . Neither GW6471 nor GW9662 alone altered CFA-induced thermal hyperalgesia or mechanical allodynia. Co-administration of the PPAR α antagonist GW6471 significantly reduced the anti-nociceptive effects of ibuprofen on both PWL and PWT 1 h post-drug administration (Fig. 2). However, co-administration of the PPAR γ antagonist GW9662 significantly reduced the inhibitory effects of ibuprofen on PWT but not PWL 1 h post-drug administration (Fig. 2).

The PPAR α and PPAR γ control inflammation by inhibiting the induction of pro-inflammatory cytokines²⁹ and limiting the recruitment of immune cells to inflammation sites³⁰. These effects involve changes in gene expression which are developed over a period of hours or even days. So, the role of PPAR α and PPAR γ in mediating the analgesic effects of ibuprofen at a longer time point (6 h) was tested. Co-administration of the PPAR α antagonist GW6471 significantly reduced the inhibitory effects of ibuprofen on both PWL and PWT at 6 h post-drug administration (Fig. 3). Similarly, co-administration of the PPAR γ antagonist GW9662

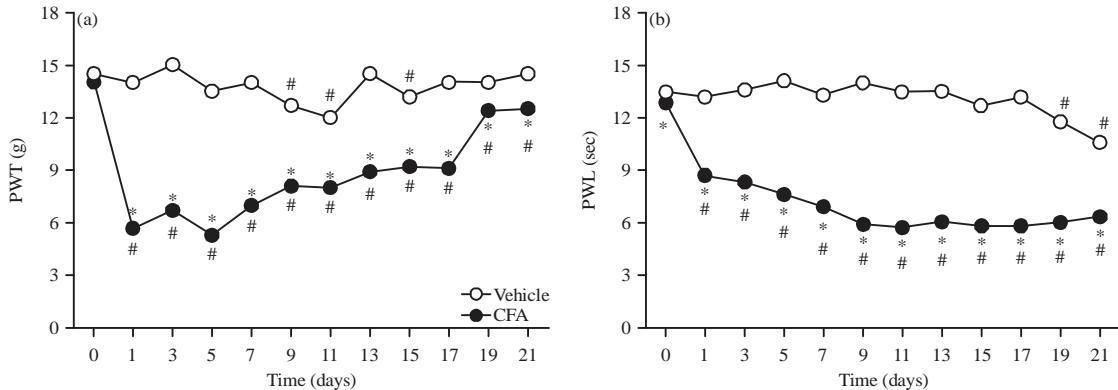


Fig. 1(a-b): Effects of intraplantar injection of Complete Freund's Adjuvant (CFA) on (a), Mechanical PWT and (b) Thermal PWL. Both PWT and PWL were significantly decreased in CFA-treated rats compared with Normal Saline (NS)-treated rats. Two-way ANOVA revealed the following results: (a) Significant main effect of treatment [$F(1,120) = 1674$; $p < 0.0001$], significant main effect of time [$F(11,120) = 55.37$; $p < 0.0001$] and significant main treatment \times time interaction [$F(11,120) = 41.59$; $p < 0.0001$], (b) Significant main effect of treatment [$F(1,120) = 4047$; $p < 0.0001$], significant main effect of time [$F(11,120) = 59.04$; $p < 0.0001$] and significant main treatment \times time interaction [$F(11,120) = 40.75$; $p < 0.0001$]. *Indicate significant difference between groups, #Indicates significant difference vs. day 0 within group. All data represent Mean \pm SEM of 6 rats, PWT: Paw withdrawal threshold in grams, PWL: Paw withdrawal latency in seconds

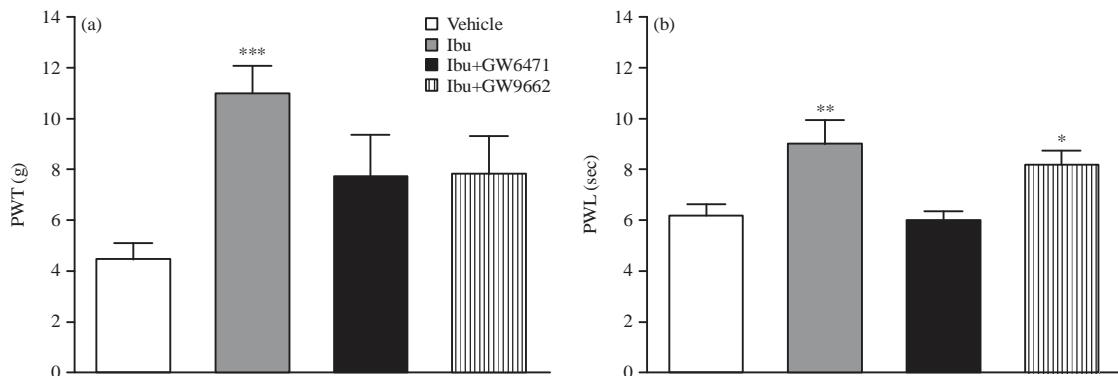


Fig. 2(a-b): (a) Role of the PPAR α or PPAR γ in mediating the anti-nociceptive effects of ibuprofen on mechanical PWT at 1 h post-drug administration on day 7 after CFA injection and (b) Role of the PPAR α or PPAR γ in mediating the anti-nociceptive effects of ibuprofen on thermal PWL at 1 h post-drug administration on day 7 after CFA injection. Data are expressed as Mean \pm SEM and analyzed using one way ANOVA test followed by Dunnett's *post hoc*, all treatments were compared to CFA/vehicle, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, n = 7 rats per group

significantly reduced the inhibitory effects of ibuprofen both on PWL and PWT at 6 h post-drug administration (Fig. 3). As both receptors PPAR α and PPAR γ are involved in mediating the anti-nociceptive properties of ibuprofen, This report investigated the analgesic effects of dual activation of both receptors. Tesaglitazar (5 μ g) did not alter mechanical PWT or thermal PWL at 1 h post-drug administration. However, it partially reversed both mechanical PWT and thermal PWL at

6 h post-drug administration, but significant reduction was observed only in thermal PWL (Fig. 4).

DISCUSSION

Employing the CFA-induced inflammatory pain model, this report expectedly highlighted the anti-nociceptive effects of ibuprofen in rat. In the present study, in which this report

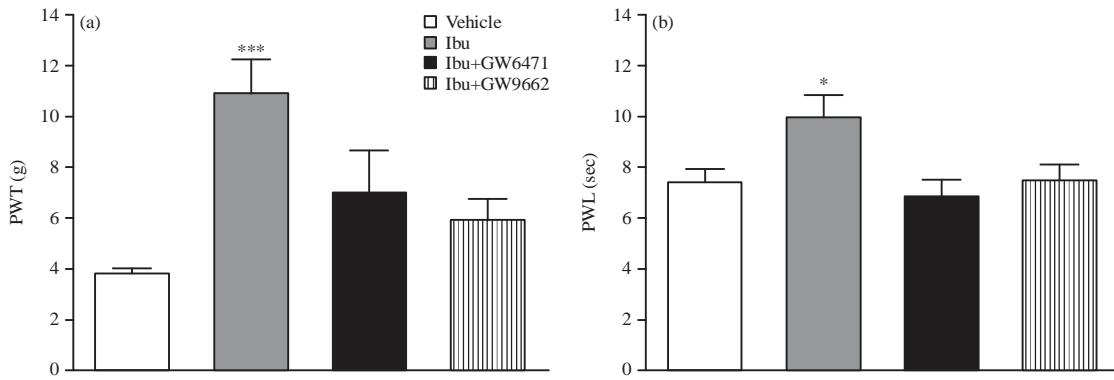


Fig. 3(a-b): (a) Role of the PPAR α or PPAR γ in mediating the anti-nociceptive effects of ibuprofen on mechanical PWT at 6 h post-drug administration on day 7 after CFA injection and (b) Role of the PPAR α or PPAR γ in mediating the anti-nociceptive effects of ibuprofen on thermal PWL at 6 h post-drug administration on day 7 after CFA injection. Data are expressed as Mean \pm SEM and analyzed using one way ANOVA test followed by Dunnett's *post hoc*, all treatments were compared to CFA/vehicle, *p<0.05, ***p<0.001, n = 7 rats per group

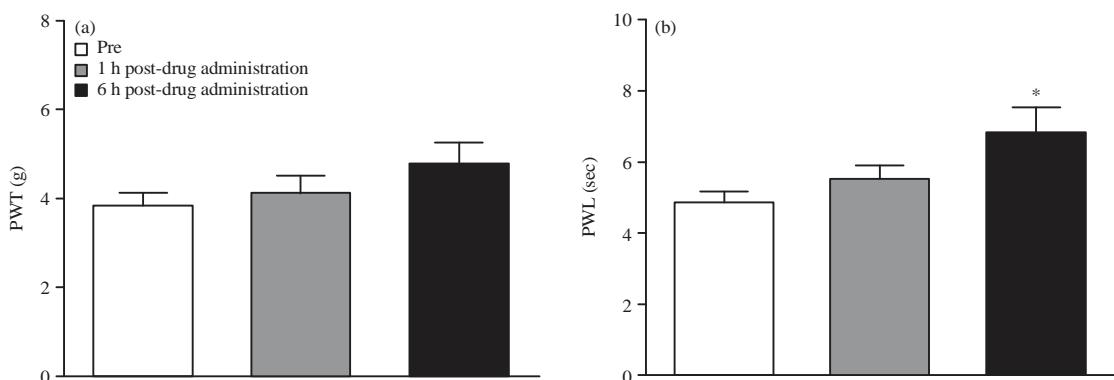


Fig. 4(a-b): (a) Anti-nociceptive effects of tesaglitazar (5 μ g) on mechanical PWT at 1 and 6 h post-drug administration on day 7 after CFA injection and (b) Anti-nociceptive effects of tesaglitazar (5 μ g) on thermal PWL at 1 and 6 h post-drug administration on day 7 after CFA injection. Data are expressed as Mean \pm SEM and analyzed using one way ANOVA test followed by Dunnett's *post hoc*, Pre: Anti-nociceptive effects of tesaglitazar (5 μ g) measured at the 2 time points were compared to baseline values, *p<0.05, n = 7 rats per group

the anti-hyperalgesic effects of ibuprofen was measured at two different time points reflecting the rapid and slow-onset effects of ibuprofen, it has been revealed that PPAR α and PPAR γ play substantial role in mediating both the rapid and slow-onset ibuprofen-induced anti-nociceptive effects *in vivo*. Although, it was previously shown that ibuprofen activates both PPAR α and PPAR γ *in vitro* such as in the CV-1 cell line¹⁹, this data provides the first evidence that the rapid onset effects of ibuprofen are PPAR mediated. These data are in agreement with the previous reports highlighting the apparent analgesic properties of direct PPAR agonists in different pain models both in terms of the magnitude and the time course of the effects^{7,9}.

The finding that PPAR γ mediates the anti-nociceptive effects of ibuprofen is consistent with recently published data reporting that NSAIDs such as celecoxib and diclofenac produces chemo-preventive effects in a rat model of colon cancer in a PPAR γ dependent mechanism³¹. Moreover, indomethacin was found to strongly bind to the Activation Function (AF) 2 site in the ligand-binding domain of PPAR γ providing the molecular basis for PPAR γ -NSAID interaction^{32,33}.

The ability of ibuprofen to not only inhibit COX but also Fatty Acid Amide Hydrolase (FAAH) enzyme^{34,35}, the main enzyme responsible for endocannabinoid metabolism, could suggest the mechanism by which ibuprofen produces its anti-nociceptive effects through PPARs, by which

increased levels of AEA and PEA (Anandamide and palmitoylethanolamide), respectively (substrates for FAAH enzyme) produced the anti-nociceptive effects of ibuprofen, both AEA and PEA are endogenous agonists for PPAR α ³⁶. Although, nimesulide (selective COX-2 inhibitor) produces analgesic effects *in vivo* in PPAR α dependent fashion, nimesulide failed to significantly displace bodipy FL C16 from the PPAR α LBD²². Furthermore, the newly developed N-acylethanolamine acid amidase (NAAA) inhibitor 3-(6-phenylhexanoyl) oxazolidin-2-one (F96), an enzyme responsible for PEA metabolism, produces potential analgesic properties in acetic acid-induced visceral pain in a PPAR α dependent mechanism³⁷.

Employing surflex computational methods including; ligand similarity, docking and protein pocket similarity, Cleves and Jain³⁸ predicted that certain PPAR α ligands such as gemfibrozil interacts with a new target (the COX enzymes), providing the chemical and structural basis for the crosstalk between PPAR α and COX enzymes. However, to exclude the possibility that a direct interaction of ibuprofen with PPAR α underlies anti-nociceptive effects of ibuprofen observed *in vivo*, further experiments including the ligand binding assays are required to evaluate the ability of ibuprofen to directly bind to PPAR α .

Our pharmacological evidence indicates that PPAR γ plays a significant role in mediating the slow-onset anti-nociceptive effect of ibuprofen both in terms of thermal PWL and mechanical PWT. These results are fully consistent with the well-documented anti-inflammatory role of PPAR γ ligands^{39,40}, pioglitazone and rosiglitazone significantly reduced chronic thermal hyperalgesia after Spinal Cord Injury (SCI), these effects were accompanied by inhibition of inflammatory genes including interleukin (IL)-6, IL-1 β , monocyte chemo attractant protein-1, intracellular adhesion molecule-1 and early growth response-1³⁹. These are genomic transcription-dependent events and fully consistent in terms of the time course with the slow-onset effects ibuprofen observed in this study. But when considering the rapid-onset inhibitory effects of ibuprofen on thermal hyperalgesia, it seems that PPAR α but not PPAR γ is involved in mediating these effects. This finding can be explained by a previous report suggesting that PPAR α activation might facilitate the transient receptor potential of vanilloidtype-1 (TRPV1) channel opening⁴¹, a major transduction molecule involved in thermal hyperalgesia^{42,43}. The latter group revealed that PEA rapidly inhibited capsaicin-evoked calcium responses in F11 cells⁴¹. Single injection of rosiglitazone rapidly inhibited neuropathic pain in rat, an effect that peaked 1 h after injection, suggesting a transcription-independent mechanism⁴⁴. Similarly

administration of pioglitazone reduces tactile allodynia within 30 min of application in spared nerve injury rats⁴⁵.

Keeping in mind that ibuprofen is direct ligand of PPAR γ ¹⁹, no significant role for PPAR γ in mediating the rapid anti-hyperalgesic effects of ibuprofen was recognized in this study, this can be justified by the low potency of ibuprofen in activating PPAR γ in comparison to its potency in activating PPAR α ⁴⁶. The finding that both PPAR α and PPAR γ are required to mediate the anti-nociceptive effects of ibuprofen indicates that these effects are dependent upon an interaction with more than one cellular target and that the pharmacological effects of NSAID are not only related to their inhibitory profile on COX enzymes, but also on their activation to PPARs.

Tesaglitazar is a dual PPAR α/γ agonist⁴⁷, previously investigated clinically for its ability to treat type 2 diabetes mellitus^{48,49}. It significantly improves insulin sensitivity⁵⁰ and attenuates diabetic neuropathy in db/db mice⁵¹. To the best of our knowledge, this is the first study to report the anti-nociceptive properties of tesaglitazar. We have shown that tesaglitazar reversed the CFA-induced thermal hyperalgesia 6 h post-drug administration, suggesting a slow-onset transcription-dependent mechanism of action. The finding that ibuprofen but not tesaglitazar produced rapid analgesic effects mediated at least in part by PPARs indicates that the downstream effects of PPARs activation depend on the type of the agonist applied, in which ibuprofen but not tesaglitazar can enhance the rapid signaling pathway of PPAR α which may include the inhibition of the large and the intermediate conductance K_{ca} channels (BK_{ca} and IK_{ca}), respectively⁷ and/or enhance the rapid non-genomic effects of PPAR γ activation including suppression of NF- κ B, STAT-1 and AP-1 signaling pathways^{52,53}.

CONCLUSION

In conclusion, ibuprofen produces anti-nociceptive effects that are at least partially mediated via PPAR α and PPAR γ . In addition, tesaglitazar was effective in reducing CFA-induced thermal hyperalgesia, likely via slow-onset transcription-dependent mechanism of action, this suggests that dual activation of PPAR α/γ could provide a promising target to control chronic pain conditions characterized by thermal hyperalgesia.

ACKNOWLEDGMENT

We thank Dr. Shatha Albaik for the technical help and the animal welfare. This study was sponsored by the deanship of academic research in the University of Jordan.

REFERENCES

1. Berger, J.P., T.E. Akiyama and P.T. Meinke, 2005. PPARs: Therapeutic targets for metabolic disease. *Trends Pharmacol. Sci.*, 26: 244-251.
2. Michalik, L. and W. Wahli, 2006. Involvement of PPAR nuclear receptors in tissue injury and wound repair. *J. Clin. Invest.*, 116: 598-606.
3. Leone, T.C., C.J. Weinheimer and D.P. Kelly, 1999. A critical role for the peroxisome Proliferator-Activated Receptor α (PPAR α) in the cellular fasting response: The PPAR α -null mouse as a model of fatty acid oxidation disorders. *Proc. Natl. Acad. Sci. USA.*, 96: 7473-7478.
4. Pasceri, V., H.D. Wu, J.T. Willerson and E.T.H. Yeh, 2000. Modulation of vascular inflammation *in vitro* and *in vivo* by peroxisome proliferator-activated receptor- γ activators. *Circulation*, 101: 235-238.
5. Shibusaki, M., K. Takahashi, T. Itou, H. Bujo and Y. Saito, 2003. A PPAR agonist improves TNF- α -induced insulin resistance of adipose tissue in mice. *Biochem. Biophys. Res. Commun.*, 309: 419-424.
6. Reddy, J.K. and T. Hashimoto, 2001. Peroxisomal β -oxidation and peroxisome proliferator-activated receptor α : An adaptive metabolic system. *Annu. Rev. Nutr.*, 21: 193-230.
7. LoVerme, J., R. Russo, G. La Rana, J. Fu and J. Farthing *et al.*, 2006. Rapid broad-spectrum analgesia through activation of peroxisome proliferator-activated receptor- α . *J. Pharmacol. Exp. Therapeut.*, 319: 1051-1061.
8. Wahli, W., O. Braissant and B. Desvergne, 1995. Peroxisome proliferator activated receptors: Transcriptional regulators of adipogenesis, lipid metabolism and more... *Chem. Biol.*, 2: 261-266.
9. LoVerme, J., J. Fu, G. Astarita, G. La Rana, R. Russo, A. Calignano and D. Piomelli, 2005. The nuclear receptor peroxisome proliferator-activated receptor- α mediates the anti-inflammatory actions of palmitoylethanolamide. *Mol. Pharmacol.*, 67: 15-19.
10. Moreno, S., S. Farioli-Vecchioli and M.P. Ceru, 2004. Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS. *Neuroscience*, 123: 131-145.
11. Konturek, P.C., T. Brzozowski, J. Kania, S.J. Konturek, S. Kwiecien, R. Pajdo and E.G. Hahn, 2003. Pioglitazone, a specific ligand of peroxisome proliferator-activated receptor- γ , accelerates gastric ulcer healing in rat. *Eur. J. Pharmacol.*, 472: 213-220.
12. Shao, Y.Y., L. Wang, D.G. Hicks, S. Tarr and R.T. Ballock, 2005. Expression and activation of peroxisome proliferator-activated receptors in growth plate chondrocytes. *J. Orthop. Res.*, 23: 1139-1145.
13. Maeda, T., N. Kiguchi, Y. Kobayashi, M. Ozaki and S. Kishioka, 2008. Pioglitazone attenuates tactile allodynia and thermal hyperalgesia in mice subjected to peripheral nerve injury. *J. Pharmacol. Sci.*, 108: 341-347.
14. Serrano, J.L.S., J.M.T. Burillo, A.A. Arias, E.Z. Ferrer, M.T.G. Lluch and J.C.V. Gamez, 2016. Cardiovascular risk associated with the use of non steroidal anti-inflammatory drugs, cases and controls study in a health care area in Spain. *Int. J. Pharmacol.*, 12: 612-616.
15. Liu, J., D. Sun, J. He, C. Yang and T. Hu *et al.*, 2016. Gastroprotective effects of several H₂Rs on ibuprofen-induced gastric ulcer in rats. *Life Sci.*, 149: 65-71.
16. Smith, W.L., E.A. Meade and D.L. DeWitt, 1994. Interactions of PGH Synthase Isozymes-1 and -2 with NSAIDs. *Ann. N. Y. Acad. Sci.*, 744: 50-57.
17. Gilroy, D.W. and P.R. Colville-Nash, 2000. New insights into the role of COX2 in inflammation. *J. Mol. Med.*, 78: 121-129.
18. Wick, M., G. Hurteau, C. Dessev, D. Chan and M.W. Geraci *et al.*, 2002. Peroxisome proliferator-activated receptor- γ is a target of nonsteroidal anti-inflammatory drugs mediating cyclooxygenase-independent inhibition of lung cancer cell growth. *Mol. Pharmacol.*, 62: 1207-1214.
19. Puhl, A.C., F.A. Milton, A. Cvorc, D.H. Sieglaff and J.C.L. Campos *et al.*, 2015. Mechanisms of peroxisome proliferator activated receptor γ regulation by non-steroidal anti-inflammatory drugs. *Nucl. Recept. Signal.*, Vol. 13. 10.1621/nrs.13004.
20. Lehmann, J.M., J.M. Lenhard, B.B. Oliver, G.M. Ringold and S.A. Kliewer, 1997. Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal anti-inflammatory drugs. *J. Biol. Chem.*, 272: 3406-3410.
21. Heneka, M.T., M. Sastre, L. Dumitrescu-Ozimek, A. Hanke and I. Dewachter *et al.*, 2005. Acute treatment with the PPAR γ agonist pioglitazone and ibuprofen reduces glial inflammation and A β 1-42 levels in APPV717I transgenic mice. *Brain*, 128: 1442-1453.
22. Jhaveri, M.D., D. Richardson, I. Robinson, M.J. Garle and A. Patel *et al.*, 2008. Inhibition of fatty acid amide hydrolase and cyclooxygenase-2 increases levels of endocannabinoid related molecules and produces analgesia via peroxisome proliferator-activated receptor-alpha in a model of inflammatory pain. *Neuropharmacology*, 55: 85-93.
23. Berger, J. and D.E. Moller, 2002. The mechanisms of action of PPARs. *Annu. Rev. Med.*, 53: 409-435.
24. Fehrenbacher, J.C., J. LoVerme, W. Clarke, K.M. Hargreaves, D. Piomelli and B.K. Taylor, 2009. Rapid pain modulation with nuclear receptor ligands. *Brain Res. Rev.*, 60: 114-124.
25. Hasani, A., M. Soljakova, M. Jakupi and S. Ustalar-Ozgen, 2011. Preemptive analgesic effects of midazolam and diclofenac in rat model. *Bosnian J. Basic Med. Sci.*, 11: 113-118.

26. Chaplan, S.R., F.W. Bach, J.W. Pogrel, J.M. Chung and T.L. Yaksh, 1994. Quantitative assessment of tactile allodynia in the rat paw. *J. Neurosci. Methods*, 53: 55-63.

27. Bolcskei, K., D. Horvath, J. Szolcsanyi and G. Petho, 2007. Heat injury-induced drop of the noxious heat threshold measured with an increasing-temperature water bath: A novel rat thermal hyperalgesia model. *Eur. J. Pharmacol.*, 564: 80-87.

28. Kaur, S., K.R.V. Bijjem and P.L. Sharma, 2011. Anti-inflammatory and antihyperalgesic effects of the combination of ibuprofen and hemin in adjuvant-induced arthritis in the wistar rat. *Inflammopharmacology*, 19: 265-272.

29. Tsatsanis, C., V. Zacharioudaki, A. Androulidaki, E. Dermitzaki and I. Charalampopoulos *et al.*, 2005. Adiponectin induces TNF- α and IL-6 in macrophages and promotes tolerance to itself and other pro-inflammatory stimuli. *Biochem. Biophys. Res. Commun.*, 335: 1254-1263.

30. Ricote, M., J. Huang, L. Fajas, A. Li and J. Welch *et al.*, 1998. Expression of the Peroxisome Proliferator-Activated Receptor γ (PPAR γ) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. *Proc. Natl. Acad. Sci. USA*, 95: 7614-7619.

31. Ghanghas, P., S. Jain, C. Rana and S.N. Sanyal, 2016. Chemopreventive action of non-steroidal anti-inflammatory drugs on the inflammatory pathways in colon cancer. *Biomed. Pharmacother.*, 78: 239-247.

32. Dwivedi, A.K., V. Gurjar, S. Kumar and N. Singh, 2015. Molecular basis for nonspecificity of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs). *Drug Discovery Today*, 20: 863-873.

33. Waku, T., T. Shiraki, T. Oyama, K. Maebara, R. Nakamori and K. Morikawa, 2010. The nuclear receptor PPAR γ individually responds to serotonin- and fatty acid-metabolites. *EMBO J.*, 29: 3395-3407.

34. Fowler, C.J., S. Holt and G. Tiger, 2003. Acidic nonsteroidal anti-inflammatory drugs inhibit rat brain fatty acid amide hydrolase in a pH-dependent manner. *J. Enzyme Inhibit. Med. Chem.*, 18: 55-58.

35. Fowler, C.J., A. Stenstrom and G. Tiger, 1997. Ibuprofen inhibits the metabolism of the endogenous cannabinoid-mimetic agent anandamide. *Basic Clin. Pharmacol. Toxicol.*, 80: 103-107.

36. Piomelli, D., A.G. Hohmann, V. Seybold and B.D. Hammock, 2014. A lipid gate for the peripheral control of pain. *J. Neurosci.*, 34: 15184-15191.

37. Yang, L., L. Li, L. Chen, Y. Li and H. Chen *et al.*, 2015. Potential analgesic effects of a novel N-acylethanolamine acid amidase inhibitor F96 through PPAR- α . *Scient. Rep.*, Vol. 5. 10.1038/srep13565.

38. Cleves, A.E. and A.N. Jain, 2015. Chemical and protein structural basis for biological crosstalk between PPAR α and COX enzymes. *J. Comput.-Aided Mol. Des.*, 29: 101-112.

39. Park, S.W., J.H. Yi, G. Miranpuri, I. Satriotomo, K. Bowen, D.K. Resnick and R. Vemuganti, 2007. Thiazolidinedione class of peroxisome proliferator-activated receptor γ agonists prevents neuronal damage, motor dysfunction, myelin loss, neuropathic pain and inflammation after spinal cord injury in adult rats. *J. Pharmacol. Exp. Therapeut.*, 320: 1002-1012.

40. Maeda, T. and S. Kishioka, 2009. PPAR and Pain. In: International Review of Neurobiology (Advances in Neuropharmacology, Volume 85), Bagetta, G., M.T. Corasaniti, T. Sakurada and S. Sakurada (Eds.). Academic Press, USA., ISBN-13: 9780080953861, pp: 165-177.

41. Ambrosino, P., M.V. Soldovieri, C. Russo and M. Taglialatela, 2013. Activation and desensitization of TRPV1 channels in sensory neurons by the PPAR α agonist palmitoylethanolamide. *Br. J. Pharmacol.*, 168: 1430-1444.

42. Caterina, M.J., A. Leffler, A.B. Malmberg, W.J. Martin and J. Trafton *et al.*, 2000. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. *Science*, 288: 306-313.

43. Tominaga, M. and T. Tominaga, 2005. Structure and function of TRPV1. *Pflugers Archiv*, 451: 143-150.

44. Churi, S.B., O.S. Abdel-Aleem, K.K. Tumber, H. Scuderi-Porter and B.K. Taylor, 2008. Intrathecal rosiglitazone acts at peroxisome proliferator-activated receptor- γ to rapidly inhibit neuropathic pain in rats. *J. Pain*, 9: 639-649.

45. Griggs, R.B., R.R. Donahue, J. Morgenweck, P.M. Grace, A. Sutton, L.R. Watkins and B.K. Taylor, 2015. Pioglitazone rapidly reduces neuropathic pain through astrocyte and nongenomic PPAR γ mechanisms. *Pain*, 156: 469-482.

46. Jaradat, M.S., B. Wongsud, S. Phornchirasilp, S.M. Rangwala and G. Shams *et al.*, 2001. Activation of peroxisome proliferator-activated receptor isoforms and inhibition of prostaglandin H₂ synthases by ibuprofen, naproxen and indomethacin. *Biochem. Pharmacol.*, 62: 1587-1595.

47. Cronet, P., J.F.W. Petersen, R. Folmer, N. Blomberg and K. Sjöblom *et al.*, 2001. Structure of the PPAR α and γ ligand binding domain in complex with AZ 242; ligand selectivity and agonist activation in the PPAR family. *Structure*, 9: 699-706.

48. Bays, H., J. McElhattan and B.S. Bryzinski, 2007. A double-blind, randomised trial of tesaglitazar versus pioglitazone in patients with type 2 diabetes mellitus. *Diab. Vasc. Dis. Res.*, 4: 181-193.

49. Ratner, R.E., S. Parikh and C. Tou, 2007. Efficacy, safety and tolerability of tesaglitazar when added to the therapeutic regimen of poorly controlled insulin-treated patients with type 2 diabetes. *Diabetes Vasc. Dis. Res.*, 4: 214-221.

50. Fagerberg, B., H. Schuster, G.S. Birketvedt, S. Tonstad, K.P. Ohman, I. Gause-Nilsson and SIR Study Group, 2007. Improvement of postprandial lipid handling and glucose tolerance in a non-diabetic population by the dual PPAR α/γ agonist, tesaglitazar. *Diab. Vasc. Dis. Res.*, 4: 174-180.
51. Cha, D.R., X. Zhang, Y. Zhang, J. Wu and S. Su *et al.*, 2007. Peroxisome proliferator-activated receptor α/γ dual agonist tesaglitazar attenuates diabetic nephropathy in db/db mice. *Diabetes*, 56: 2036-2045.
52. Moraes, L.A., L. Piqueras and D. Bishop-Bailey, 2006. Peroxisome proliferator-activated receptors and inflammation. *Pharmacol. Ther.*, 110: 371-385.
53. Delerive, P., F. Martin-Nizard, G. Chinetti, F. Trottein and J.C. Fruchart *et al.*, 1999. Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. *Circ. Res.*, 85: 394-402.