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Abstract: Intestinal permeability is a physiological property that allows necessary molecules to enter the organism. This property is regulated
by tight junction proteins located between intestinal epithelial cells. However, various factors can increase intestinal permeability (IIP),
including diet. Specific components in the Western diet (WD), such as monosaccharides, fat, gluten, salt, alcohol, and additives, can affect the
tight junctions between enterocytes, leading to increased permeability. This review explains how these components promote IIP and outlines
their potential implications for health. In addition, we describe how a reduction in WD consumption may help improve dietary treatment of
diseases associated with IIP. Research has shown that some of these components can cause changes in the gut microbiota, leading to
dysbiosis, which can promote greater intestinal permeability and displacement of endotoxins into the bloodstream. These endotoxins include
lipopolysaccharides derived from gram-negative bacteria, and their presence has been associated with various diseases, such as autoimmune,
neurological, and metabolic diseases like diabetes and cardiovascular disease. Therefore, nutrition professionals should promote the
reduction of WD consumption and consider the inclusion of healthy diet components as part of the nutritional treatment for diseases
associated with increased intestinal permeability.
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Introduction

The intestinal barrier can regulate permeability through
various components, including the immune system, the
enteric nervous system, and intestinal epithelial cells with
their respective intercellular junctions and cytoskeletons.
Also, the intestinal microbiota plays an important role in
intestinal barrier and permeability integrity through the
regulation of epithelial repair, metabolism and mainte-
nance, and inflammatory responses [1]. However, this bar-
rier must be permeable for certain substances essential for
life.

Intestinal permeability (IP) is the physiological property
that allows the selective entry of nutrients, water, and ions
for their subsequent arrival in the bloodstream [2]. The
molecules passage of the intestinal epithelium occurs
through two pathways: the transcellular pathway (via intra-
celullar) involves the transportation of molecules through
intracellular transfer, usedbymost dietary components like
glucose, amino acids, fatty acids, vitamins, and some ions,
and the paracellular pathway (via intercellular junctions)
as a permeation of hydrophilic molecules, ions and water.
These intercellular junctions, made up of a multiprotein
complex known as tight junctions (TJs), anchor junctions,

and desmosomes, can separate and allow the entry of small
molecules [3]. In some cases, nutrients in high concentra-
tions in the lumen can cross the epithelium through this
pathway [4]. Nevertheless, the breaking of these protein
junctions can lead to an increase in intestinal permeability
(IIP).

An IIP implies an abnormal displacement of pathogenic
microorganisms, antigens, and toxins [5], generating
intestinal deterioration or signs of inflammation and intox-
ication [4], which could have an important association
with some pathologies. For example, recent studies have
reported a prevalence of IIP in 30% of people with type 1
diabetes, 34.3% with Crohn’s disease, 10.5–42.9% with
ulcerative colitis, 34.3% with systemic sclerosis, 35% with
cirrhosis, and others [6]. Some of these diseases are related
to thepresenceof variants associatedwith IIP. For example,
the PTGER4 gene variants for Crohn’s disease, which is
related to an anormal redistribution of TJs and the
cytoskeleton [7]. However, 4.6 to 6.8% of healthy people
have been shown IIP [6], which can be explained by other
causes, not by a specific disease.

Some factors can cause IIP. For example, studies have
reported that infections alter IP. Salmonella penetrates the
tissues and causes a rupture in the TJs [8]. Stress is another
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common cause of IIP; it reduces blood flow to the digestive
system, increasing the content of toxic metabolites that
cause damage to the intestine. Because there is insufficient
flow, the intestine cannot be properly repaired, leading to
changes in the TJ structure that allow more toxic metabo-
lites to enter the bloodstream, further disrupting the gut-
brain connection [9]. Food allergy is associated with a
defect in intestinal function. Some food allergens can pass
through the intestinal epithelium, activatingmast cells that
release inflammatory cytokines and proteases that modify
TJ proteins. Thismodification generates greater permeabil-
ity and passage of food antigens [10].

Finally, it has been reported that some diet components
can promote an IIP [11]. This effect is related to certain food
components of natural origin (gluten and polyunsaturated
fatty acids) and others that are added to food (salt, sugars,
and additives). These components are found in a WD,
a dietary pattern characterized by “fast food”, processed
andultra-processedproducts high in calories, fat, additives,
and sugar but low in vitamins, minerals, and fiber [12].

WD consumption is increasingmore andmore in several
countries and is still prevalent in North America [13] Ultra-
processed products, the base of the WD, represent up to
60% of the calories consumed in the USA, increasing con-
sumption in young people, low educational levels, and
lower-income strata [14]. Long consumption of WD
increases inflammation processes and compromises the
immune system at the systemic level, promoting the
appearance of certain diseases such as metabolic syn-
drome, obesity, and diabetes [15]. Also, consuming this
dietarypatternpromotes“dysbiosis” [16], a termthat refers
an imbalance in the intestinalmicrobiota, increasing patho-
genic microorganisms and reducing those that can benefit
health. A diet high in sugars (sucrose and syrup fructose)
and fat, common in theWD, alters the intestinalmicrobiota
[17, 18]. This change in the microbiota can increase toxic
metabolites in the intestinal lumen, which can easily cross
the intestinal barrier when IIP occurs.

Lipopolysaccharide (LPS), also called endotoxin, is a type
of lipid found on the membrane surface of most Gram-
negative bacteria and is considered a toxic metabolite.
Endotoxemia is generated when LPS crosses the intestinal
barrier and circulates in the blood system through LPS-
binding protein (LBP). The LPS-LBP complex stimulates
cells from the innate immune system, such as monocyte
and macrophage, by binding with Toll Like Recetor-4
(TLR4) and cluster of differentiation 14 (CD14), which
induce to produce cytokines and promote inflammation
[19, 20]. Another metabolite is trimethylamine, a com-
pound generated by bacteria and transformed into
Trimethylamine N-oxide (TMAO) in the liver, whose pres-
ence in circulation induces systemic inflammation and is
considered a cardiovascular risk factor [21].

The toxic metabolites that cross the intestinal barrier
could gradually affect the individual’s health until it
becomes a disease. In addition, prolonged consumption of
the WD could contribute to the development of diseases
due to the presence of the components in the blood (high
concentration of glucose or fat) and the intestinal implica-
tions it could cause. Therefore, this review presents an
explanation of how consuming WD components can pro-
mote the development of IIP. It also provides a schematic
representation of the possible process involved and dis-
cusses the potential implications of WD consumption on
health. Furthermore, the review sheds light on the associa-
tion or development of certain diseases with IIP. Finally, it
emphasizes the importance of reducing WD consumption
as a part of an adequate dietary treatment. For the literature
search process, various electronic databases were utilized,
including MEDLINE, PubMed, Science Direct, Scopus,
and Google Scholar. The selection criteria for original
articles included experiments conducted on animals or
in vitro, utilizingmolecular techniques suchasWesternBlot
and RT-PCR. Additionally, articles published between
2003 to 2023 articles were selected primarily to ensure
the most up-to-date molecular processes were evaluated.

Intestinal barrier

The intestinal barrier is a complex functional unit character-
ized by an organization in a multilayer system that provides
physical and functional protection to the gastrointestinal
tract. The intestinal barrier has three main components:
lumen, mucosal layer, and intestinal epithelium. The lumen
represents the first line of gastrointestinal defense due to the
destruction of pathogenic agents and harmful substances by
pH, gastric secretions, and microbiota. The mucus layer
comprises a layer of water, glycocalyx and glycoproteins,
which prevents bacteria’s adhesion and secretes peptides
such as lysozymes anddefensins [1, 2]. The intestinal epithe-
lium contains several types of cells, such as enterocytes
found in the small intestine, and colonocytes that are present
in the colon. Enterocytes and colonocytes are responsible for
absorbing nutrients and water. Additionally, there are
enteroendocrine cells that secrete hormones, goblet cells
that are responsible for producing mucin, and paneth cells
that release antimicrobial peptides [22].

Intercellular junctions

Intercellular junctions are essential in intestinal homeosta-
sis, allowing the intestinal tissue’s epithelial cells to remain
connected. These junctions can be divided into tight junc-
tions (TJ), anchor junctions, and desmosomes (Figure 1).
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TJ aremultiprotein complexes that formsemi-permeable
connections between epithelial cells, capable of regulating
the paracellular entry of nutrients, ions, and water. This
multiprotein complex is made up of different transmem-
brane proteins, such as occludin, claudins, and junctional
adhesion molecules (JAMs), which interact with peripheral
proteins called zonula occludens (ZO) (Figure 1) [23].

Occludin fulfills TJ’s assembly anddisjunction functions,
while its phosphorylated segments’ interaction with ZO
allows paracellular permeability regulation. In addition, it
also plays a significant role in regulating oxidative stress
at the intestinal cells [24, 25]. Furthermore, claudins regu-
late the paracellular movement of ions since some amino
acids in their structure alter ion selectivity, giving themsim-
ilar characteristics to ion channels [26]. Furthermore, JAMs
are involved in the contact between intestinal cells, the
processes of formation and assembly of the TJ, and the
anchoring unions [27]. Finally, ZO are linked to the trans-
membrane proteins of the TJ and the cytoskeleton’s actin
filaments (F-actin). These interactions facilitate cell prolif-
eration, differentiation and signaling, and strengthening
of the TJ [28].

Anchorage junctions provide structural resistance to
intestinal epithelial cells by adhering their respective actin
cytoskeletons to each other. The interactions between the
cytoskeletons of these cells are possible thanks to proteins
such as E-cadherin, α-catenin, and ß-catenin. In conjunc-
tionwithdesmosomes, anchor junctions allowcommunica-
tion between adjacent cells. Desmosomes are protein
complexes that connect the walls of neighboring cells in
multiple regions to provide resistance and mechanical sta-
bility to intestinal cells [29].

Mucin, a glycoprotein secretedbygoblet cells andPaneth
cells, is another essential element in regulating IP and the
integrity of the intestinal barrier. It is the main and priority
component of the mucus layer, mucin 2 (MUC2) being the
most predominant [30]. As previously mentioned, IP can
be altered by components found in the diet. In the following
sections, the mechanisms of action of some components
that, based on the evidence, are associated with an IIP will
be described.

Glucose

The absorption of this monosaccharide occurs through the
sodium-glucose linked cotransporter 1 (SGLT-1) in the
intestinal epithelium, as well as through the transport pro-
tein GLUT-2 in the apical membranes [31], or through the
paracellular pathway between TJ of intestinal epithelium
cells if there are high concentrations of glucose in the
intestinal lumen and a sufficient osmotic gradient to pro-
mote volume flow [32].

Hyperglycemia is a principal factor in IIP, and the integ-
rity of the intestinal barrier is disrupted since high serum
glucose levels cause a rupture in the TJ between entero-
cytes (Figure 2A). The mechanism by which IIP is related
to high glucose intake is through twomechanisms: 1) retro-
grade transport of glucose into the enterocyte and 2) para-
cellular passage of high concentrations of glucose and
modification of the actomyosin filaments. The first mecha-
nism, hyperglycemia causes glucose to undergo retrograde
transport to intestinal epithelial cells viaGLUT-2. Inmice, it
has been reported that hyperglycemia causes retrograde

Figure 1. Graphic representation of the intercellular junctions of the intestinal epithelium. Tight junctions control the passage of nutrients, while
anchor junctions and desmosomes allow cell adhesion and communication. Abbreviation: JAMs: junctional adhesion molecules.
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transport into the enterocytes through GLUT-2 and repro-
gramming in the epithelial transcriptome, with a decrease
in the expression of genes involved in the glycosylation of
proteins responsible for cell stability, including TJ proteins
[33]. The second mechanism, high glucose concentration
in the intestinal lumen can pass between the junctions of
the enterocytes, generating a rupture betweenTJs proteins.
Research with Caco-2 cells has reported that an increased
glucose flux by SGLT-1 stimulation causes the activation
ofmyosin light chainkinase (MLCK),whichphosphorylates
a portion of myosin, and consequently, it induces the con-
traction of the filaments of the actomyosin cytoskeleton
and the rearrangement of the TJ proteins, causing the
increase on paracellular permeability [23, 34].

A high-glucose diet may promote the development of
intestinal microbiota dysbiosis. Studies in mice have
reported an increase in the proportion of Proteobacteria
and a decrease in Bacteroidetes after consumption of a
high-glucose diet. Additionally, an IIP associated with
decreased levels of ZO and occludin was found in these
studies. However, the exact mechanisms are unknown,
but intestinal dysbiosis may play an important role [35,
36]. These modifications in the gut microbiota promote
thepresenceofgram-negativebacteriaand increased levels

of LPS in the blood, increasing the risk of endotoxemia. The
control ofhyperglycemia is thought to restore intestinal bar-
rier integrity [37]. It has been reported that insulin adminis-
tration can reverse the effects caused by hyperglycemia in
the intestinal barrier and IP integrity [33]. Also, it has been
shown that the use of anti-hyperglycemic agents such as
metformin and peroxisome proliferators activated recep-
tor-γ (PPAR-γ) agonists can alleviate intestinal barrier inju-
ries and improve intestinal barrier function [38, 39].

Fructose

This carbohydrate can be found naturally in fruits, vegeta-
bles, and honey or added to food products such as drinks
and nectars. However, in recent times the consumption of
fructose has increased, especially as a caloric sweetener in
the form of high fructose corn syrup (HFCS), a mixture of
glucose and fructose used in baked goods, tomato-based
sauced, jams, carbonated drinks, and junk food [40].

Fructose is absorbed through the GLUT-5 transport pro-
tein located in the apical membrane of enterocytes and is
transported into the systemic circulation through the baso-
lateral GLUT-2 transport protein to reach the liver [41].
Fructose can be metabolized in the liver and intestine by

Figure 2. Effect of glucose and fructose on intestinal permeability. (A) The presence of glucose and its paracellular intestinal absorption produces
the breakdown and rearrangement of the constituent proteins of the tight junctions (TJ) by transcriptome reprogramming, thus leading to
increased intestinal permeability. Likewise, the high amount of glucose can promote the generation of dysbiosis, which is why the passage of
endotoxins through the opening between the epithelial cells will be more likely. (B) The metabolic alteration of fructose triggers the inflammatory
response, oxidative stress, and dysbiosis, causing a decrease in mucin and TJs proteins, leading to an increase in intestinal permeability.
Abbreviation: GLUT: glucose transporter; LPS: Lipopolysaccharides; MLCK: myosin light chain kinase; SGLT-1: sodium-glucose linked transporter-1.
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the fructokinase (ketohexokinase) enzyme to generate
fructose-1-phosphate using adenosine triphosphate (ATP)
molecules. This fructose conversion allows glucose
synthesis [42].

The alteration of intestinal metabolism of fructose can
lead to IIP (Figure 2B). The fructokinase enzyme does not
have retroinhibition control, so there is no way it can stop
its activity. This reaction requires a large amount of ATP,
causing a reduction of this nucleotide, which stimulates
adenosine deaminase activity, leading to a degradation of
adenine nucleotides to produce intracellular uric acid, a
molecule capable of producing oxidative stress [43, 44].
An increase in intestinal fructokinase expression in mice
was found, along with a reduction in the expression of TJ
proteins, which caused IIP [42].

Furthermore, excessive fructose consumption has been
related to proinflammatory responses in the liver and intes-
tine [45]. The fructose-induced inflammation in mice,
increased expression of TLR4 and Myeloid differentiation
primary response 88 (MyD88), important participants in
chronic inflammation [46,47]. Also, the high intake of fruc-
tose in mice has been associated with high levels of plasma
proinflammatory cytokines such as tumor necrosis factor-
alpha (TNF-α) and interleukin-6 (IL-6) along with a
decrease in the expression of ZO-1 and occludin, leading
to the IIP [48].

Other studies have reported ahigh-fructose diet-induced
gut dysbiosis in mice with a significantly increased abun-
danceofProteobacteria andFirmicutes anddecreasedabun-
dance of Bacteroidetes. A decrease in the expression of
occludin and ZO-1 and an increase in serum endotoxin
levels were also reported in these studies [36, 49]. In rats,
the dysbiosis caused by diets enriched in fructose increased
the predominance of mucin-degrading bacteria, causing a
reduction in themucin glycoprotein on the intestinalmucus
and destabilization of intestinal barrier integrity [50].

High-fat diet

According to the literature, a high-fat diet is directly associ-
ated with alterations of intestinal barrier integrity by devel-
oping the appearance of IIP [51]. This phenomenon can be
caused by two mechanisms: the development of intestinal
dysbiosis and the alteration in intestinal absorption and
metabolism of lipids (Figure 3A) [51, 52].

As mentioned, the consumption of high-fat diets could
generate gut dysbiosis. Numerous studies in rodentmodels
have demonstrated that a high intake of dietary fat can
reduce amount of of Lactobacillus, Bifidobacterium, Bac-
teroidetes, and Akkermansia and increase Oscillibacter and
Desulfovibrio [53, 54, 55, 56, 57]. The increase ofDesulfovib-
rio bacteria, specificallyBilophia wadsworthia, is also stimu-
latedby colonic levels of bile acids, such as taurocholic acid.

In rats, it was demonstrated that Bilophia wadsworthia
produces hydrogen sulfide (H2S), which can inhibit the oxi-
dation of short-chain fatty acids, such as butyric acid, caus-
ing an energetic imbalance in enterocytes leading to
possible cell hypoplasia and IIP [53].

Gut dysbiosis is accompanied by an excessive lumi-
nal content of LPS derived from gram-negative bacteria
membranes. Studies in Caco-2 cells have probed that
LPS can interact with the LBP in enterocytes or CD4
immunological cells [58]. This interaction causes the acti-
vation of TLR4 and stimulates NF-kb activity, inducing an
increased expression and release of proinflammatory
cytokines suchas IL-6andTNF-αandoxidativeagents such
as nitric oxide. This inflammatory process and oxidative
stress influence the regulation of TJ proteins synthesis
and IIP [59, 60].

The intestinal barrier can resist the solubilizing of bile
acids; however, a high intake of fat could cause an uncon-
trolled presence of deoxycholic acid and chenodeoxycholic
acid in the intestinal lumen, promoting the alteration of TJ
proteins and lead to an IIP [61]. A study with Caco-2 cells
has demonstrated that deoxycholic acid and chenodeoxy-
cholic acid stimulates the epidermal growth factor receptor
(EGFR). This mechanism causes the activation of SRC
kinaseandsubsequent serine-threoninedephosphorylation
of the occludin tail, which causes the separation between
occludin and ZO-1, leading to the IIP [62].

Furthermore, a high-fat diet consumption increases the
damage susceptibility of intestinal mucosa due to an accu-
mulation of chylomicrons in the intercellular spaces
betweenenterocytes.This accumulationcauses an increase
in local pressure and loosening of TJ proteins, in addition to
the appearance of perforations on the basolateral mem-
branes of the enterocytes, promoting the possible IIP [63].
In addition, LPS can be incorporated into chylomicrons
via its lipid tail, promoting thedevelopmentof endotoxemia
due to a high amount of LPS in the blood in IIP conditions
[64].

ω-6 fatty acids

Polyunsaturated fatty acids contain more than one double
bond in their chemical structure. The ω-6 fatty acids are
characterized by inducing proinflammatory responses by
havingahighsusceptibility tooxidationandcompetingwith
ω-3 fatty acids in elongation and desaturation reactions
[65].

Arachidonic acid (AA) is the most known ω-6 fatty acid,
thanks to its relation to the inflammatory cascade, as it is
itsmainprecursor.AAcanbeobtained in twoways: through
the elongation of linoleic acid or the consumption of foods
of animal origin, such as eggs, poultry, organ meats,
and fish. After its release in response to injury, AA can be
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metabolized into lipid substances called eicosanoids
through four pathways: cyclooxygenase (COX), lipoxyge-
nase (LOX), cytochrome P450, and reactions triggered by
reactive oxygen species. These pathways create different
lipid mediators, such as prostaglandins (PG), leukotrienes
(LT), lipoxins (LX), and thromboxanes (TX), which act in
the inflammatory cascade [66].

Regarding the intestinal barrier and IP,AA represents the
most studiedω-6 fatty acid (Figure 3B). Intestinal epithelial
cells canmetabolizeAA intoeicosanoids suchasPGandLT.
Research with Caco-2 cells has shown that an increase in
LT, especially LTB4, and LTD4, causes a decrease in the
presence of TJ proteins. LTD4 binds to the cysteinyl leuko-
triene receptor 1 (CysLT1R) and causes the activation of
MLCK. This activation can lead to the contraction of the
actomyosin filaments and the redistribution of occludin.
This mechanism can increase paracellular permeability
[67]. In addition, studies with Caco-2 cells probed that
PGE2, a COX inflammatory metabolite derived from AA,
increases paracellular permeability due to its interaction
with prostaglandin E1 and E4 receptors. This interaction
causes a redistribution ofTJ proteins like occludin and clau-
din [68, 69]. Currently, the consumption ofω-6 fatty acids
is high and is commonly found in processed products.
Therefore, highconsumptionof this typeof fat andproducts
could influence the generation of an IIP.

Gluten

Gluten is a complex of glycoproteins found abundantly in
cereals and grains such as wheat, rye, barley, and oats, the
latter due to contaminationbywheat glutenduringprocess-
ing.Gliadin is themost important protein in gluten,which is
antigenic and predisposes to developing celiac disease or
non-celiac gluten sensitivity in susceptible individuals. This
susceptibility is due to the proteases deficiency in the
human intestine and the rich content of glutamine and pro-
line residues in thecompositionofgliadin.Thedeficiencyof
proteases causes incorrect protein hydrolysis, so gliadin
peptide segments are generated. These peptide segments
can cause damage to the homeostasis of the intestinal bar-
rier [70, 71].

The IIP caused by gliadin occurs through zonulin, a para-
crine protein that canmodulate IP (Figure4) [72]. Studies in
mice have reported that zonulin is released from the intesti-
nal epithelial cells to the intestinal lumen through the inter-
action of gliadin with the chemokine receptor CXCR3 due
to a MyD88 protein-dependent pathway [73]. After reach-
ing the lumen, zonulin bindswith EGFR located in the ente-
rocyte membrane with the help of protease-activated
receptor 2 (PAR2). This mechanism was demonstrated
in both Caco-2 cells and mice [74]. The interaction
between zonulin and EGFR stimulates protein kinase C-α,

Figure 3. Effect of fat on intestinal permeability. (A) A high-fat diet promotes dysbiosis in the intestinal lumen, interacting with the bile acids that
promote cell apoptosis and activate inflammatory and oxidation processes. In addition, increased fat absorption promotes increased chylomicron
(CM) synthesis, which tends to accumulate between tight junctions (TJ) and promotes increased intestinal permeability. (B) A high consumption of
ω-6 fatty acids (FA) causes a decrease in TJ proteins, contraction of the actomyosin complex, and the promotion of inflammation processes.
Abbreviations: AA: Arachidonic acid; CysLT1R: Cysteinyl leukotriene; receptor 1 EGFR: epidermal growth factor receptor; IL-6: Interleukin-6; LBP:
lipopolysaccharide binding protein; LPS: Lipopolysaccharides; LT: Leukotrienes; LTD4: Leukotriene D4; MLCK: myosin light chain kinase; NO: nitric
oxide; PG: prostaglandins; TNF-α: Tumor Necrosis Factor-α.
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transformingG-actin into F-actin through a polymerization
process, leading to the reorganization of the enterocyte
cytoskeleton and TJ proteins such as ZO-1 and occludin,
promoting the development of IIP [72, 75]. This reorganiza-
tion allows an excessive entry of antigens (in this case, glia-
din fragments), and their subsequent interaction with
immune cells promotes the synthesis and release of proin-
flammatory cytokines such as tumor necrosis factor-beta
(TNF-ß) and interferon-gamma (IFN-γ), which causes the
disassemble of TJ and the IIP [76].

IIP and high serum levels of zonulin have been found in
patients with celiac disease [77] and Crohn’s disease, along
with overexpression of chemokine receptor CXCR3 [78]. If
gluten is removed from the diet, the serum levels of zonulin
may decrease, and the IP may stabilize [79]. However, the
presence of gluten does not necessarily determine that
theremaybedamage to IP in thegeneral population.Gluten
susceptibility only appears when protein digestibility is
incorrect due todecreasedproteases in the intestine, gener-
atinggliadin fragments that can interactwithCXRC3 recep-
tors and induce the cascade of reactions.

High-salt diet

Adherence to high-salt diets (especially in sodiumchloride)
represents an important etiological factor in the risk of

developing proinflammatory processes and intestinal prob-
lems [80]. Unfortunately, there is not enough research on
the effects of salt on IP. However, there is evidence that
increased salt intake can generate dysbiosis and alter
intestinal epithelial cells (Figure 5).

The intestinal microbiota can be affected by a high-salt
diet; for example, studies inmicemodelshave reported that
an increased intake of salt is related to an increased abun-
dance of Parasutterella, Erwinia, Ruminococcus, and Lach-
nospiraceae [80, 81, 82, 83] and a decreased abundance
of Lactobacillus, Oscillibacter, Pseudoflavonifractor, John-
sonella, and Rothia [80, 82, 83]. These changes in intestinal
microbiota composition promote alterations of microbiota
functions. A study in mice has shown that a high-salt diet
can impact on proteins and polysaccharides, degrading
enzymes secreted by gut microbiota [84]. In association
with the intestinal epithelium, high concentrations of
sodium can affect cell proliferation due to the formation
of cellular hyperplasia along with an early apoptosis induc-
tion and the development of cells with altered physiology
[85]. Salt stimulates the SGLT-1 transporter and activates
sodium-hydrogen exchanger 3 (NHE3), an important
absorptionpathway for sodium in the small intestine. In cul-
tured cellmodels, it was demonstrated that theNHE3 stim-
ulationby sodiumcauses thephosphorylationof themyosin
light chain, which promotes the contraction of the acto-
myosin ring, and, thus, the appearance of IIP [86].

Figure 4. Effect of gluten on intestinal permeability. The segments of the gliadin constituent of gluten achieve the release of zonulin, triggering the
displacement of the tight junctions (TJs) proteins and favoring the increase in intestinal permeability. This action leads to the gliadin segments
passing paracellularly and promoting the activation of the immune system, causing greater inflammation in the cells. Abbreviations: CXCR3:
chemokine receptor-3; EGFR: epidermal growth factor receptor; IFN-γ: interferon-γ; MyD88: myeloid differentiation primary response 88; PAR-2:
receptor activator of proteinase-2; TNF-ß: tumor necrosis factor-ß.
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Alcohol

After oral intake, ethanol is absorbed in the small intestine,
specifically in the duodenum and jejunum, thanks to the
abundant microvilli in intestinal cells. About 98% of the
absorbed ethanol reaches the liver to undergo biotransfor-
mation, while the remaining 2% is eliminated through res-
piration, urine, or enterohepatic circulation [87]. However,
it has been observed that high intakes of alcohol can cause
an intestinal accumulation of alcohol metabolites, such as
acetaldehyde [88].

Alcohol can generate IIP due to the accumulation of
acetaldehyde in the enterocytes, which promotes cell dam-
age (Figure 6). Studies in mice and Caco-2 cells have
demonstrated that high alcohol exposure significantly
reduces TJ proteins [89, 90]. Furthermore, the presence
of acetaldehyde in cell culturemonolayers causedoxidative
stress and the disassembly of the TJ proteins because of a
decrease in intracellular zinc levels [80,90]. Inmice, exces-
sive alcohol intake caused alterations in the expression of
MUC-2, leading to a partial reduction of the mucus layer
on the intestinal barrier [91]. Other studies in mice have
shown that chronic alcohol consumption causes intestinal
cell loss due to damage to intestinal stem cells [92].

Excessiveconsumptionofalcohol canchange thecompo-
sition of gutmicrobiota. Studies in alcoholic individuals and
patients with alcoholic liver cirrhosis have shown an
increased prevalence of Proteobacteria, Enterobacteriaceae,

and Streptococcaceae and a decreased prevalence ofClostri-
dia, Bacteroidetes, Lactobacillus, and Faecalibacterium [93,
94, 95]. The IIP caused by alcohol has been related to bac-
terial translocation and the development of endotoxemia,
as it occurs together with dysbiosis. In addition, the combi-
nation of dysbiosis and IIP is important in the development
of diseases and issues in the liver [96, 97].

Food additives

Different international authorities regulate the application
of food additives in food products to avoid microbiological
and toxic risks to consumers.Despite this, it has been found
that some additives can impair intestinal barrier integrity
and promote an increase in IP [98, 99].

Synthetic emulsifiers such as carboxymethyl cellulose
(CMC) and polysorbate 80 (P80) are added to processed
foods to extend shelf-life and improve texture properties.
However, these food additives can alter intestinal barrier
integrity and promote the appearance of IIP [100]. Studies
inmicemodelshaveshownthatanexcessive intakeofCMC
and P80 causes IIP due to damage in the TJ proteins,
decreased MUC-2 synthesis, the development of bacterial
translocation, and the appearance of proinflammatory pro-
cesses [101, 102, 103].

Artificial sweeteners such as saccharin, acesulfame
potassium, and saccharin provide sweetness to food and

Figure 5. Effect of salt on intestinal permeability. Increased sodium absorption produces alterations in the tight junctions (TJs) and the
contraction of the actomyosin filament, promoting increased intestinal permeability. Likewise, high concentrations of sodium induce dysbiosis,
mainly the reduction of lactobacillus, which can increase other Lipopolysaccharides (LPS)-generating species and thus aggravate the IP state.
Also, the increased absorption of sodium promotes physiological changes in intestinal cells by promoting apoptosis. Abbreviations: NHE3:
sodium-proton-exchanger subtype 3; MLCK: myosin light chain kinase; SGLT-1: sodium-glucose linked transporter-1.
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beverages [99].This typeof sweetenershasbeenassociated
with negative effects on the intestinal barrier. IIPwas found
in a mice model after high consumption of acesulfame
potassium due to excessive proinflammatory cytokines
and a reduced expression of glucagon-like peptide (GLP)
receptors. These receptors help reinforce TJ protein stabil-
ity [104].Another study in rats demonstrated that excessive
sucralose intake caused IIP alongside the aggravation of
intestinal inflammation and inactivation of digestive pro-
teases [105]. A study with Caco-2 cells demonstrated that
saccharine caused IIP due to a reduction of claudin-1 levels
[106].

High intakes of synthetic emulsifiers and artificial sweet-
enersmaycause intestinalmicrobial changes, leading togut
dysbiosis. Inmice, high intakes of CMCand P80 decreased
the prevalence of Clostridiales and Lactobacillus and
increased the prevalence of Bacteroidales, Bacteroidetes,
Proteobacteria, Helicobactraceae and Campylobacterales
[103, 107]. In mice, the consumption of sucralose, acesul-
fame potassium, and saccharine reduced the amount of
Lactobacillus, Clostridium, Lachnospiraceae, Ruminococ-
caceae, Roseburia, and Turicibacter. Also increased the
amount of Bacteroides, Sutturella, Proteobacteria, E. coli,
and Shigella [108, 109, 110].

The studies have shown that WD components promote
IIP, and although these components have been evaluated
in vivo and in animals, their effect onTJ in humans has been
proposedas thepossible causeof IIPand serumendotoxins.
For instance,Molina-Vega et al. [111] reported the presence
of serum endotoxins (LPS and LBP) and an increase in IIP
markers (zonulin) in obese people after a high-fat load. This

suggests that the presence of a high-fat load influences the
alterations in TJ. Additionally, it has been demonstrated
that a fructose-richdiet elevatesbacterial endotoxinplasma
levels in healthy people, showing that high-fructose con-
sumption also influences IIP [112]. Astudillo-López et al.
[113] evaluated the diet and the presence of IIP markers in
young people, revealing an association between high
energy, fat, andcarbohydrate consumptionwithhighserum
concentrations of zonulin and LPS. Although these studies
suggest the impact of the type of diet on IIP in humans, fur-
ther research is required to evaluate the effect of WD com-
ponents together rather than separately, as most studies
have shown.

Health implications of WD and IIP

Overconsumption of the WD has been associated with the
development of obesity, metabolic syndrome, and type 2
diabetes, as we mentioned [2, 15]. These diseases are pro-
moted by the hyperglycemia, hyperinsulinism, and a sys-
temic pro-inflammatory process due to the high-sugars
and high-fat consumption from ultra-processed products
[104, 114].

It is evident that the WD components can contribute to
the development of certain diseases. However, they also
affect IIP and development of dysbiosis due to their pres-
ence in the intestinal lumen. An IIP allows the passage of
metabolic products and antigens caused by dysbiosis. Once
they enter the circulatory system, they can significantly
alter the immune system, leading to an inflammatory pro-
cess. Therefore, metabolites such as LPS may cause or

Figure 6. Effect of alcohol on intestinal permeability. Acetaldehyde induces oxidative stress and decreases the presence of tight junctions (TJ)
proteins. It can also induce cell apoptosis by its accumulation inside the cell. In addition, ethanol generates dysbiosis in the intestinal lumen, thus
increasing the presence of endotoxins and pathogenic bacteria. Combining IP and dysbiosis promotes the risk of endotoxemia and bacterial
translocation. Abbreviation: LPS: lipopolysaccharides.
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contribute to the development of certain diseases. For
instance, studies have shown that IIP exists in patients suf-
fering from autoimmune, neuroinflammatory, and meta-
bolic diseases [115].

An immune system overstimulated can promote the
developmentofautoimmunediseases,whichgenerateanti-
bodies against the organism’s antigens, causing the
immune system to attack tissues. The causes of autoim-
mune disease can be environmental, physiological, or
genetic factors. However, the presence of IIP could influ-
ence the development of the disease. IIP has been reported
in type 1 diabetes mellitus (T1DM), ankylosing spondylitis,
celiac disease, systemic lupus erythematosus (SLE), multi-
ple sclerosis, and others [116, 117, 118, 119, 120].

In T1DM, it has been reported that IIP can start before
disease onset [121]. Children with IIP showed multiple
higher islet autoantibodies andprogressed toDM1, evaluat-
ing it by the blood lactulose:rhamnose ratio, compared to
those who did not progress [116]. Furthermore, higher
serum levels of LPS and zonulin have been observed in
patients with T1DM [122, 123].

Recently, a study has reported that a dysbiosis with IIP
contributes to the pathogenesis of SLE; there were higher
levels of zolunine, soluble CD14 and TRL4 in serum and
decreased α-diversity of the intestinal microbiota in
patientswithSLE than inhealthy controls [124]. In addition,
differences in the abundance of bacteria and high serum
LPS have been reported in patients with SLE compared to
healthy people [125]. Enterococcus gallinarum, a bacterium
that is often present in the liver or blood of some SLE-sus-
ceptible patients, has been suggested as a candidate for a
“pathobiont”, a microorganism that could influence the
clinical characteristics of SLE patients [126]. Therefore,
IIP and dysbiosis in these autoimmune diseases are com-
mon. If autoimmune patients consume a WD, the compo-
nents could develop dysbiosis, increase intestinal damage,
intensify IIP, andgenerate greater immune system stimula-
tion by allowing the entry of endotoxins. The consequence
of overstimulation couldmakemedical treatment fail, such
as glucocorticoids and immunosuppressants, the most
common treatments used [127].

Neuroinflammatory diseases, such as autism, Alzheir-
mer’s disease, major depressive disorders, and schizophre-
nia have been related to IIP [128, 129, 130, 131].
Neuropathological diseases are related to inflammatory
processes in the brain and intestine with the gut-brain axis
connection. The presence of dysbiosis and intestine inflam-
mation allow the entry of LPS and bacterial translocation,
generating a greater stimulus in the immune system that
elevates proinflammatory cytokines. This condition causes
the nervous system to be more affected, creating a vicious
circle. Increasing the secretion of cortisol will generate an
IIP and, with it, an increase in the entry of endotoxins [132].

In autism has been reported a higher zonulin levels than
healthy controls, and a correlation between zonulin levels
and“ChildhoodAutismRatingScale score” [133]. Intestinal
fatty acid binding protein (I-FABP) is another IIP biomar-
ker, a cytosolic protein presented in blood when the intesti-
nal epithelium is damaged. It has been shown that increases
in serumI-FABPcorrelatewithmoremaladaptivebehavior,
communication, and social interaction problems [134]. The
inflammation process from IIP anddysbiosis causesAlzhei-
mer’s disease to progress more quickly. Dysbiosis and IIP
could induce systemic and neuroinflammation with an
amyloid-beta (Aβ) peptide aggregation [135]. In the other
hand, the bacterial amyloid is a metabolite of the intestinal
microbiota that crosses after the IIP and is considered an
initiating factor for Aβ aggregation [136]. For example, in
experimental studies with Pseudomona aeruginosa, a bac-
terium that colonizes intestinal infection, secretes bacterial
amyloidpeptides that induceAβaggregation [137]. Further-
more, elderlypatientswithbrainamyloidosiswere shownto
have a greater abundance of intestinal Escherichia/Shigella
and serum proinflammatory cytokines compared to those
without brain amyloidosis [138]. Likewise, Escherichia coli
has been demonstrated to generate amyloid biogenesis
[139]. Therefore, we must consider that the development
of Alzheimer’s can be promoted by an inadequate intestinal
barrier, dysbiosis, and the passage of bacterial molecules,
although this requires a greater number of studies in
patients with this condition. Some psychiatric diseases also
are associated with IIP. For example, a study who analyzed
IIP biomarkers in patients with schizophrenia have more
elevated serum concentration of LBP and zonulin than
healthy controls [131]. Likewise, it has been reported dys-
biosis in elderly patients with schizophrenia; Prevotella in
the intestine increased with a positive correlation with
proinflammatory cytokines. The authors mentioned that
this correlation could be related to the pathogenesis of
schizophrenia [140]. As we mentioned, the WD has been
associated with the progression of neuroinflammatory dis-
eases. Studies report the relationship of diet with neurolog-
ical diseases through the microbiota and IIP [141, 142], but
not through the direct effect of the components on the neu-
rological system. As a result, consuming the WD should be
limited in patients with neurological disease to reduce the
IIP, dysbiosis, and neurological damage process.

Finally, metabolic disorders such as obesity, type 2 dia-
betes mellitus (T2DM), and non-alcoholic fatty liver have
been associated with IIP. Metabolic diseases are related to
dietary factors, so part of this review has shown that certain
components of theWDare found in high-calories and high-
fat foods. In addition, the passage of bacteria and LPS into
the circulatory system has been observed to affect normal
glucose function, leading to reduced insulin sensitivity
through an immune response. Therefore, impaired insulin
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sensitivity may promote some of the known metabolic dis-
eases [143].

The presence of dysbiosis and IIP in obesity and DM2 is
strongly established, as is the association of both diseases
with a highWDconsumption [144, 145]. Recently, the term
“metabolic endotoxemia” is derived from dietary high-fat
consumption and dysbiosis in obese patients, which
increases IP and causes a large amount of LPS to pass
through the intestinal epithelium. This metabolic endotox-
emia induces oxidative stress and inflammation, as a result,
influences thedevelopmentofmetabolic syndrome, cardio-
vascular diseases, and DM2 [146]. For example, a meta-
analysis of completed cohort studies examined the relation-
ship of endotoxemia in patients with metabolic syndrome
(n=7178). The analysis showed a direct association between
LPS concentrations and lipoprotein concentrations such as
VLDL, IDL, LDL, small HDL, and serum glucose, among
other indicators [147]. Likewise, the presence of endotox-
emia is a risk factor for the prevalence and incidence of
T2DM, independent of other risk factors such asBodyMass
Index (BMI), blood glucose or C-reactive protein [148].

Non-alcoholic fatty liver disease (NAFLD)has beenasso-
ciated with IIP, dysbiosis and endotoxemia [149]. A study
with 237NAFLD patients determined a significant associa-
tion between the concentration of LBP and LPS with the
presence of nonalcoholic steatohepatitis (NASH) and fibro-
sis [150]. The endotoxemia could be related to the common
dysbiosis in NASH. It has been reported that more Bac-
teroides and Ruminococcus and fewer Prevotella colonies in
the gut fromNAFLD patients with severe NASH than with-
out NASH [151]. These data show that endotoxemia could
be a consequence of obesity, diet, IIP, and dysbiosis, which
may contribute to the development of other metabolic
diseases.

The present work shows that the consumption of theWD
components, with a lot of amounts of ultra-processed prod-
ucts, as well as the excessive consumption of alcohol, can
be triggersofhavingan IIPanddysbiosis, asdescribed inFig-
ure7.Thehighconsumptionofsugars(glucoseandfructose),
ω-6 fatty acids, sodium, additives, alcohol, and gluten (for
some people) increases IP and generates dysbiosis. Both
intestinal problemsoriginating fromWDconsumptioncould
generate endotoxemia, bacterial translocation, and antigens
in the blood. These factors could increase stimulated
immune cells and proinflammation and, therefore, could
promote the initiation, development, and prolongation of
diseases, especially autoimmune and neurological ones
[152, 153], which did not have greater relevance until a few
years ago.

Based on the information provided, there is insufficient
evidence to support the idea that the diseases outlined in
this study contribute to IIP, or that IIP causes the diseases.
However, there is a strong association between disease and

IIP, although it is unclear which comes first. Therefore,
future research should focus on reducing the likelihood of
IIP, whether or not it is associated with a disease.

Consuming a diet low in WD components can help pre-
vent IIP and dysbiosis in healthy individuals. Additionally,
a healthy diet can serve as a supportive treatment for vari-
ous diseases including neuroinflammatory, autoimmune,
and metabolic conditions. Research studies have shown
that incorporating certain dietary components, as a supple-
ment or included in the diet, such as vitamin D, glutamine,
ω-3 fatty acids, fiber, prebiotics, and probiotics or fer-
mented foods, can improve IIP. These components are
referred to as “strengthening dietary components”because
they help to strengthen TJ proteins, reduce inflammation,
andpromoteahealthymicrobiota [154]. Forexample, foods
rich inω-3 fattyacids, suchas fishand itsoils, help their anti-
inflammatory capacity [155]. Glutamine has been demon-
stratedasa supplement that reinforcesTJ [156].Due to their
high fiber content, fermented foods, probiotics supple-
ments, vegetables, legumes, andwhole grains allow an ade-
quatemicrobiota and a reduction in the entry of endotoxins
[154].And finally, fruits, vegetables, cereals, andbeverages,
suchas redwine, canbeusefuldue to theirhighpolyphenols
content (especially quercetin and resveratrol), which can
modulate the TJ proteins expression [157]. These healthy
components couldbe included inpatient’s dietwith anydis-
ease described in this review (i.e., autoimmune, neurologi-
cal, or metabolic disease) to strengthen the intestinal
barrier.

Aswe have seen, consuming certain “strengthening diet-
ary components” has been shown to have a positive effect
on the intestinal barrier and reduce IIP. However, it is
important to consider the best way to administer these
components. We suggest that the first step in nutritional
treatment for people likely to have IIP is to reduce the com-
ponents of the WD before beginning any therapy with
strengthening dietary components. For instance, in a
study where probiotic triple viable capsule supplementa-
tion (Bifidobacterium longum, Lactobacillus acidophilus and
Enterococcus faecalis) was evaluated to determine its effec-
tiveness in patients with a high-fat diet, no significant
improvement was observed when probiotics were added
without changing the diet [158]. Therefore, it is not enough
to introduce “strengthening dietary components” to
improve the intestinal barrier if the damaged components
are not reduced.

It is crucial for ahealthprofessional, suchasanutritionist,
to be part of the patient’s treatment and work in collabora-
tion with the doctor to provide conventional treatment and
consider possible intestinal problems that indicate IIP and
dysbiosis in patients’ clinical history. Initially, the nutrition-
ist will assist in changing dietary habits and eliminating
WD components that promote IIP. Subsequently, the
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nutritionist will include foods rich in “strengthening dietary
components” in the patient’s diet. However, in the case of
supplementation, it is essential to consider that more
research is required to determine the appropriate doses
and types of supplements. For example, a meta-analysis
showed that supplementation of theLactobacillus rhamnosus
strainGG increased the relapse rates ofCrohndisease [159].
Therefore, it is important tounderstandthatnotallprobiotics
are effective, and there are no established supplement
dosages. A systematic review revealed that different doses
of L-glutamine given to patients with inflammatory bowel
disease did not significantly reduce intestinal permeability
in most of the studies evaluated [160]. For this reason, it is
essential to take special care when supplementing with cer-
tain components due to the lack of sufficient evidence
regarding their effect on IIP; the effectiveness of a certain
supplement will also depend on the type of disease the
patient has. Therefore, we emphasize the importance of
reducingWDconsumption as it is an easy and cost-effective
way to improve habits, leading to an overall improvement of
not only the intestine but also neurological, autoimmune, or
metabolic diseases the patient may have.

Conclusions

High consumption of certain components found in a WD,
such as fructose, glucose, fat, sodium, alcohol, food addi-
tives, and gluten (in some people), can cause changes in
the TJ, leading to IIP. Additionally, components present in
the intestinal lumencancausean imbalance in thegutmicro-

biota, which in turn promotes heightened intestinal perme-
ability. Although there is some evidence showing how
dietary components can increase permeability, more
research is needed to draw conclusions about humans.
Nonetheless, it is clear that IIP can lead to the passage of
endotoxins into circulation, which has been linked to certain
diseases, including autoimmune, neuroinflammatory, or
metabolic diseases. Therefore, medical specialists should
consider thepossibilityof intestinalproblems, suchas intesti-
nal permeability and dysbiosis, in the clinical history of
patients with these diseases. Furthermore, nutritionists
should modify the patient’s diet by reducing or eliminating
foods associated with a WD and increasing foods that can
regulate and stabilize intestinal permeability and dysbiosis.
These points should be considered in the future to improve
the treatment of patients while always keeping in mind the
importance of intestinal health in any disease.
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