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Abstract

Background: White matter (WM) is a principal component of the human brain, forming the structural basis for neural transmission
between cortico-cortical and subcortical structures. The impairment of WM integrity is closely associated with the aging process, mani-
festing as the reorganization of brain networks based on graph theoretical analysis of complex networks and increased volume of white
matter hyperintensities (WMHs) in imaging studies. Methods: This study investigated changes in the robustness of WM brain networks
during aging and assessed their correlation with WMHs. We constructed WM brain networks for 159 volunteers from a community
sample dataset using diffusion tensor imaging (DTI). We then calculated the robustness of these networks by simulating neurodegenera-
tion based on network attack analysis, and studied the correlations between WM network robustness, age, and the proportion of WMHs.
Results: The analysis revealed a moderate, negative correlation between WM network robustness and age, and a weak and negative
correlation between WM network robustness and the proportion of WMHs. Conclusions: These findings suggest that WM pathologies

are associated with aging and offer new insights into the imaging characteristics of the aging brain.

Keywords: white matter; aging; brain networks; robustness; white matter hyperintensities

1. Introduction

Human cognition, emotion, motor functions, and sen-
sation all rely on the transmission of signals by brain neu-
rons [1]. White matter (WM) is a major central nervous sys-
tem component, primarily composed of myelinated and un-
myelinated axons and oligodendrocytes that synthesize sph-
ingomyelin. Myelin sheaths, composed of lipid-rich myelin
and cholesterol, significantly increase the speed of neural
impulses [2]. WM constitutes nearly half of the brain’s vol-
ume and is responsible for the transmission of electrical
signals between brain regions [3]. Abnormalities in WM
function can lead to several neuropsychiatric abnormalities
and cognitive disorders. The brain undergoes a series of
structural and functional changes during aging, including
decrease in brain volume, gray matter (GM) atrophy, and
ventricular expansion [4,5]. Additionally, WM damage, in-
farctions, and microhemorrhages are more frequent among
the aged population [4,5]. Notably, neurotransmitters lev-
els, including dopamine, acetylcholine, and serotonin, de-
cline with aging [4,5].

Recent research has emphasized the role of brain net-
work connectivity in cognitive performance in old age.
Studies have shown links between changes in network con-
nectivity and several cognitive domains such as visuospatial
reasoning, information processing speed, executive func-
tion, and memory [6-8]. Aging also triggers the reorga-
nization of structural brain networks [9]. Individual dif-
ferences in brain network alterations during aging may be
mediated by common pathways in the disease process [ 10—
12]. Although it was once believed that age-related brain

functional changes are primarily due to GM atrophy, this
view has shifted in recent years [13]. Study has found that
changes in cognitive function do not necessarily accompany
significant declines in the number of neurons [14]. With
advancements in diagnostic techniques, WM atrophy, con-
duction disruption, vascular damage, inflammation, and de-
myelination have been observed in aging brain tissue. It has
now been suggested that age-related WM pathologies are
closely associated with the development and prognosis of
brain diseases, including sensorimotor disorders, cognitive
impairments, and mental diseases [15]. Therefore, WM in-
tegrity is critical for normal brain function and health.

Diffusion tensor imaging (DTI) is an imaging tech-
nique that utilizes magnetic resonance imaging (MRI) tech-
nology to study the diffusion behavior of water molecules
in biological tissues. It has been extensively used to study
WM pathologies [16—18]. WM fiber tracking reconstructs
the trajectories of WM brain networks in the brain using
DTI data [19,20]. A WM brain network is a network of
neurons interconnected by WM fiber tracts. Recently, a
study has employed graph theoretical approaches to inves-
tigate the network structure of the brain [21]. Graph theory,
a branch of mathematics, conceptualizes different brain re-
gions as nodes and the connections between these regions as
edges. Based on this perspective, researchers can calculate
various network parameters, such as node degree, cluster-
ing coefficient, and characteristic path length, to reveal the
topological properties of the network [22]. Considering the
brain as a complex network, it becomes possible to study
the types and degrees of resilience to damage exhibited by
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Fig. 1. Relative global efficiency change curve at the time of node removal in network attack analysis.

the brain, referred to as network robustness [23]. Network
robustness describes the ability of a network to maintain its
functionality and structure when experiencing damage or
attacks [24]. Studies on network robustness primarily focus
on two issues: The first is quantifying network robustness,
and proposing various metrics, such as network efficiency
and connectivity [25]; the second issue is, enhancing net-
work robustness, where factors such as network topology,
the significance of nodes, and network dynamics affect its
robustness [26].

Leukoaraiosis (LA) manifests as white matter hyper-
intensities (WMHs) on T2-weighted brain magnetic reso-
nance imaging scans, referring to changes in brain white
matter [27,28]. Age is recognized as a major risk factor for
LA [27-32]. Clinically, LA is strongly associated with an
increased risk of cognitive decline [33,34], motor gait dys-
function [35], stroke [36], and dementia [33]. Given the
clinical importance of WMHs in the aged population, there
is an urgent need to understand the clinical characteristics
of WMHs and develop effective prevention and manage-
ment strategies. In addition, the aging process is accom-
panied by changes in the WM network, and it is hypoth-
esized that the WM network becomes progressively less
resistant to lesions during aging, which might be relevant
to the manifestation of WMHs commonly seen clinically.
Therefore, unlike previous studies, this study used a net-
work attack analysis to calculate the robustness of the WM
network and explored the correlation between the robust-
ness of WM brain networks and factors such as age and the
proportion of WMHs, to provide new evidence supporting
age-related WM pathologies and radiological features.

2. Materials and Methods
2.1 Sample Source

The subjects were from the NKI/Rockland Sample
(NKI-RS), provided by the Nathan Kline Institute (NKI,
New York, NY, USA), publicly available through the Inter-
national Neuroimaging Data-sharing Initiative (INDI) (ht
tp://fcon_1000.projects.nitrc.org/indi/pro/nki.html).  The
NKI Institutional Review Board approved the protocol for
data collection and sharing. After excluding volunteers
younger than 18 years, two volunteers were removed from
the study due to missing DTI data, and two volunteers were
excluded due to errors in data processing. Finally, 159 sub-
jects (age range: 18 to 85; mean age: 41.6 4+ 18.1; 97 males
and 62 females) were included in this study.

2.2 MRI Data Acquisition

All participants were scanned using a Siemens
Trio 3.0 Tesla MRI scanner (Diffusion MRI scans:
https://fcon_1000.projects.nitrc.org/indi/pro/nki/NKI 64D
IR_DTI PROTOCOL.pdf; T1-weighted MRI image scans:
https://fcon_1000.projects.nitrc.org/indi/pro/nki/NKI_MP
RAGE PROTOCOL.pdf). The diffusion MRI scans were
acquired using conventional acquisition parameters with
2 mm isotropic voxels and 64 gradient directions (b =
1000 s/mm?, 12 non-diffusion b = 0 images, repetition
time (TR)/echo time (TE) = 10,000/91 ms, field of view
(FOV) = 256 x 256 mm?, 58 slices). High-resolution 3D
T1-weighted image was acquired using a magnetization-
prepared rapid gradient echo sequence with 1 mm isotropic
voxels (TR/TE = 2500/3.5 ms, inversion time = 1200 ms,
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FOV = 256 x 256 mm?2, 192 slices). Additional details
regarding the acquisition protocol for the study images are
available through the INDI website.

2.3 DTI Data Preprocessing, WM Brain Networks
Constructions, and Network Robustness Analysis

DTI data were automatically preprocessed using the
Pipeline for Analyzing braiN Diffusion imAges (PANDA)
package 1.3.1 (https://www.nitrc.org/projects/panda/) [37],
using the following main steps: (1) brain extraction and
brain mask estimation; (2) image cropping; (3) eddy cur-
rent/motion correction; and (4) computation of DTI metrics
(fractional anisotropy (FA)). After preprocessing, the steps
for constructing the WM brain networks and graph theory
analysis were as follows: (1) affine transformation was used
to align the FA map with its corresponding T1 image in in-
dividual spaces; (2) the transformed T1 images were non-
linearly registered to the Montreal Neurological Institute
(MNI) space using a T1 template; (3) a non-linear trans-
formation from was carried out from DTI individual spaces
to MNI standard spaces and their inverse was obtained. The
automated anatomical labeling (AAL) atlas was selected to
define nodes and the inverse transformation was used to
register the AAL template, which included 90 brain regions,
to individual spaces. Subsequently, 90 subregions in in-
dividual spaces were segmented and labeled; (4) the fiber
assignment by continuous tracking (FACT) deterministic
tracking algorithm was employed to trace WM fibers, ter-
minating the tracking when the FA <0.2 or when the change
in direction exceeded 60 degrees; (5) based on whole-brain
tractography, a WM brain network was constructed using
FA and fiber number (FN) as edge weights and the 90 sub-
regions as nodes; (6) edges with FN values <3 were ex-
cluded to eliminate pseudo-connections or noise in the net-
work. Finally, the FA-weighted matrix of each volunteer
was obtained, and graph theory parameters were calculated
using the graph analysis toolbox (GAT 1.5.1p) (https://mail
man.stanford.edu/mailman/listinfo/gat user forum) [38].

To measure network robustness, we chose node degree
and node betweenness centrality as the targets for network-
targeted attacks. Node degree is the most intuitive node
metric in network theory, representing the actual number
of connections of a node with other nodes [39]. Nodes with
high degrees play a critical role in information transmission
and integration and can act as “hub” nodes in brain networks
[40]. They are responsible for coordinating and integrating
information from different regions [41]. Node betweenness
centrality refers to the frequency with which a node appears
on all the shortest paths within the network, measuring a
node’s intermediary role. Nodes with high node between-
ness centrality often play key roles in information transfer
and integration and serve as “bridges” in the network [42].
Global efficiency is the reciprocal of the average shortest
path length between nodes, representing the network’s ca-

pacity for functional integration and parallel information
processing. It is a commonly used indicator for assessing
network robustness [43].

In our study, for each volunteer’s FA-weighted net-
work, the network nodes in the remaining largest compo-
nent of the network were removed in order of node degree or
node betweenness centrality from high to low, respectively,
until the number of network nodes was one. Whenever a
node was removed, the global efficiency of the network
at that point was first calculated, and then the percentage
of the global efficiency of the network at that point in the
global efficiency before the network attack (i.e., the relative
global efficiency) was calculated. Although there might be
differences in network global efficiency between different
volunteers before the network attack, it was appropriate for
each volunteer since the relative global efficiency was gen-
erated in comparison with itself (without involving other
volunteers). Each time a node was removed, a correspond-
ing relative global efficiency was obtained, and ultimately
a curve indicating relative global efficiency with node re-
moval was obtained (Fig. 1), which reflected the process
of network disintegration in the face of attacks. We used
the area under the curve (AUC) of the change curve as a
quantitative metric for evaluating the robustness of the net-
work, i.e., the robustness of the network was the AUC. For
each network, the faster the relative global efficiency de-
creased, the smaller the AUC, and the faster the network
disintegrated, the less robust the network becomes. The en-
tire data processing process is shown in Fig. 2.

2.4 Segmentation and Computation of WMHs

WMHs are typically segmented from the Fluid-
Attenuated Inversion Recovery (FLAIR) sequences from
the MRI data; however, FLAIR imaging was not available
in the NKI-RS. Therefore, we used T1-weighted MRI data
to segment the WMHs [44], which has been utilized in an-
other study [45]. First, we used the computational anatomy
toolbox (CAT 12.9) (https://neuro-jena.github.io/cat/) [46]
in “expert mode” to divide the T1-weighted MRI data into
GM, WM, cerebrospinal fluid (CSF), and WMHs tissue
maps and estimated their intrinsic spatial volumes. Subse-
quently, considering the variability in brain volume among
individuals, we defined the proportion of WMHs as the ra-
tio of WMHs to the total WM, i.e., WMHs proportion =
WMHs/(WM + WMHs).

2.5 Statistical Analysis

Pearson correlation analysis was used to investigate
the relationship between the robustness of WM brain net-
works and age. Spearman rank correlation analysis was
used to determine the relationship between the robustness of
the WM brain networks and the proportion of WMHs. The
Pearson chi-square test was used to analyze gender differ-
ences across different age groups. The Kruskal-Wallis test
was employed to compare the levels of network robustness
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Table 1. Proportion of graph theory parameters and white matter high signals in each group prior to network attack analysis.

Age group  Global efficiency Mean node degree ~ Mean node betweenness centrality ~ Proportion of WMHs
18-35 0.456 +0.014 9.961 £+ 0.773 138.943 + 8.990 0.402% + 0.148%
36-64 0.451 +0.017 9.725 £+ 0.808 141.899 + 10.506 0.496% + 0.228%*
65-85 0.421 4 0.034*# 8.420 4 1.219** 161.920 + 26.684** 1.428% =+ 1.540%*#

Compared with the 18-35 age group, * p < 0.05; compared with the 36-64 age group, * p < 0.05. WMHs, white

matter hyperintensities.
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Fig. 3. Pearson correlation analysis of network robustness and age using node degree as the target for network-targeted attacks

and global efficiency as the measure (r =—-0.492, p < 0.001).

across various age groups. In the presence of inter-group
differences, the Steel-Dwass test was conducted for post-
hoc analysis. All p-values were two-sided, with p-values <
0.05 were considered statistically significant.

3. Results

3.1 Proportion of Graph Theory Parameters and White
Matter High Signals in Each Group Prior to Network
Attack Analysis

DTI connectomes tend to be relatively sparse [47],
with the distribution of network densities ranging from
6.91% to 13.78% among the 159 FA-weighted networks
constructed in this study. The global efficiency, average
node degree and average node median centrality of the re-
maining largest components of the network in each age
grouping before network attack analysis and the proportion
of WMHs in each age subgroup are shown in Table 1.

3.2 Network Robustness and Age

The dataset samples were artificially divided into three
age groups based on the age of the volunteers: 18-35 years,
3664 years, and 65-85 years [48]. The gender compo-
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sition of each group is shown in Table 2, and no signifi-
cant differences were found in gender composition between
groups (p > 0.05). We utilized Pearson correlation analy-
sis to investigate the relationship between the robustness of
WM brain networks and age. When node degree was used
as the target for network-targeted attacks and global effi-
ciency was used to assess network robustness, there was a
negative correlation between network robustness and age (r
=-0.492, p < 0.001) (Fig. 3). Similarly, when node be-
tweenness centrality was the target for network-targeted at-
tacks and global efficiency was used to assess network ro-
bustness, the robustness of the network showed a negative
correlation with age (r = -0.532, p < 0.001) (Fig. 4). Ad-
ditionally, we analyzed differences in network robustness
of volunteers in different age groups, with node degree and
node betweenness centrality as targets for network-targeted
attacks. Figs. 5,6 reveal variations in network robustness
across age groups.

3.3 Network Robustness and the Proportion of WMHs

Considering the markedly skewed distribution of the
proportion of WMHs, we employed Spearman rank cor-
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Fig. 4. Pearson correlation analysis of network robustness and age using node betweenness centrality as the target for network-
targeted attacks and global efficiency as the measure (r =-0.532, p < 0.001).
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SD, standard deviation.

relation analysis to measure the relationship between the = network robustness, a negative correlation was found be-
robustness of WM brain networks and the proportion of  tween network robustness and the proportion of WMHs (r
WMHs. Considering node degree as the target for network- = —-0.204, p < 0.05) (Fig. 7). Similarly, when node be-
targeted attacks and global efficiency as the measure of  tweenness centrality was regarded as the target for network-
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Table 2. Gender composition of each age group.

Gender
Age group
Male Female
18-35 40 28
36-64 45 22
65-85 12 12
p 0.297

targeted attacks and global efficiency was regarded as the
measure of network robustness, the robustness of the net-
work was negatively correlated with the proportion of
WMHs (r =-0.277, p < 0.05) (Fig. 8).

4. Discussion

This study investigated the correlations between brain
network robustness and age. The results demonstrated that
network robustness exhibited a negative correlation with
age and the proportion of WMHs as well as a significant re-
duction in network robustness among those over 65. These
findings indicated that older age groups or individuals with
a greater proportion of WMHs exhibited increased global
efficiency loss and lower network robustness when sub-
jected to network attacks.

Study has shown that changes in WM during ag-
ing include macroscopic alterations, such as reduced WM
volume, WM damage, impaired WM integrity, and corti-
cal disconnections [49]. At the microscopic level, these
changes manifest in the deterioration of myelin and ax-
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ons. Various cells are involved in forming and mainte-
nance myelin, among which oligodendrocytes are crucial,
as oligodendrocytes agings accelerates myelin deterioration
[50]. Additionally, with aging, changes in lipid metabolism
alter myelin structure and function, inclusiong cholesterol
metabolism disorders, which impair myelin formation and
maintenance [51]. Axonal degeneration often precedes
clinical symptoms and occurs before cell bod loss. Ax-
onal degeneration is related to protein homeostasis, cellular
stress responses, and mitochondrial stability [52]. These
changes ultimately reduce WM integrity.

DTI microstructural indices are the most sensitive in-
dicators of age. Diffusion coefficients are positively cor-
related with age, while anisotropy is negatively correlated
with age [53]. Common DTI metrics, such as FA, measures
the overall directionality of water molecules, characterizing
their ability to diffuse along WM fiber tracts. Study has re-
vealed a negative correlation between age and FA values in
brain regions, i.e., the older the age, the lower the FA values
in different brain regions [54]. In this study, we investigated
the relationship between WM brain network robustness and
age. The results showed a negative correlation between net-
work robustness and age. Previous study has analyzed the
functional brain networks of brain glucose metabolism from
the perspective of the functional brain networks of brain
glucose metabolism and revealed that the functional brain
networks in the elderly population are more susceptible to
targeted attacks [55]. And in the present study, the previ-
ous study was complemented from the perspective of struc-
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tural brain networks and similar conclusions were obtained.
This will likely contribute to the understanding of changes
in brain structure-function coupling in aging.

Key nodes and global attributes of WM brain net-
works, such as global efficiency, network strength, cost,
and topological efficiency, change during brain aging, and
different brain regions exhibit distinct trajectories during
aging [56,57]. Highly connected hub nodes have functional
value because their topological centrality supports integra-
tive processing and adaptive behaviors that are closely as-
sociated with anatomical structures involved in brain dis-
eases [58]. In network robustness analysis, node degree and
node betweenness centrality of the network are commonly
used to assess node importance [59]. Global efficiency in
brain networks can be interpreted as the capacity for infor-
mation exchange between different brain regions. Higher
global efficiency indicates more efficient information trans-
mission within the brain network, and global efficiency is
closely associated with cognition and attention [60]. This
study revealed a negative correlation between network ro-
bustness and the proportion of WMHs when the node de-
gree was considered as the target of network-directed at-
tacks. Global efficiency was considered as a measure of
network robustness. In addition, when inter-node degree
centrality was considered as the target of network directed
attacks and global efficiency was considered as a measure
of network robustness, network robustness was negatively
correlated with the proportion of WMHs.

WMHs are common manifestations of aging and
pathological conditions. Various factors result in WMHs.
Vascular WMHs are primarily associated with insufficient
blood supply. For instance, hypertension and diabetes can
damage the microvasculature of the brain, resulting in WM
ischemia and edema [33,61,62]. Inflammatory WMHs are
mainly related to inflammatory reactions in neurons and
glial cells, with neurovascular inflammation playing a criti-
cal role in WMHs [63,64]. Metabolic WMHs are primarily
linked to impaired myelin metabolism [65]. These changes
may affect the macroscopic and microscopic structures of
the WM, manifesting as radiological alterations, affecting
WM networks, and reducing network robustness. In addi-
tion, studies have confirmed that WMH is an independent
risk factor for cognitive impairment, with some scholars re-
porting that WMH leads to a 14% elevated risk of cogni-
tive dysfunction and dementia of all-cause, a 25% increased
risk of Alzheimer’s, and a 73% increased risk of vascular
dementia [33,66]. This study demonstrated that older age
groups or individuals with a greater proportion of WMHs
exhibited greater global efficiency loss and lower network
robustness when subjected to network attacks.

5. Conclusions

Decreased robustness of the WM network during the
aging process might be a manifestation of WM aging.
This manifestation might be associated with the imaging
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biomarkers of WMHs. These findings provide evidence for
WM pathologies related to aging and offer new insights into
brain imaging characteristics of aging.
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