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‘We sketch the historic transformation of culturally grown tech-
niques of symbol manipulation, such as basic arithmetic in the
decimal number system, to the full-fledged version of the
Computational Theory of Mind. Symbol manipulation systems
had been considered by Leibniz as a methodology of inferring
knowledge in a secure and purely mechanical fashion. Such
‘inference calculi’ were considered as mere artefacts which
could not possibly encompass all human knowledge acquisi-
tion. In Alan Turing’s work one notices a crucial shift of
perspective. The abstract mathematical states of a Turing ma-
chine (a kind of ,,calculus universalis* that Leibniz was looking
for) are claimed to correspond to equivalent psychological
states. Artefacts are turned into faithful models of human
cognition. A further step toward the Computational Theory of
Mind was the physical symbol system hypothesis, contending to
have found a necessary and sufficient criterion for the presence
of ‘intelligence’ in operative mediums. This,together with
Chomsky’s foundational work on linguistics, led naturally to
the Computational Theory of Mind as set out by Jerry Fodor and
ZenonPylyshyn. Wediscuss problematic aspects of this theory.
Then we deal with another paradigm of the Computational
Theory of Mind based on network automata. This sub-symbolic
paradigm seems to avoid problems occuring in symbolic com-
putations, like the proble frame problem and graceful degrada-
tion. (Author)

1. Dr. Frankenstein: An Archetypal Myth

Creating one of our own kind has been one of the great
myths of man. The motivations and desires driving this
myth are manifold and complex. One of the intriguing
aspects of such a putative feat is that it would put us on
equal terms with gods. We would have convincingly
demonstrated that we are able to figure out all that is
needed to construct, from first principles, a ‘thing’ that
could pass as a human being—at least within some clearly
defined boundaries. The contemplation of such a possibil-
ity causes immediate emotional and philosophical reac-
tions. If we were ever confronted with such a successful
‘product’ of human engineering, it would severely affect
our beliefs and attitudes. The most compelling questions
which come to my mind are:

—Isitpossible, oreveninevitable, that such a ‘creature’
possesses a soul?

—Whatis consciousness and is it a necessary feature of
any such ‘creature’?
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— Do I have to or do I want to meet this ‘creature’ with
the samerespectand should it be treated under the same
code of human rights that we take as our principal set
of values in human interaction?

This is just a small sample of possible reactions and,
luckily, these questions are up to this day purely specula-
tive.

These questions are weighty, nonetheless, since they
target the very center of our philosophical or religious
beliefs. For example, what if such a creature would not
need to have a soul in order to pass some test of ‘being
human’; would thismeanthatwe don’t have tohave a soul
as well?

I recall aninterview I watched on televisionin which a
researcher in Artificial Intelligence said that his commu-
nity is now in a position to “’play God’, that they could
design and construct artefacts which meet any cognitive
skills that they chose to specif'y. I felt that ‘playing God’
was a rather arrogant statement; after all, we have been
thrown into this universe with all its physical constraints
and all we can possibly do is to make use of the stuff we
find and of the laws which govern its interaction. We
cannot even change these laws! What poor gods we are ... !

The statement of a scientist above shows that the myth
of creating our own kind has been transformed from its
mystical state (which performed, like any other myth, an
important psychological function) into an engineering
programme for which it seems to be only a matter of time
and money to fulfil this archetypal myth to any degree of
accuracy.

2, Symbol Manipulation: A Historic Perspective
Transforming this particular myth into a scientific
programme was a continuous process which may not be
separatedfromour cultural development over the past few
centuries. One thing we notice right away is that the
scientific programme of Artificial Intelligence is not inter-
ested in ‘producing’ something which would physically
be indistinguishable from any other human being. It has
nointerestin producing beautiful skin or dazzling hair for
its devices; (which would have its own questionable
commercial relevance) rather, it focuses on the construc-
tion of units which are able to process information from
their surrounding environment (a sensory environment or
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some otherkind of organized information), tomakeinfer-
ences based upon the perceived information and to act
according to those inferences.

The consideration of such projects made us re-think
how cognition works within our own heads and bodies
and helped shaping the Computational Theory of Mind,
which can be condensed into the thesis:

Cognition is nothing but the computational manipula-
tion of mental representations.

We want to sketchthe origins and the gradual develop-
ment of this thesis, thereby following closely Sybille
Kriamer’s account in (5). Philosophical roots of such
thinking can be found in the writings of Th. Hobbes and
G.W. Leibniz. For the latter, all correct inferential think-
ing was a process of the formal creation and manipulation
of symbolic expressions. If we compare such a suggestion
of definition with the activities of LISPprogrammers?, the
gap from Leibniz to the sixties appears to be narrow
indeed; yet, it is hard for us to imagine what tremendous
difficulties people had to overcome in formulating what
‘symbol’ and ‘manipulation’ mean and in realizing their
full expressive power. Forexample, it was a big step ahead
to use letters as representations of arbitrary number values
while doing complex arithmetic manipulations of expres-
sions (Viete 1540-1603). It was an even bigger step of
abstraction when René Descartes used this technique for
translating problems from analytic geometry into a purely
algebraic form, thereby solving geometric problems by
algebraic (= symbolic) means. (This possibility was an-
nounced in (3). The obtained solutions could then be re-
interpreted in the geometric world.

One of the first broadly accepted formal systems of
symbolmanipulation was the establishmentof basic arith-
metic in the decimal number system, occuring in Europe
in the 14-15th century. This technique required a fairly
high education in reading and writing; yet, these skills
sufficed: one could learn to compute correctly without
having to know why the scheme worked at all, as long as
one remembered all the rules involved! This system per-
meated the entire culture of human activities (business,
academics, planning, etc.) and its success stems largely
from the compositionality of its underlying semantics.

2.1 Compositionality of Meaning

In order to explain the notion of compositionality we
consider a simpler representation of numerals as finite
strings of zeros and ones. For example, ‘100’ represents
the number four, ‘110’ the number six (sinceOx 1+ 1 x
2+ 1x4=6),and ‘111’ the number seven. Wecan specify
all such strings by defining a transformation grammar

<bin_dig> == 011
<bin_num> ::= <bin_dig> | <bin_num><bin_dig>

introducing two syntactic sorts, that of a binary digit
<bin_dig> and that of a binary numeral <bin_num>. The
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first line consists of two rules saying that ‘0’ and ‘1" are
binary digits. The second line expresses that every binary
digit is also a binary numeral and that the syntactic
concatenation of a binary numeral with a binary digit
results in another binary numeral.

The point is that we are given fourrules for construct-
ing binary numerals. Dually, these rules can be viewed as
inference rules which we can use to prove that a given
string of symbols is indeed a representation of some
binary numeral. Moreover, and most importantly, the
structure of these rules determines the meaning of com-
plex representations as a function of the meanings of its
finitely many subexpressions. For example, the meaning
(=the natural number represented by the expression in
question) of ‘0’ is the number zero, the meaning of ‘1” is
the number one (these being the atomic cases), but the
meaning of ‘101’ istwotimesthe meaning of ‘10’ plus the
meaning of ‘1’ and so on.

It is this compositionality (according to the logician
Frege a vital ingredient of any concept of ,,meaning*)
which is the driving mechanism of the success of
Denotational Semantics, amathematical approach to Pro-
gramming Language Semantics developed by Dana Scott
and Joseph E. Stoy at the Programming Language Group
at Oxford University (12). For the same reason, but a few
centuries earlier, the decimal system for arithmetic be-
came established as an accepted cultural technique that is
still practiced today. We have to stress, however, that this
symbol system and the rules of its manipulation constitute
a genuine artefact, a product of an evolving culture;
further, that very product might only have been developed
becauseincreased trading and communicationneedsmade
the invention of easy and fast computation schemes nec-
essary. Roman numerals had been used before, but their
meaning is farfrom being compositional (try it!); they are
merely a means of representing numbers but the intrinsic
architecture of these representations does not suggest how
arithmetic computations have to be cairied out; for that,
you need an abacus!

2.2 The Search for an ,,écriture universelle”

To Leibniz inferential thinking was nothing but the
concatenation and substitution of symbols. However,
Leibniz did not claim that all human cognitive activities
are done in such a deductive fashion. For example,
Descartes’ fundamental insight (3)

,»Je pense, donc je suis.

is a direct and sudden awareness of the truth of this
assertion and cannot be ‘proved’ from assumptions we
arrived atusing previously concluded knowledge. Leibniz
only wanted to model a certain kind of thought, namely
propositional assertions, and he looked out for a secure
methodology that allowed him to reach new knowledge
based on previously established facts. In that sense, a
symbol manipulation system is an artefact, an external
tool facilitating our perception of the world we live in.
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Leibniz’ epistemological view isevenstronger: we can
perceivethe world only through symbolic representations
(6a); it is God’s privilege to be capable of a ,,cogitatio
asymbolica* (6b). A similar thought is expressed in
Wittgenstein’s writing (14):

»Wennwiriiberden Ortsprechen, wo das Denken stattfindet,
haben wir ein Recht zu sagen, daf} dieser Ort das Papier ist,
auf dem wir schreiben, oder der Mund, der spricht.”?

To summarize, we can say that symbol manipulation
started out as an artefact, indeed as an art, a creation of
artificial languages which were more conducive to sup-
porting cognitive goals than our natural languages. Such
formal systems allow us to represent and manipulate
cognitive states and goals in a very efficient way. These
systems are inventions and consequently cultural achieve-
ments and not part of our biological ‘equipment’. Having
said that, this does not rule out the presence of similar
systems within our bodies.

The inflationary development of such artefact has
changed the way scientific communities communicate.
Wetend to state facts and rules in symbolic and condensed
terms, trying to eliminate as much natural language as
possible, thereby trying to rule out any source of misun-
derstanding our ambiguity. If we compare Riemann’s
prose with Cauchy’s formal account of calculus (using the
\epsilon-\delta formalism), then each of them talks about
calculus but Cauchy already tries to live up to Leibniz’
vision. It has to be said that even Leibniz thought about
a,,calculus universalis* which was not based on symbols
but on images and natural language, although he soon
abandoned such plans in favor of some operational, sym-
bolically oriented code of inferential thought (which he
never succeeded in specifying).

Leibniz’ vision pre-dated the birth of symbolic logic
(1) since it reduced truth (of an assertion) to validity
within a given calculus (i.e., the assertion has a ‘proof’
that refers only to the rules of the given calculus). With
such a ,,calculus racionator one could decide the truth of
assertions by a blind and mechanical manipulation of
symbols within a calculus of proof’s. This ,,cogitatio caeca
vel symbolica* would then be the only cognitive principle
which could lead us blind cognizers through the seem-
ingly dark cosmos (6).

There are meta-mathematical results whichsecond the
contention that not all insight may be gained by the
exclusive usage of inferences. If we deal with a formal
system of some minimal expressiveness then the logician
K. Gédel has demonstrated that there have to be state-
ments which are not deducible within the system unless it
is inconsistent (= it cannot be attributed a meaningful
semantics). Nonetheless, such statements are ‘true’ under
a suitable interpretation.
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2.3 From an Artefact to a Model of Cognition

To proceed from the formalization of a cognitive proc-
ess in some calculus to its mechanization on a suitable
carrieris not a big conceptual step. More surprising is that
such an implementation could be done on any material,
respectively architecture, as long as it provided sufficient
means for faithfully reflecting the properties of the calcu-
lus. Now, as long as we construe such calculi as artefacts
and epistemological tools we won’t run into deep philo-
sophical water; but as soon as we think of such symbolic
representations as reflecting mental states (a view en-
dorsed, for example, by J. Locke) we enter the realm of
psychology and one could then imagine an ‘implementa-
tion’ of human cognitive processes on amachine and one
could study these dynamical phenomena in any wanted
detail on an inanimate device. Psychology would turn into
purely empirical inquiry.

Such acrucial shift of perspective could be observed in
Alan Turing’s writing (13). First of all, he formulated an
abstractmathematical concept of a Turing machine. Such
a machine consists of an infinite tape of cells which are
filled with atomic symbols; it also has a device that can
read the content of the cell it is positioned at. Moreover,
such a machine has a finite set of rules of the form:

IfI (=the machine) am in state number five and if the content
of the cell lam currently looking at is the letter ‘a’ then I
replace this letter by the symbol ‘S’ and move my reading
device one cell to the left with the resulting state being
number two.

Thus, such a machine manipulates symbols on an
infinite tape according to therulescoded up in the body of
the machine, beginning in a distinguished initial state.
Such a definitionexpresses the essence of what people can
do externally using finite amounts of pen, pencil and
paper*. It also gives the notion of computability a math-
ematically precise and canonical form; the latter notion
lacked such formal foundations and a whole community
ofresearchers worked intensely on such a basis during the
twenties. We now know of a multitude of different defini-
tions of computability, e.g., Lambda-calculi andpt—recur-
sive functions. All systems suggested up to this day could
be shown to be equivalent in the sense that a ‘computa-
tion’ in one system A could be simulated accurately in
another system B and vice versa. This does not settle the
issue of what computability should mean, it merely sug-
gests that we have encountered an extremely robust pro-
posal.

Turing also proved the existence of universal Turing
machines, the theoretical and conceptual proto-types of
the von Neumann computers we all use today. We can
represent an entire Turing machine as a sequence of
symbols, as long as we agree on a fixed syntactic structure
of such a code allowing us to recover all transitionrules of
therespective machine. So what prevents us from writing
down such a sequence on an infinite tape? A universal
Turing machine canread sucha sequence and simulate the
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rules encoded in it to manipulate some other input on its
tape; in fact, it can do this with any sequencerepresenting
a Turing machine. This universality is essentially the
working principle of a regular computer. Programs are
stored like any other data and can be read and used to
transform a specified set of data.

The proof of this theoretical result led to the construc-
tion of computers that were realizations of Leibniz’ ,,cal-
culus universalis“. We are in no need to point out the
dramatic impact this invention had on our daily lives and
our societal structures. Yet, Turing turned the mathemati-
cal analysis of machines into something with genuine
psychological significance. He claimed that if a Turing
machine carries out calculations, say, to multiply two
naturalnumbers, then the sequence of abstract mathemati-
cal states observed while the machine performs this task
should reflect a corresponding sequence of mental states
of some human being solving the same problem. In short,
he claims that the way we utilize space and recourses for
problem solving outside of our bodies is re-interpreting
the structure of our internal cognitive processes. Hence, it
should be possible toreconstruct the behavior of a ‘human
calculator’ mechanically.

2.4 Artificial Intelligence

If weidentify computability with ‘being mechanizable’
we may ask whether there is a concept that relates tobeing
mechanizable the way that intelligencerelatesto success-
ful computations. More to the point, if there exists such a
correspondence, what kind of concept are we looking at?

In1976,Newell and Simon provided asimple ‘solution
by definition’. To them a physical symbol system is
basically any device that can store, read and manipulate
(representations of) symbols. It should also satisfy addi-
tional requirements of ,,completeness and closure* (7).
After careful examination of this definition one notices
that LISP, Turing machines and various non-determinis-
tic rewriting systems all qualify as physical symbol sys-
tems. In a way this definition attempts to capture the
commonalities of various models of computability with
respect to their capacity of modeling psychological proc-
esses. Newell and Simonmadean astonishing, and, maybe,
radical suggestion (7):

,»»The Physical Symbol System Hypothesis. A physi-
cal symbol system has the necessary and sufficient
means for general intelligent action.*

Such ahypothesis does notex plain what intelligence is,
rather, is postulates a precise criterion for its presence
within an operating system. It has more the flavor of a
mathematicalinvariantandclassifier. Itis invariantinthe
sense that the specific nature of the implementation of
such a physical symbol systemis irrelevant withrespectto
its cognitive performance. Therefore, notions like think-
ing, cognition and intelligence can be characterized with-
out reference to some biological species, like us humans.
Once more we have been deprived of the feeling that we

Knowl. Org. 22(1995)No.l
M.Huth: Symbolic and Sub-symbolic Knowledge Organization

depict something very special in this universe. Just as
Copernicus made evident thattheearth is not the center of
the universe, Newell and Simon tell us that we are ill-
advisedif we view us as the ‘center of cognition’. Any old
machine can cognize as long as it satisfies the physical
symbol system hypothesis.

These consequences resulted solely from the claim of
sufficiency. Tome, thestronger and even more question-
able claim seems to be that of necessity. For one thing, it
would entail that all human cognition is based on the
implementation of some physical symbol system within
our heads and bodies. For another, since our entire cogni-
tion is based on such a system we could (using the
principle of invariance) re-construct such a system on
some mechanical device and Psychology and Cognitive
Science would be reduced to a descriptive discipline
within a purely empirical science.

The Physical Symbol System Hypothesis was the slo-
ganof anewscientificmanifesto. It guaranteed that, given
an arbitrarily complex bundle of cognitive tasks, one
could engineer a system that is able to solve all these
problems; more precisely, we could be confident that any
such system relied on the same principles of symbol
manipulation. If systems could only perform correctly for
alimite scope of cognitive activities this was justbecause
the evolution of man-made symbol systems was in its
infancy;but givenenoughtimeand ‘man-years’ wewould
have to succeed inevitably without everbeing in need of
changing our scientific paradigm.

With an emotional distance of almost 30 years and with
the grace of having been born in the sixties, it is difficult
toshare this initial enthusiasm. There are someimpressive
symbol systems around, but they all are utter specialists
and, once removed from their narrow specification space,
fail to function. It is interesting to note that other ‘evolu-
tionary’ trends likethelow cost of computing memory and
the speed of processors have taken off at a comparatively
incredible rate. The rate of progress in crafting a univer-
sallyintelligentphysical symbol system is steady but slow
at best (2).

2.5 The Computational Theory of Mind

Philosophers and psychologists alike took an active
interest in the foundational assumptions of people work-
ing in Artificial Intelligence. This interest and work re-
sulting from it provided the foundations of a new scien-
tific, interdisciplinary programme: Cognitive Sciences.
Twoprime sources reflecting the definition of this areaare
(4,8).

Jerry Fodor contends that we have a language of
thought implemented in our heads (presumably realized
by evolution); some hard-wired operative medium based
on inference rules (which lack self-awareness!). If we
look at Chomsky’s ground breaking work in linguistics
we areinclined to believethat the capacity and the fashion
of constructing meaningful and correct phrases is largely
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independent ofthe native language of arespective speaker.
Thus there must be some language tool inside of us
capable of adapting to the very language spoken in a new-
born person’s environment. A language of thought would
then signify a similar vessel that could be filled and re-
filled with cognitive patterns and situations. So we do
have freedom in what and why we learn, but at the same
time we are constrained by the architecture of this lan-
guage of thought, an unpleasant but nonetheless justifi-
able perspective.

The assumption of such a language of thought gives us
explanatory leverage with which we can tackle a number
of difficult issues in psychology and philosophy. For
example, intensional states and propositional attitudes
(schemes like ,,x believes that P*) are notions used in folk
psychology, but they could be coded up in complex
symbols denoting such states or attitudes. The intrinsic
inference rules would then transform and manipulate
sequences of such symbols and these transitions and their
‘results’ could be used as scripts or recipes for action.
Hence the manipulation of intensional states and
propositional attitudes would be responsible for ourexter-
nal actions in a causal (but probably non-deterministic)
way; folk psychology would turn into a serious science.

Here we should pause fora moment. What do we mean
by ‘symbol’ in the case of the language of thought? The
previous sections made sufficiently clear that the emer-
gence of the notion of symbol as an external representa-
tion was a strenuous and long process. This notion de-
pends on how we perceive and organize our external
world. Clearly, we know a symbol when we see one!
However, think of the infinitely many ways you can print
the letter five on a sheet of paper. Any attempt of
reductionism (trying to explain the ink blot representing
five as a constellation of molecules) will be futile; such a
molecular protocol will not allow us to conclude that this
is a description of an ink blot signifying the number five.
Only if we put this blot into a context in which it can
interact with other blots (like the blots saying ,,plus two*)
do we have a chance of saying something about the
meaning of this first blot, provided that we introduce a
higher, semantic, level of description.

When we consider a language of thought the physi-
ological state encoding that ,,x believes P* must be so
complex that we can only deduce indirectly the existence
of such states and that they interact in some causal fashion.
Further, different meanings will require physiologically
different states, but different physiological states may
very well ‘denote’ the same meaning. This is an all to
familiar relationship between syntax and semantics. So
how isitpossiblethatlogical-semanticrelationshipsarein
unison with syntactic-causal relationships to such a great
extent that we can construe physical processes as being
unquestionably semantically driven? There is a pretty
convincing example: a computer! But a computer cannot
be ‘fully aware’ of the semantic significance of what it is
manipulating. By the sametoken, this commentapplies to
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the language of thought (4, p.231):

,,If mental processes are formal, then they have access only
to the formal properties of such representations of the envi-
ronment as the senses provide. Hence, they have no access to
the semantic properties of such representations, including
the property of being true, of having referents, or, indeed, the
property of being representations of the environment.” (The
empbhasis is quoted as well.)

Any cognitive science that builds upon such founda-
tions won’t be able to make statements about the meaning
of mental representations, it can only record the operative
manipulation of these representations.

3. Two Paradigms of Knowledge Organization
3.1 The Explanatory Level of Symhols

We have sketched how culturally fostered techniques
led to the progressive formulation of a Computational
Theory of Mind in which cognition was reduced to the
symbolic manipulation of mental representations. While
such athesis has explanatory force in a variety of issuesin
psychology and philosophy, it does have its shortcom-
ings.

One problem is that physical symbol systems are just
too good at what they are doing! For example, let us
consider the transformation grammar describing the syn-
tax of binary numerals represented as binary strings in
section2.1. The trouble with thisrecursive specificationis
that it will work perfectly well up to any finite depth of the
recursion scheme. This is exactly what is so great about
computers; they can apply recursive schemes infallibly
and they could not care less about how often this scheme
will call itself or other recursive schemes, unless they
suddenly run out of memory. Yet, we humans behave
differently. We might write down recursive schemes
which correctly reflect the task we want toachieve, and we
might even succeed in proving that this recursion meets its
specification, but we will perform poorly if we have to
apply such schemes with arecursive layer of depth greater
than six or seven. This can be observed in the way we parse
speech, like in:

The man who crossed the road which wasfilled with people
who were all dressed in red which is a color I don’t like was
dressed in blue.

Fortunately, we don’t speak like that, for we find this
difficult to parse. Imagine if the recursive layer of this
phrase were twice as long! How can a physical symbol
system account for this empirical decline of skillful per-
formance?

Another but closely related issue is that of graceful
degradation. When people try to solve problems we
noticethatthey will either succeed or that they will fail in
a graceful ways. For example, we have little difficulty in
recognizing a living-room or a bathroom as having the
respective function. Now, what happens if we enter a
room we suppose to be a bathroom but which is actually
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some sort of ‘(living/bath)-room’? We don’t know, and
we don’t have a very good idea about what to expect.
Presumably, such a room will contain a sink and a toilet,
buttheremightalsobeasofaanda coffee table. No matter
how strange the combination of pieces of furniture might
be, we would still be able to make some sense out of it.

Now, imagine that concepts like ‘living-room’ and
‘bathroom’ are encoded in a symbolic way. There are
various forms and names for doings this in Artificial
Intelligence (frames, scripts). One problem with such an
encoding is that it is predicative in the sense that certain
criteria have to be present if a room wants to qualify as a
living-room. Which ones should we choose and which
ones may safely be omitted? An even harder problem is
the processing of negative information: the specification
of attributes that will ensure that we are certainly not
dealing with a living-room. Then there is the problem of
variables or defaults: no two living-room are alike and
scripts need to reflect this variability by being extremely
adaptive while still being finite descriptions.

In addition, one has to be able to join scripts describing
standard situations. Such a combination cannot just mean
the addition of information. Consider scripts for the fol-
lowing two situations: the first script contains all the
information I need to attend a typicallecture on biochem-
istty on a conventional campus; the second script encodes
characteristic aspects of life in a ski resort town. How do
we combine these, knowing that there will be a winter
school in biochemistry in Davos, Switzerland, organized
by the European Association of Biochemists? Superim-
posing these two scripts will severely change the meaning
of constituents of each script. More scripts mean more
information or the re-evaluation of previously assumed
information. Thereis anapproachin Denotational Seman-
tics based on information systems (11) which could serve
as a mathematical foundation for defaults and related
problems (9).

All objections sketched above constitute serious chal-
lenges of the symbolic approach.

3.2 A Sub-symbolic Explanatory Level

Knowledge Organization in the symbolic approach is
almost of adiscretnature. Information is encoded in some
ordered structure of cells (a datatype) and the very struc-
ture of this datatype already constrains and configures the
meaning of information tokens placed into these cells. It
is the programmer or the designer who determines this
arrangement of information tokens. We already discussed
how this causes problems, for situations and the knowl-
edge necessary for handling such situations adequately
are intrinsically ‘soft’ objects, more rubber-like; in our
role as acting agents, we need to stretch, shrink, or modif'y
information tokens in a way that reflects the current
situation we are in.

Indeed, there exists another paradigm of knowledge

representation which received its foundations not from
the development of digital computers but from the work
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on dynamical systems and neurophysiology. A compre-
hensive account of this approach can be found in (10).

Parallel distributed systems (PDS) are networks of
nodes which communicate with each other in a fixed
architecture. The communication is either synchronous or
asynchronous. If the inputreceived by a cell C exceeds its
threshold value it will ‘fire’ and excite, respectively in-
hibit, those cells having input wires originating in C. A
subset of nodes will be designated as input nodes, i.e.,
those nodes that will be fed with the ‘encoding’ of the
information the system should process. Dually, one asso-
ciates with such a net a subset of out put nodes that will
represent the encoding of the processed information.

In a synchronous network we initialize the input nodes
and let the system run under a discrete clock such that we
update all activation values simultaneously. If the system
reaches a stable configuration (the next iteration will not
significantly changethe patterns of activity inthenet), we
can interpret this stable configuration as the result of the
computation. Repeated initial input should then result in
a sequence of stable configurations which, in turn, will be
input pattern for other nets, and so on ...

Itis apparent that this formal setup borrowed its termi-
nology from systems theory and neurophysiology. But we
should not be misled by these origins. Parallel distributed
processing (PDP) is meant to provide reasoning for psy-
chological evidence supported by a computational lan-
guage derived from net theory (10, vol. 1, p. 11):

,» Though the appeal o fPDP models is definitely enhanced by
their physiological plausibility and neural inspiration, these
are not the primary bases for their appeal to us. We are, after
all, cognitive scientists, and PDP models appeal to us for
psychological and computational reasons. They hold out the
hope of offering computationally sufficient and psychologi-
cally accurate mechanistic accounts of the phenomena of
human cognition which have eluded successful explication
in conventional computational formalisms; and they have
radically altered the way we think about the time-course of
processing, the nature of representation, and the mechanisms
of learning.”

So what are representations in this framework? In
pursuing this we first need to understand how nets learn.
Wecan provide a processor which feeds a stable configu-
ration of a net back into this net, thus blending it with
subsequent input. There exist various algorithms for dy-
namically adjusting the thresholds of nodes depending on
the previous ‘performance’ of the net (,,Jearning algo-
rithms*). The net goes through a sequence of changes, an
evolutionary progression which stops if the desired per-
formance has been attained within a given limit of accu-
racy.

The important point is that information tokens are not
really atomic tokens anymore; rather, they are abstract
distributions of coherence and causality within a given
net. Only after we have given this net a semantics (i.e.,
after wehaveagreed onhow to interpret input and output)
can we localize such patterns of distribution. Such pat-
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terns in their entirety correspond to what we have previ-
ously known as a symbol. Therefore, this approach can
justifiably be called a sub-symbolic one.

Let us briefly look at an example (10, vol. 2, pp.22—
38): This is anetwork that has been ‘trained’ to distinguish
between various types of rooms (like living-room, office,
bathroom; bedroom, kitchen). The concept of (the pres-
ence of) arefrigeratoris distributed in a group of units, and
similarly this is done for concepts like ‘oven’, ‘computer’
and, all in all, about forty more such indicators. The
architecture of the inhibitory and excitatory connections
between these groups reflects how these concepts interact
with each other.

The complex or higher-order concept of a bathroom
can now be seen as that region in the (mathematical and
. abstract) phase space of this net which pushes configura-
tions towards that stable configuration the net will get to
when it agrees on having encountered a bathroom (suffi-
ciently many positive attributes inhibit all other options).
Infact, if we assign to each state of the net a real number
between zero and one, expressing how ‘well’ this state
approximates some higher-order concept, we can repre-
sent the set of states as a rather smooth surface with a few
hills whose crests represent room types. In this model
there is little problem in encountering and handling a
(living/bath)-room. It is simply some state in the ‘state
valley’ between the living-room hill and the bathroom
hill.

This nicely gets rid of the problem of how to represent
a possibly infinitely varied standard situation within a
finite script. Standard situations or concepts are recorded
in appropriate nets which accumulate an entire history of
exposure to all kinds of previously met concrete situa-
tions. If the current situation is slightly different, the net
will not fail to respond but its reaction will be gradually
different from previous ones. At the same time this net
should use its most recent exposure for updating its
activation architecture accordingly.

Itis easy to imagine that a minor adjustment of thresh-
olds or connection strengths will not modif'y a nets overall
quality, although its quantitative behaviour will change
slightly. This could lead to better explanations of the type
of graceful degradation we often observe when studying
the cognitive performance of people placed under physi-
cal or mental constraints.

Parallel distributed systems also explain empirical evi-
dence of aspects of sensory perception. For example, the
interpretation of missing information in speech percep-
tion is determined by its context of previously heard and
subsequent utterances. The Trace Model is a neural net
with such a context-sensitive behavior (10, vol. 2, chap.
15). In a certain sense a lot of our sensory perception
seems to be semantically driven.

T hope that this succinct tour of the theory of neural nets
elucidated the main differences between the symbolic and
sub-symbolic view of cognition. Still, the sub-symbolic
paradigm can safely be classified as an offspring of the
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Computational Theory of Mind; in this setting cognition
is nothing but a sub-symbolic manipulation of mental
representations. This view only departs from the symbolic
interpretation of what mental representations are which
further entails a novel concept of computation.

We do not have enough space to discuss weaknesses of
this approach as well. Though, it should be said that both
accounts could be valid to a certain extent. It is conceiv-
able that they describe the same cognitive phenomena at
different levels or ‘grain sizes’ of computation and mean-
ing.

4. Outlook

Cognitive Sciences are a rapidly developing field of
highly interdisciplinary academic and industrial activi-
ties. They target one of the centers of human inquiry,
attempting to answer who we are by learning how we
operate. They face puzzles that might not be fathomable,
like: What is consciousness? Is is the entirety of all stable
configurations our brains could reach, and if so, would
such a mathematical answer really satisfy our curiosity?
What can we say about emotions, feelings and love? Are
they independent of our rational and cognitive skills?
Conversely, a feeling like jealousy obviously interferes
with cognitive processes; are feelings and emotions even
necessary for skilled cognitive performances?

Should we be afraid of finding out more about our
cognitive freedomand our constraints? There are as many
answers to this as people; if we had a mathematical theory
explaining how things work, say, when we fall in love, I
am positive that it would not prevent us from falling in
love in Spring in joy and wonder.
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Notes:

1 Although, we are in arareand privileged position to make moral
judgements about our utilization of the universe, a rather divine,
albeit, not often used capacity.

2 LISP had been invented by McCaithy in 1960; it is a list-
processing languagein which programs themselves arerepresented
as lists as well.

3 Thisroughly translates to: ,,If we speak about the location where
thinking takes place we have a right to say that this location is the
sheet of paper we are writing on or our mouth which speaks.*

4 The assumption that the tape is infinite makes the theoretical
treatment more elegant. In principle we cannot specify an upper
bound of the number of sheets a person will have to use to solve a
problem wedonotyetknow, soif we wanttohave sufficient space
for solving all problems we better assume an infinite pile of sheets
of paper.

5 Sometimes my students try to shatter this empirical evidence
during exam periods.
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Cont'd Reports & Communications from p. 36

Electronic Dewey for Windows .

Dewey for Windows (DFW) is an advanced prototype
designed and programmed by OCLC’s Office of Research.
Itisa successor for the Electronic Dewey productreleased by
OCLCForestPressin 1993 (see announcementm Knowl, Org
93-1, p.56).

Like the Electronic Dewey, DFW consnsts of a database
containing the DDC, ed.20, and all updates through March
1994. The user interface, however, is a completely new
design based on three principles: 1) function-specific win-
dows, 2) fixed display views, and 3) drag-and-drop interac-
tion.

ad 1) Each basic program function is associated with a
window specifically designed forthatfunction, e.g. theDDC
hierarchy centered on a specific DDC number.

ad 2) To alleviate problems associated with multiple win-
dows, DFW provides fixed Display views. Each of these
supports a particular operation or approach to using Elec-
tronic Dewey, e.g. the DDC Pages Window filling the left
half of the screen and the right half split between a Search
Results Window and a DDC Record Window. By this the
user will beenabled tosearchthe DDCforspecifickeywords,
view the text of the entries retrieved and display the DDC
pages for those numbers.

ad 3) An operation that uses the mouse to “grab” a data item
from one window, “drag” it across the screen, and “drop” it
into a second window is referred to as a Drag-and-Drop
action. The data item may be a DDC number, a word or
phrase, a hit list, or other data type, e.g. if a DDC number is
droppedinto aDDCRecord window, the record correspond-
ing to that number is displayed in the DDC Record window.
Formoreinformation contact: Diane Vizine-Goetz, Consult-
ing Research Scientist, OCLC Office of Research;
vizine@oclc.org.
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TERM-LIST for Electronic Terminological Net-
working

TERM-LIST is an elecwonic discussion forum for scholars,
teachers, students and others interested in terminology science,
termninological research, terminology work, lnowledge repre-
sentasion, classification, and LSP-research without any geo-
graphical or chronological boundaries. TERM-LIST is an elec-
wonic mailing list based at the University of Vaasa, Finland.
Subscription is free. The goal of TERM-LIST is to provide
members with a fast, convenient, and relevant elecionic discus-
sionforum that focuses onissues related to terminology science.
Subscribe by sending the following e-mail message to
LISTSERV @uwasa.fl SUBSCRIBE TERM-LIST Capital or
lower case does not matter, but spelling does; note spelling of
LISTSERV. Do not add your name in the message.

Questions about list membership, management, or direction
should be sent to the list-owners: Anita Nuopponen
(atn@uwasa.fl), Outi Jirvi (oja@uwasa.fl). University of Vaasa,
Department of Communication Studies, POB 700, FIN-65101
Vaasa,Finland, Tel+358-61-3248-11,Fax: +358-61-3248-380.

NASA Thesaurus Listserv Established

A new NASA STI Program Listserv, designated THESAU-
RUS-L, has been created to encourage and broaden user partici-
pation in the development of the NASA Thesaurus. More
specifically, the e-mail Listserv will assume and support the
following functions: Provide regular, aimely announcements of
new Thesaurus terms and changes, and support and encourage
the elecwonic submission and discussion of new term requests,
questions, and other issues related to the NASA Thesaurus and
subject indexing. Send an e-mail message to: Listserv
@stinasa.gov. Leave the subject line blank. The message
should read: subscribe THESAURUS-L <your name>. If you
need additional information, contact the CASI Lexicographer,
Tel.: 301-621-0114, e-mail mgenuardi@sti.nasa.gov.
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