Supplementary Material: An Inverse QSAR Method Based on Linear Regression and Integer Programming

Jianshen Zhu¹, Naveed Ahmed Azam¹, Kazuya Haraguchi¹, Liang Zhao², Hiroshi Nagamochi¹ and Tatsuya Akutsu³

- 1. Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606-8501, Japan
- 2. Graduate School of Advanced Integrated Studies in Human Survavibility (Shishu-Kan), Kyoto University, Kyoto 606-8306, Japan
- 3. Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan

1 A Full Description of Descriptors

Associated with the two functions α and β in a chemical graph $\mathbb{C} = (H, \alpha, \beta)$, we introduce functions ac: $V(E) \to (\Lambda \setminus \{H\}) \times (\Lambda \setminus \{H\}) \times [1,3]$, cs: $V(E) \to (\Lambda \setminus \{H\}) \times [1,6]$ and ec: $V(E) \to ((\Lambda \setminus \{H\}) \times [1,6]) \times [1,6]) \times [1,3]$ in the following.

To represent a feature of the exterior of \mathbb{C} , a chemical rooted tree in $\mathcal{T}(\mathbb{C})$ is called a *fringe-configuration* of \mathbb{C} .

We also represent leaf-edges in the exterior of \mathbb{C} . For a leaf-edge $uv \in E(\langle \mathbb{C} \rangle)$ with $\deg_{\langle \mathbb{C} \rangle}(u) = 1$, we define the adjacency-configuration of e to be an ordered tuple $(\alpha(u), \alpha(v), \beta(uv))$. Define

$$\Gamma_{\mathrm{ac}}^{\mathrm{lf}} \triangleq \{(\mathtt{a},\mathtt{b},m) \mid \mathtt{a},\mathtt{b} \in \Lambda, m \in [1,\min\{\mathrm{val}(\mathtt{a}),\mathrm{val}(\mathtt{b})\}]\}$$

as a set of possible adjacency-configurations for leaf-edges.

To represent a feature of an interior-vertex $v \in V^{\mathrm{int}}(\mathbb{C})$ such that $\alpha(v) = \mathbf{a}$ and $\deg_{\langle \mathbb{C} \rangle}(v) = d$ (i.e., the number of non-hydrogen atoms adjacent to v is d) in a chemical graph $\mathbb{C} = (H, \alpha, \beta)$, we use a pair $(\mathbf{a}, d) \in (\Lambda \setminus \{\mathbf{H}\}) \times [1, 4]$, which we call the *chemical symbol* $\mathrm{cs}(v)$ of the vertex v. We treat (\mathbf{a}, d) as a single symbol $\mathbf{a}d$, and define Λ_{dg} to be the set of all chemical symbols $\mu = \mathbf{a}d \in (\Lambda \setminus \{\mathbf{H}\}) \times [1, 4]$.

We define a method for featuring interior-edges as follows. Let $e = uv \in E^{\rm int}(\mathbb{C})$ be an interior-edge $e = uv \in E^{\rm int}(\mathbb{C})$ such that $\alpha(u) = \mathtt{a}$, $\alpha(v) = \mathtt{b}$ and $\beta(e) = m$ in a chemical graph $\mathbb{C} = (H, \alpha, \beta)$. To feature this edge e, we use a tuple $(\mathtt{a}, \mathtt{b}, m) \in (\Lambda \setminus \{\mathtt{H}\}) \times (\Lambda \setminus \{\mathtt{H}\}) \times [1, 3]$, which we call the *adjacency-configuration* $\mathrm{ac}(e)$ of the edge e. We introduce a total order < over the elements in Λ to distinguish between $(\mathtt{a}, \mathtt{b}, m)$ and $(\mathtt{b}, \mathtt{a}, m)$ $(\mathtt{a} \neq \mathtt{b})$ notationally. For a tuple $\nu = (\mathtt{a}, \mathtt{b}, m)$, let $\overline{\nu}$ denote the tuple $(\mathtt{b}, \mathtt{a}, m)$.

Let $e = uv \in E^{\text{int}}(\mathbb{C})$ be an interior-edge $e = uv \in E^{\text{int}}(\mathbb{C})$ such that $cs(u) = \mu$, $cs(v) = \mu'$ and $\beta(e) = m$ in a chemical graph $\mathbb{C} = (H, \alpha, \beta)$. To feature this edge e, we use a tuple $(\mu, \mu', m) \in \Lambda_{\text{dg}} \times \Lambda_{\text{dg}} \times [1, 3]$, which we call the *edge-configuration* ec(e) of the edge e. We introduce a total order e0 over the elements in e0 distinguish between e0 distinguish between e1 and e2 denote the tuple e3 denote the e4 denote the tuple e6 denote the e6 denote the e9 denote the tuple e9 denote the e9 den

Let π be a chemical property for which we will construct a prediction function η from a feature vector $f(\mathbb{C})$ of a chemical graph \mathbb{C} to a predicted value $y \in \mathbb{R}$ for the chemical property of \mathbb{C} .

We first choose a set Λ of chemical elements and then collect a data set D_{π} of chemical compounds C whose chemical elements belong to Λ , where we regard D_{π} as a set of chemical graphs \mathbb{C} that represent the chemical compounds C in D_{π} . To define the interior/exterior of chemical graphs $\mathbb{C} \in D_{\pi}$, we next choose a branch-parameter ρ , where we recommend $\rho = 2$.

Let $\Lambda^{\rm int}(D_{\pi}) \subseteq \Lambda$ (resp., $\Lambda^{\rm ex}(D_{\pi}) \subseteq \Lambda$) denote the set of chemical elements used in the set $V^{\rm int}(\mathbb{C})$ of interior-vertices (resp., the set $V^{\rm ex}(\mathbb{C})$ of exterior-vertices) of \mathbb{C} over all chemical graphs $\mathbb{C} \in D_{\pi}$, and $\Gamma^{\rm int}(D_{\pi})$

denote the set of edge-configurations used in the set $E^{\rm int}(\mathbb{C})$ of interior-edges in \mathbb{C} over all chemical graphs $\mathbb{C} \in D_{\pi}$. Let $\mathcal{F}(D_{\pi})$ denote the set of chemical rooted trees ψ r-isomorphic to a chemical rooted tree in $\mathcal{T}(\mathbb{C})$ over all chemical graphs $\mathbb{C} \in D_{\pi}$, where possibly a chemical rooted tree $\psi \in \mathcal{F}(D_{\pi})$ consists of a single chemical element $\mathbf{a} \in \Lambda \setminus \{\mathbf{H}\}$.

We define an integer encoding of a finite set A of elements to be a bijection $\sigma: A \to [1, |A|]$, where we denote by [A] the set [1, |A|] of integers. Introduce an integer coding of each of the sets $\Lambda^{\text{int}}(D_{\pi})$, $\Lambda^{\text{ex}}(D_{\pi})$, $\Gamma^{\text{int}}(D_{\pi})$ and $\mathcal{F}(D_{\pi})$. Let $[\mathbf{a}]^{\text{int}}$ (resp., $[\mathbf{a}]^{\text{ex}}$) denote the coded integer of an element $\mathbf{a} \in \Lambda^{\text{int}}(D_{\pi})$ (resp., $\mathbf{a} \in \Lambda^{\text{ex}}(D_{\pi})$), $[\gamma]$ denote the coded integer of an element γ in $\Gamma^{\text{int}}(D_{\pi})$ and $[\psi]$ denote an element ψ in $\mathcal{F}(D_{\pi})$.

Over 99% of chemical compounds \mathbb{C} with up to 100 non-hydrogen atoms in PubChem have degree at most 4 in the hydrogen-suppressed graph $\langle \mathbb{C} \rangle$. We assume that a chemical graph \mathbb{C} treated in this paper satisfies $\deg_{\langle \mathbb{C} \rangle}(v) \leq 4$ in the hydrogen-suppressed graph $\langle \mathbb{C} \rangle$.

In our model, we use an integer $\text{mass}^*(a) = \lfloor 10 \cdot \text{mass}(a) \rfloor$, for each $a \in \Lambda$.

We define the feature vector $f(\mathbb{C})$ of a chemical graph $\mathbb{C} = (H, \alpha, \beta) \in D_{\pi}$ to be a vector that consists of the following non-negative integer descriptors $dcp_i(\mathbb{C})$, $i \in [1, K]$, where $K = 14 + |\Lambda^{int}(D_{\pi})| + |\Lambda^{ex}(D_{\pi})| + |\Gamma^{int}(D_{\pi})| + |\mathcal{F}(D_{\pi})| + |\Gamma^{lf}_{ac}|$.

- 1. $dcp_1(\mathbb{C})$: the number $|V(H)| |V_{\mathbb{H}}|$ of non-hydrogen atoms in \mathbb{C} .
- 2. $dcp_2(\mathbb{C})$: the rank $r(\mathbb{C})$ of \mathbb{C} .
- 3. $dcp_3(\mathbb{C})$: the number $|V^{int}(\mathbb{C})|$ of interior-vertices in \mathbb{C} .
- 4. $dcp_4(\mathbb{C})$: the average $\overline{ms}(\mathbb{C})$ of mass* over all atoms in \mathbb{C} ; i.e., $\overline{ms}(\mathbb{C}) \triangleq \frac{1}{|V(H)|} \sum_{v \in V(H)} mass^*(\alpha(v))$.
- 5. $\operatorname{dcp}_i(\mathbb{C})$, $i = 4 + d, d \in [1, 4]$: the number $\operatorname{dg}_d^{\overline{\mathbb{H}}}(\mathbb{C})$ of non-hydrogen vertices $v \in V(H) \setminus V_{\mathbb{H}}$ of degree $\operatorname{deg}_{\langle \mathbb{C} \rangle}(v) = d$ in the hydrogen-suppressed chemical graph $\langle \mathbb{C} \rangle$.
- 6. $\operatorname{dcp}_i(\mathbb{C}), i = 8 + d, d \in [1, 4]$: the number $\operatorname{dg}_d^{\operatorname{int}}(\mathbb{C})$ of interior-vertices of interior-degree $\operatorname{deg}_{\mathbb{C}^{\operatorname{int}}}(v) = d$ in the interior $\mathbb{C}^{\operatorname{int}} = (V^{\operatorname{int}}(\mathbb{C}), E^{\operatorname{int}}(\mathbb{C}))$ of \mathbb{C} .
- 7. $\operatorname{dcp}_i(\mathbb{C})$, i = 12 + m, $m \in [2, 3]$: the number $\operatorname{bd}_m^{\operatorname{int}}(\mathbb{C})$ of interior-edges with bond multiplicity m in \mathbb{C} ; i.e., $\operatorname{bd}_m^{\operatorname{int}}(\mathbb{C}) \triangleq \{e \in E^{\operatorname{int}}(\mathbb{C}) \mid \beta(e) = m\}.$
- 8. $\operatorname{dcp}_{i}(\mathbb{C})$, $i = 14 + [\mathtt{a}]^{\operatorname{int}}$, $\mathtt{a} \in \Lambda^{\operatorname{int}}(D_{\pi})$: the frequency $\operatorname{na}_{\mathtt{a}}^{\operatorname{int}}(\mathbb{C}) = |V_{\mathtt{a}}(\mathbb{C}) \cap V^{\operatorname{int}}(\mathbb{C})|$ of chemical element \mathtt{a} in the set $V^{\operatorname{int}}(\mathbb{C})$ of interior-vertices in \mathbb{C} .
- 9. $\operatorname{dcp}_{i}(\mathbb{C})$, $i = 14 + |\Lambda^{\operatorname{int}}(D_{\pi})| + [\mathbf{a}]^{\operatorname{ex}}$, $\mathbf{a} \in \Lambda^{\operatorname{ex}}(D_{\pi})$: the frequency $\operatorname{na}_{\mathbf{a}}^{\operatorname{ex}}(\mathbb{C}) = |V_{\mathbf{a}}(\mathbb{C}) \cap V^{\operatorname{ex}}(\mathbb{C})|$ of chemical element \mathbf{a} in the set $V^{\operatorname{ex}}(\mathbb{C})$ of exterior-vertices in \mathbb{C} .
- 10. $\operatorname{dcp}_i(\mathbb{C})$, $i = 14 + |\Lambda^{\operatorname{int}}(D_{\pi})| + |\Lambda^{\operatorname{ex}}(D_{\pi})| + [\gamma]$, $\gamma \in \Gamma^{\operatorname{int}}(D_{\pi})$: the frequency $\operatorname{ec}_{\gamma}(\mathbb{C})$ of edge-configuration γ in the set $E^{\operatorname{int}}(\mathbb{C})$ of interior-edges in \mathbb{C} .
- 11. $\operatorname{dcp}_i(\mathbb{C})$, $i = 14 + |\Lambda^{\operatorname{int}}(D_{\pi})| + |\Lambda^{\operatorname{ex}}(D_{\pi})| + |\Gamma^{\operatorname{int}}(D_{\pi})| + [\psi]$, $\psi \in \mathcal{F}(D_{\pi})$: the frequency $\operatorname{fc}_{\psi}(\mathbb{C})$ of fringe-configuration ψ in the set of ρ -fringe-trees in \mathbb{C} .
- 12. $\operatorname{dcp}_i(\mathbb{C})$, $i = 14 + |\Lambda^{\operatorname{int}}(D_{\pi})| + |\Lambda^{\operatorname{ex}}(D_{\pi})| + |\Gamma^{\operatorname{int}}(D_{\pi})| + |\mathcal{F}(D_{\pi})| + [\nu]$, $\nu \in \Gamma^{\operatorname{lf}}_{\operatorname{ac}}$: the frequency $\operatorname{ac}_{\nu}^{\operatorname{lf}}(\mathbb{C})$ of adjacency-configuration ν in the set of leaf-edges in $\langle \mathbb{C} \rangle$.

2 Specifying Target Chemical Graphs

Given a prediction function η and a target value $y^* \in \mathbb{R}$, we call a chemical graph \mathbb{C}^* such that $\eta(x^*) = y^*$ for the feature vector $x^* = f(\mathbb{C}^*)$ a target chemical graph. This section presents a set of rules for specifying topological substructure of a target chemical graph in a flexible way in Stage 4.

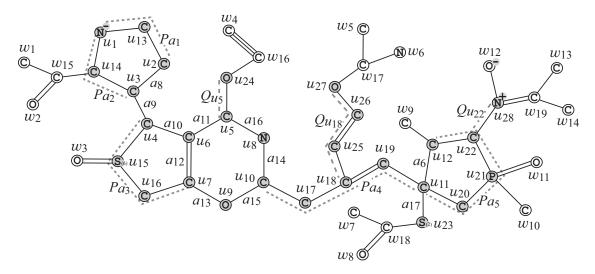


Figure 1: An illustration of a hydrogen-suppressed chemical graph $\langle \mathbb{C} \rangle$ obtained from a chemical graph \mathbb{C} with $r(\mathbb{C}) = 4$ by removing all the hydrogens, where for $\rho = 2$, $V^{\text{ex}}(\mathbb{C}) = \{w_i \mid i \in [1, 19]\}$ and $V^{\text{int}}(\mathbb{C}) = \{u_i \mid i \in [1, 28]\}$.

We first describe how to reduce a chemical graph $\mathbb{C} = (H, \alpha, \beta)$ into an abstract form based on which our specification rules will be defined. To illustrate the reduction process, we use the chemical graph $\mathbb{C} = (H, \alpha, \beta)$ such that $\langle \mathbb{C} \rangle$ is given in Figure 1.

- R1 Removal of all ρ -fringe-trees: The interior $H^{\mathrm{int}} = (V^{\mathrm{int}}(\mathbb{C}), E^{\mathrm{int}}(\mathbb{C}))$ of \mathbb{C} is obtained by removing the non-root vertices of each ρ -fringe-trees $\mathbb{C}[u] \in \mathcal{T}(\mathbb{C}), u \in V^{\mathrm{int}}(\mathbb{C})$. Figure 2 illustrates the interior H^{int} of chemical graph \mathbb{C} with $\rho = 2$ in Figure 1.
- R2 Removal of some leaf paths: We call a u, v-path Q in H^{int} a leaf path if vertex v is a leaf-vertex of H^{int} and the degree of each internal vertex of Q in H^{int} is 2, where we regard that Q is rooted at vertex u. A connected subgraph S of the interior H^{int} of \mathbb{C} is called a cyclical-base if S is obtained from H by removing the vertices in $V(Q_u) \setminus \{u\}, u \in X$ for a subset X of interior-vertices and a set $\{Q_u \mid u \in X\}$ of leaf u, v-paths Q_u such that no two paths Q_u and $Q_{u'}$ share a vertex. Figure 3(a) illustrates a cyclical-base $S = H^{\text{int}} \bigcup_{u \in X} (V(Q_u) \setminus \{u\})$ of the interior H^{int} for a set $\{Q_{u_5} = (u_5, u_{24}), Q_{u_{18}} = (u_{18}, u_{25}, u_{26}, u_{27}), Q_{u_{22}} = (u_{22}, u_{28})\}$ of leaf paths in Figure 2.
- R3 Contraction of some pure paths: A path in S is called pure if each internal vertex of the path is of degree 2. Choose a set \mathcal{P} of several pure paths in S so that no two paths share vertices except for their end-vertices. A graph S' is called a contraction of a graph S (with respect to \mathcal{P}) if S' is obtained from S by replacing each pure u, v-path with a single edge a = uv, where S' may contain multiple edges between the same pair of adjacent vertices. Figure 3(b) illustrates a contraction S' obtained from the chemical graph S by contracting each uv-path $P_a \in \mathcal{P}$ into a new edge a = uv, where $a_1 = u_1u_2, a_2 = u_1u_3, a_3 = u_4u_7, a_4 = u_{10}u_{11}$ and $a_5 = u_{11}u_{12}$ and $\mathcal{P} = \{P_{a_1} = (u_1, u_{13}, u_2), P_{a_2} = (u_1, u_{14}, u_3), P_{a_3} = (u_4, u_{15}, u_{16}, u_7), P_{a_4} = (u_{10}, u_{17}, u_{18}, u_{19}, u_{11}), P_{a_5} = (u_{11}, u_{20}, u_{21}, u_{22}, u_{12})\}$ of pure paths in Figure 3(a).

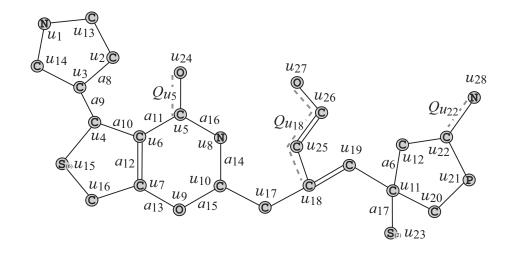


Figure 2: The interior H^{int} of chemical graph \mathbb{C} with $\langle \mathbb{C} \rangle$ in Figure 1 for $\rho = 2$.

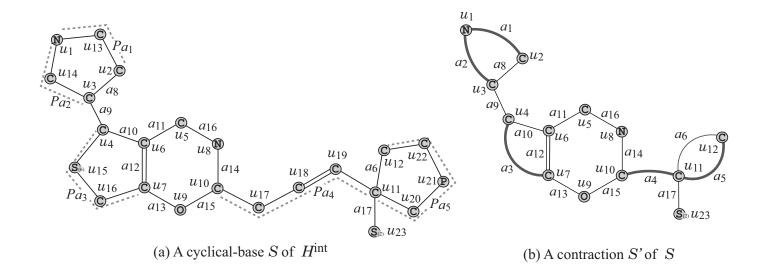


Figure 3: (a) A cyclical-base $S = H^{\text{int}} - \bigcup_{u \in \{u_5, u_{18}, u_{22}\}} (V(Q_u) \setminus \{u\})$ of the interior H^{int} in Figure 2; (b) A contraction S' of S for a pure path set $\mathcal{P} = \{P_{a_1}, P_{a_2}, \dots, P_{a_5}\}$ in (a), where a new edge obtained by contracting a pure path is depicted with a thick line.

We will define a set of rules so that a chemical graph can be obtained from a graph (called a seed graph in the next section) by applying processes R3 to R1 in a reverse way. We specify topological substructures of a target chemical graph with a tuple $(G_{\rm C}, \sigma_{\rm int}, \sigma_{\rm ce})$ called a target specification defined under the set of the following rules.

Seed Graph

A seed graph $G_{\rm C}=(V_{\rm C},E_{\rm C})$ is defined to be a graph (possibly with multiple edges) such that the edge set $E_{\rm C}$ consists of four sets $E_{(\geq 2)}, E_{(\geq 1)}, E_{(0/1)}$ and $E_{(=1)}$, where each of them can be empty. A seed graph plays a role of the most abstract form S' in R3. Figure 4(a) illustrates an example of a seed graph $G_{\rm C}$ with $r(G_{\rm C})=5$, where $V_{\rm C}=\{u_1,u_2,\ldots,u_{12},u_{23}\}, E_{(\geq 2)}=\{a_1,a_2,\ldots,a_5\}, E_{(\geq 1)}=\{a_6\}, E_{(0/1)}=\{a_7\}$ and $E_{(=1)}=\{a_8,a_9,\ldots,a_{16}\}$. A subdivision S of $G_{\rm C}$ is a graph constructed from a seed graph $G_{\rm C}$ according to the following rules:

- Each edge $e = uv \in E_{(\geq 2)}$ is replaced with a u, v-path P_e of length at least 2;

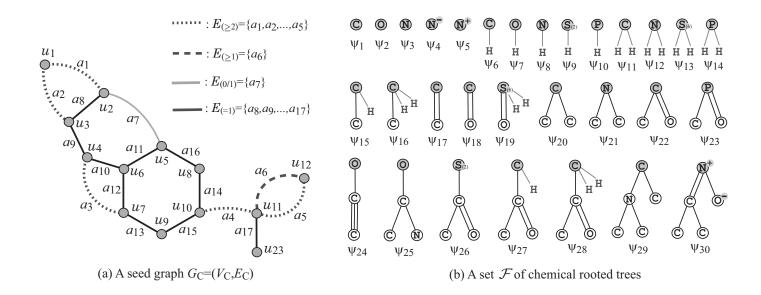


Figure 4: (a) An illustration of a seed graph $G_{\rm C}$ with ${\bf r}(G_{\rm C})=5$ where the vertices in $V_{\rm C}$ are depicted with gray circles, the edges in $E_{(\geq 2)}$ are depicted with dotted lines, the edges in $E_{(\geq 1)}$ are depicted with dashed lines, the edges in $E_{(0/1)}$ are depicted with gray bold lines and the edges in $E_{(=1)}$ are depicted with black solid lines; (b) A set $\mathcal{F} = \{\psi_1, \psi_2, \dots, \psi_{30}\} \subseteq \mathcal{F}(D_{\pi})$ of 30 chemical rooted trees $\psi_i, i \in [1, 30]$, where the root of each tree is depicted with a gray circle, where the hydrogens attached to non-root vertices are omitted in the figure.

- Each edge $e = uv \in E_{(\geq 1)}$ is replaced with a u, v-path P_e of length at least 1 (equivalently e is directly used or replaced with a u, v-path P_e of length at least 2);
- Each edge $e \in E_{(0/1)}$ is either used or discarded, where $E_{(0/1)}$ is required to be chosen as a non-separating edge subset of $E(G_{\mathbb{C}})$ since otherwise the connectivity of a final chemical graph \mathbb{C} is not guaranteed; $r(\mathbb{C}) = r(G_{\mathbb{C}}) |E'|$ holds for a subset $E' \subseteq E_{(0/1)}$ of edges discarded in a final chemical graph \mathbb{C} ; and
- Each edge $e \in E_{(=1)}$ is always used directly.

We allow a possible elimination of edges in $E_{(0/1)}$ as an optional rule in constructing a target chemical graph from a seed graph, even though such an operation has not been included in the process R3. A subdivision S plays a role of a cyclical-base in R2. A target chemical graph $\mathbb{C} = (H, \alpha, \beta)$ will contain S as a subgraph of the interior H^{int} of \mathbb{C} .

Interior-specification

A graph H^* that serves as the interior H^{int} of a target chemical graph \mathbb{C} will be constructed as follows. First construct a subdivision S of a seed graph $G_{\mathbb{C}}$ by replacing each edge $e = uu' \in E_{(\geq 2)} \cup E_{(\geq 1)}$ with a pure u, u'-path P_e . Next construct a supergraph H^* of S by attaching a leaf path Q_v at each vertex $v \in V_{\mathbb{C}}$ or at an internal vertex $v \in V(P_e) \setminus \{u, u'\}$ of each pure u, u'-path P_e for some edge $e = uu' \in E_{(\geq 2)} \cup E_{(\geq 1)}$, where possibly $Q_v = (v), E(Q_v) = \emptyset$ (i.e., we do not attach any new edges to v). We introduce the following rules for specifying the size of H^* , the length $|E(P_e)|$ of a pure path P_e , the length $|E(Q_v)|$ of a leaf path Q_v , the number of leaf paths Q_v and a bond-multiplicity of each interior-edge, where we call the set of prescribed constants an interior-specification σ_{int} :

- Lower and upper bounds n_{LB}^{int} , $n_{UB}^{int} \in \mathbb{Z}_+$ on the number of interior-vertices of a target chemical graph \mathbb{C} .

- For each edge $e = uu' \in E_{(>2)} \cup E_{(>1)}$,
 - a lower bound $\ell_{LB}(e)$ and an upper bound $\ell_{UB}(e)$ on the length $|E(P_e)|$ of a pure u, u'-path P_e . (For a notational convenience, set $\ell_{LB}(e) := 0$, $\ell_{UB}(e) := 1$, $e \in E_{(0/1)}$ and $\ell_{LB}(e) := 1$, $\ell_{UB}(e) := 1$, $e \in E_{(=1)}$.)
 - a lower bound $bl_{LB}(e)$ and an upper bound $bl_{UB}(e)$ on the number of leaf paths Q_v attached at internal vertices v of a pure u, u'-path P_e .
 - a lower bound $\operatorname{ch}_{\operatorname{LB}}(e)$ and an upper bound $\operatorname{ch}_{\operatorname{UB}}(e)$ on the maximum length $|E(Q_v)|$ of a leaf path Q_v attached at an internal vertex $v \in V(P_e) \setminus \{u, u'\}$ of a pure u, u'-path P_e .
- For each vertex $v \in V_{\mathbf{C}}$,
 - a lower bound $\operatorname{ch}_{\operatorname{LB}}(v)$ and an upper bound $\operatorname{ch}_{\operatorname{UB}}(v)$ on the number of leaf paths Q_v attached to v, where $0 \le \operatorname{ch}_{\operatorname{LB}}(v) \le \operatorname{ch}_{\operatorname{UB}}(v) \le 1$.
 - a lower bound $\operatorname{ch}_{\operatorname{LB}}(v)$ and an upper bound $\operatorname{ch}_{\operatorname{UB}}(v)$ on the length $|E(Q_v)|$ of a leaf path Q_v attached to v.
- For each edge $e = uu' \in E_{\mathbb{C}}$, a lower bound $\mathrm{bd}_{m,\mathrm{LB}}(e)$ and an upper bound $\mathrm{bd}_{m,\mathrm{UB}}(e)$ on the number of edges with bond-multiplicity $m \in [2,3]$ in u, u'-path P_e , where we regard P_e , $e \in E_{(0/1)} \cup E_{(=1)}$ as single edge e.

We call a graph H^* that satisfies an interior-specification σ_{int} a σ_{int} -extension of G_{C} , where the bond-multiplicity of each edge has been determined.

Table 1 shows an example of an interior-specification $\sigma_{\rm int}$ to the seed graph $G_{\rm C}$ in Figure 4.

Table 1: Example 1 of an interior-specification $\sigma_{\rm int}$. $\boxed{n_{\rm LB}^{\rm int}=20 \quad n_{\rm UB}^{\rm int}=28}$

$n_{LB} - 20$	U	$n_{ m UB} = 20$															
	a_1	a_2	a_3	a_4	a_5	a_6											
$\ell_{\mathrm{LB}}(a_i)$	2	2	2	3	2	1											
$\ell_{\mathrm{UB}}(a_i)$	3	4	3	5	4	4											
$\mathrm{bl_{LB}}(a_i)$	0	0	0	1	1	0											
$\mathrm{bl}_{\mathrm{UB}}(a_i)$	1	1	0	2	1	0											
$\operatorname{ch}_{\operatorname{LB}}(a_i)$	0	1	0	4	3	0											
$\operatorname{ch}_{\operatorname{UB}}(a_i)$	3	3	1	6	5	2											
	u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u_9	u_{10}	u_{11}	u_{12}	u_{23}				
$\mathrm{bl}_{\mathrm{LB}}(u_i)$	0	0	0	0	0	0	0	0	0	0	0	0	0				
$\mathrm{bl}_{\mathrm{UB}}(u_i)$	1	1	1	1	1	0	0	0	0	0	0	0	0				
$\operatorname{ch}_{\operatorname{LB}}(u_i)$	0	0	0	0	1	0	0	0	0	0	0	0	0				
$\operatorname{ch}_{\operatorname{UB}}(u_i)$	1	0	0	0	3	0	1	1	0	1	2	4	1				
	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}	a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	a_{16}	a_{17}
$\mathrm{bd}_{2,\mathrm{LB}}(a_i)$	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0
$\mathrm{bd}_{2,\mathrm{UB}}(a_i)$	1	1	0	2	2	0	0	0	0	0	0	1	0	0	0	0	0
$\mathrm{bd}_{3,\mathrm{LB}}(a_i)$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{bd}_{3,\mathrm{UB}}(a_i)$	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5 illustrates an example of an σ_{int} -extension H^* of seed graph G_{C} in Figure 4 under the interior-specification σ_{int} in Table 1.

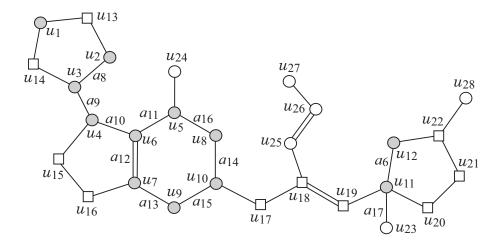


Figure 5: An illustration of a graph H^* that is obtained from the seed graph $G_{\rm C}$ in Figure 4 under the interior-specification $\sigma_{\rm int}$ in Table 1, where the vertices newly introduced by pure paths P_{a_i} (resp., by leaf paths Q_{v_i}) are $u_{13}, u_{14}, \ldots, u_{22}$ depicted with white squares (resp., $u_{23}, u_{24}, \ldots, u_{28}$ depicted with white circles).

Chemical-specification

Let H^* be a graph that serves as the interior $H^{\rm int}$ of a target chemical graph \mathbb{C} , where the bond-multiplicity of each edge in H^* has be determined. Finally we introduce a set of rules for constructing a target chemical graph \mathbb{C} from H^* by choosing a chemical element $\mathbf{a} \in \Lambda$ and assigning a ρ -fringe-tree ψ to each interior-vertex $v \in V^{\rm int}$. We introduce the following rules for specifying the size of \mathbb{C} , a set of chemical rooted trees that are allowed to use as ρ -fringe-trees and lower and upper bounds on the frequency of a chemical element, a chemical symbol, and an edge-configuration, where we call the set of prescribed constants a *chemical specification* $\sigma_{\rm ce}$:

- Lower and upper bounds n_{LB} , $n^* \in \mathbb{Z}_+$ on the number of vertices, where $n_{LB}^{int} \leq n_{LB} \leq n^*$.
- Subsets $\mathcal{F}(v) \subseteq \mathcal{F}(D_{\pi}), v \in V_{\mathcal{C}}$ and $\mathcal{F}_E \subseteq \mathcal{F}(D_{\pi})$ of chemical rooted trees ψ with $\operatorname{ht}(\langle \psi \rangle) \leq \rho$, where we require that every ρ -fringe-tree $\mathbb{C}[v]$ rooted at a vertex $v \in V_{\mathcal{C}}$ (resp., at an internal vertex v not in $V_{\mathcal{C}}$) in \mathbb{C} belongs to $\mathcal{F}(v)$ (resp., \mathcal{F}_E). Let $\mathcal{F}^* := \mathcal{F}_E \cup \bigcup_{v \in V_{\mathcal{C}}} \mathcal{F}(v)$ and $\Lambda^{\operatorname{ex}}$ denote the set of chemical elements assigned to non-root vertices over all chemical rooted trees in \mathcal{F}^* .
- A subset $\Lambda^{\rm int} \subseteq \Lambda^{\rm int}(D_{\pi})$, where we require that every chemical element $\alpha(v)$ assigned to an interior-vertex v in \mathbb{C} belongs to $\Lambda^{\rm int}$. Let $\Lambda := \Lambda^{\rm int} \cup \Lambda^{\rm ex}$ and $\operatorname{na}_{\mathbf{a}}(\mathbb{C})$ (resp., $\operatorname{na}_{\mathbf{a}}^{\rm int}(\mathbb{C})$ and $\operatorname{na}_{\mathbf{a}}^{\rm ex}(\mathbb{C})$) denote the number of vertices (resp., interior-vertices and exterior-vertices) v such that $\alpha(v) = \mathbf{a}$ in \mathbb{C} .
- A set $\Lambda_{\mathrm{dg}}^{\mathrm{int}} \subseteq \Lambda \times [1,4]$ of chemical symbols and a set $\Gamma^{\mathrm{int}} \subseteq \Gamma^{\mathrm{int}}(D_{\pi})$ of edge-configurations (μ,μ',m) with $\mu \leq \mu'$, where we require that the edge-configuration $\mathrm{ec}(e)$ of an interior-edge e in $\mathbb C$ belongs to Γ^{int} . We do not distinguish (μ,μ',m) and (μ',μ,m) .
- Define $\Gamma_{\rm ac}^{\rm int}$ to be the set of adjacency-configurations such that $\Gamma_{\rm ac}^{\rm int} := \{(a,b,m) \mid (ad,bd',m) \in \Gamma^{\rm int}\}$. Let ${\rm ac}_{\nu}^{\rm int}(\mathbb{C}), \nu \in \Gamma_{\rm ac}^{\rm int}$ denote the number of interior-edges e such that ${\rm ac}(e) = \nu$ in \mathbb{C} .
- Subsets $\Lambda^*(v) \subseteq \{a \in \Lambda^{\text{int}} \mid \text{val}(a) \geq 2\}, v \in V_C$, we require that every chemical element $\alpha(v)$ assigned to a vertex $v \in V_C$ in the seed graph belongs to $\Lambda^*(v)$.
- Lower and upper bound functions na_{LB} , na_{UB} : $\Lambda \to [1, n^*]$ and na_{LB}^{int} , na_{UB}^{int} : $\Lambda^{int} \to [1, n^*]$ on the number of interior-vertices v such that $\alpha(v) = a$ in \mathbb{C} .

- Lower and upper bound functions $\operatorname{ns_{LB}^{int}}$, $\operatorname{ns_{UB}^{int}}:\Lambda_{\operatorname{dg}}^{\operatorname{int}}\to[1,n^*]$ on the number of interior-vertices v such that $\operatorname{cs}(v)=\mu$ in $\mathbb C$.
- Lower and upper bound functions $\operatorname{ac_{LB}^{int}}, \operatorname{ac_{UB}^{int}} : \Gamma_{\operatorname{ac}}^{\operatorname{int}} \to \mathbb{Z}_{+}$ on the number of interior-edges e such that $\operatorname{ac}(e) = \nu$ in \mathbb{C} .
- Lower and upper bound functions $\operatorname{ec}_{\operatorname{LB}}^{\operatorname{int}}, \operatorname{ec}_{\operatorname{UB}}^{\operatorname{int}} : \Gamma^{\operatorname{int}} \to \mathbb{Z}_+$ on the number of interior-edges e such that $\operatorname{ec}(e) = \gamma$ in \mathbb{C} .
- Lower and upper bound functions $fc_{LB}, fc_{UB} : \mathcal{F}^* \to [0, n^*]$ on the number of interior-vertices v such that $\mathbb{C}[v]$ is r-isomorphic to $\psi \in \mathcal{F}^*$ in \mathbb{C} .
- Lower and upper bound functions ac_{LB}^{lf} , ac_{UB}^{lf} : $\Gamma_{ac}^{lf} \rightarrow [0, n^*]$ on the number of leaf-edges uv in ac_{C} with adjacency-configuration ν .

We call a chemical graph \mathbb{C} that satisfies a chemical specification σ_{ce} a $(\sigma_{\text{int}}, \sigma_{\text{ce}})$ -extension of G_{C} , and denote by $\mathcal{G}(G_{\text{C}}, \sigma_{\text{int}}, \sigma_{\text{ce}})$ the set of all $(\sigma_{\text{int}}, \sigma_{\text{ce}})$ -extensions of G_{C} .

Table 2 shows an example of a chemical-specification σ_{ce} to the seed graph G_{C} in Figure 4.

Figure 1 illustrates an example \mathbb{C} of a $(\sigma_{\text{int}}, \sigma_{\text{ce}})$ -extension of G_{C} obtained from the σ_{int} -extension H^* in Figure 5 under the chemical-specification σ_{ce} in Table 2. Note that $r(\mathbb{C}) = r(H^*) = r(G_{\text{C}}) - 1 = 4$ holds since the edge in $E_{(0/1)}$ is discarded in H^* .

3 Test Instances for Stages 4 and 5

We prepared the following instances (a)-(d) for conducting experiments of Stages 4 and 5 in Phase 2.

In Stages 4 and 5, we use five properties $\pi \in \{HC, VD, OPTR, IHCLIQ, VIS\}$ and define a set $\Lambda(\pi)$ of chemical elements as follows:

$$\begin{split} &\Lambda(\mathrm{HC}) = \{\mathtt{H},\mathtt{C},\mathtt{N},\mathtt{0},\mathtt{S}_{(2)},\mathtt{S}_{(6)},\mathtt{Cl}\}, \quad \Lambda(\mathrm{Vd}) = \{\mathtt{H},\mathtt{C},\mathtt{N},\mathtt{0},\mathtt{N},\mathtt{Cl},\mathtt{P}_{(3)},\mathtt{P}_{(5)}\}, \\ &\Lambda(\mathrm{Optr}) = \{\mathtt{H},\mathtt{C},\mathtt{N},\mathtt{0},\mathtt{S}_{(2)},\mathtt{F}\}, \quad \Lambda(\mathrm{IhcLiq}) = \{\mathtt{H},\mathtt{C},\mathtt{N},\mathtt{0},\mathtt{S}_{(2)},\mathtt{S}_{(6)},\mathtt{Cl}\} \text{ and } \\ &\Lambda(\mathrm{Vis}) = \{\mathtt{H},\mathtt{C},\mathtt{0},\mathtt{Si}\}. \end{split}$$

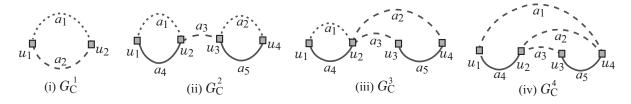


Figure 6: (i) Seed graph $G_{\rm C}^1$ for $I_{\rm b}^1$ and $I_{\rm d}$; (ii) Seed graph $G_{\rm C}^2$ for $I_{\rm b}^2$; (iii) Seed graph $G_{\rm C}^3$ for $I_{\rm b}^3$; (iv) Seed graph $G_{\rm C}^4$ for $I_{\rm b}^4$.

- (a) $I_{\rm a}=(G_{\rm C},\sigma_{\rm int},\sigma_{\rm ce})$: The instance introduced in Appendix 2 to explain the target specification. For each property π , we replace $\Lambda=\{{\tt H},{\tt C},{\tt N},{\tt O},{\tt S}_{(2)},{\tt S}_{(6)},{\tt P}_{(5)}\}$ in Table 2 with $\Lambda(\pi)\cap\{{\tt S}_{(2)},{\tt S}_{(6)},{\tt P}_{(5)}\}$ and remove from the $\sigma_{\rm ce}$ all chemical symbols, edge-configurations and fringe-configurations that cannot be constructed from the replaced element set (i.e., those containing a chemical element in $\{{\tt S}_{(2)},{\tt S}_{(6)},{\tt P}_{(5)}\}\setminus\Lambda(\pi)$).
- (b) $I_{\rm b}^i=(G_{\rm C}^i,\sigma_{\rm int}^i,\sigma_{\rm ce}^i),\ i=1,2,3,4$: An instance for inferring chemical graphs with rank at most 2. In the four instances $I_{\rm b}^i,\ i=1,2,3,4$, the following specifications in $(\sigma_{\rm int},\sigma_{\rm ce})$ are common.

Table 2: Example 2 of a chemical-specification σ_{ce} .

branch-parameter: $\rho = 2$												
Each of sets $\mathcal{F}(v), v \in V_{\mathcal{C}}$ and \mathcal{F}_{E} is set to be												
the set \mathcal{F} of chemical rooted trees ψ with $\operatorname{ht}(\langle \psi \rangle) \leq \rho = 2$ in Figure 4(b).												
$\Lambda = \{\mathtt{H}, \mathtt{C}, \mathtt{N}, \mathtt{0}, \mathtt{S}_{(2)}, \mathtt{S}_{(6)}, \mathtt{P} = \mathtt{P}_{(5)}\} \Lambda_{\mathrm{dg}}^{\mathrm{int}} = \{\mathtt{C2}, \mathtt{C3}, \mathtt{C4}, \mathtt{N2}, \mathtt{N3}, \mathtt{02}, \mathtt{S}_{(2)}\mathtt{2}, \mathtt{S}_{(6)}\mathtt{3}, \mathtt{P4}\}$												
$ \Gamma_{\mathrm{ac}}^{\mathrm{int}} \ \ \nu_1 = (\mathtt{C}, \mathtt{C}, 1), \nu_2 = (\mathtt{C}, \mathtt{C}, 2), \nu_3 = (\mathtt{C}, \mathtt{N}, 1), \nu_4 = (\mathtt{C}, \mathtt{0}, 1), \nu_5 = (\mathtt{C}, \mathtt{S}_{(2)}, 1), \nu_6 = (\mathtt{C}, \mathtt{S}_{(6)}, 1), \nu_7 = (\mathtt{C}, \mathtt{P}, 1) $												
$\Gamma^{\text{int}} \mid \gamma_1 = (\texttt{C2}, \texttt{C2}, 1), \gamma_2 = (\texttt{C2}, \texttt{C3}, 1), \gamma_3 = (\texttt{C2}, \texttt{C3}, 2), \gamma_4 = (\texttt{C2}, \texttt{C4}, 1), \gamma_5 = (\texttt{C3}, \texttt{C3}, 1), \gamma_6 = (\texttt{C3}, \texttt{C3}, 2),$												
$\gamma_7 = (\texttt{C3}, \texttt{C4}, \texttt{1}), \gamma_8 = (\texttt{C2}, \texttt{N2}, \texttt{1}), \gamma_9 = (\texttt{C3}, \texttt{N2}, \texttt{1}), \gamma_{10} = (\texttt{C3}, \texttt{02}, \texttt{1}), \gamma_{11} = (\texttt{C2}, \texttt{C2}, \texttt{2}), \gamma_{12} = (\texttt{C2}, \texttt{02}, \texttt{1}), \gamma_{11} = (\texttt{C2}, \texttt{C2}, \texttt{C3}), \gamma_{12} = (\texttt{C2}, \texttt{C2}, \texttt{C3}), \gamma_{13} = (\texttt{C3}, \texttt{C4}, \texttt{C3}), \gamma_{14} = (\texttt{C3}, \texttt{C4}, \texttt{C3}), \gamma_{15} = (\texttt{C3}, \texttt{C4}, \texttt{C3}), \gamma_{16} = (\texttt{C3}, \texttt{C4}, \texttt{C3}), \gamma_{17} = (\texttt{C3}, \texttt{C4}, \texttt{C4}), \gamma_{17} = (\texttt{C3}, \texttt{C4}, \texttt{C4}), \gamma_{17} = (\texttt{C3}, \texttt{C4}, \texttt{C4}), \gamma_{17} = (\texttt{C4}, \texttt{C4}, \texttt{C4}), \gamma_{17} = (\texttt$												
$\gamma_{13} \! = \! (\texttt{C3}, \texttt{N3}, 1), \gamma_{14} \! = \! (\texttt{C4}, \texttt{S}_{(2)}2, 2), \gamma_{15} \! = \! (\texttt{C2}, \texttt{S}_{(6)}3, 1), \gamma_{16} \! = \! (\texttt{C3}, \texttt{S}_{(6)}3, 1), \gamma_{17} \! = \! (\texttt{C2}, \texttt{P4}, 2),$												
γ_{16}	γ_{17}	γ_{18}										
0	0	0										
2	2	2										
	$\gamma_{6} = (C3)$ $\gamma_{12} = 0$ $\gamma_{12} = 0$ $\gamma_{12} = 0$ $\gamma_{13} = 0$ $\gamma_{14} = 0$ $\gamma_{15} = 0$	$\gamma_{6} = (C3, C3, 2)$ $\gamma_{12} = (C2, 02)$ $\gamma_{12} = (C2, 02)$ $\gamma_{13} = (C2, 02)$ $\gamma_{14} = (C2, 02)$ $\gamma_{15} = (C2, 02)$ $\gamma_{16} = (C3, C3, 2)$ $\gamma_{17} = (C2, 02)$										

Set $\Lambda := \Lambda(\pi)$ for a given property $\pi \in \{\text{HC}, \text{VD}, \text{OPTR}, \text{IHCLiQ}, \text{Vis}\}$, set $\Lambda_{\text{dg}}^{\text{int}}$ to be the set of all possible symbols in $\Lambda \times [1,4]$ that appear in the data set D_{π} and set Γ^{int} to be the set of all edge-configurations that appear in the data set D_{π} . Set $\Lambda^*(v) := \Lambda$, $v \in V_{\text{C}}$.

The lower bounds ℓ_{LB} , bl_{LB} , ch_{LB} , $bd_{2,LB}$, $bd_{3,LB}$, na_{LB} , na_{LB}^{int} , ns_{LB}^{int} , ac_{LB}^{int} , ec_{LB}^{int} and ac_{LB}^{lf} are all set to be 0.

The upper bounds ℓ_{UB} , bl_{UB} , ch_{UB} , $\text{bd}_{2,\text{UB}}$, $\text{bd}_{3,\text{UB}}$, na_{UB} , $\text{na}_{\text{UB}}^{\text{int}}$, $\text{ns}_{\text{UB}}^{\text{int}}$, $\text{ac}_{\text{UB}}^{\text{int}}$, \text

For each property π , let $\mathcal{F}(D_{\pi})$ denote the set of 2-fringe-trees in the compounds in D_{π} , and select a subset $\mathcal{F}_{\pi}^{i} \subseteq \mathcal{F}(D_{\pi})$ with $|\mathcal{F}_{\pi}^{i}| = 45 - 5i$, $i \in [1, 5]$. For each instance I_{b}^{i} , set $\mathcal{F}_{E} := \mathcal{F}(v) := \mathcal{F}_{\pi}^{i}$, $v \in V_{C}$ and $fc_{LB}(\psi) := 0$, $fc_{UB}(\psi) := 10$, $\psi \in \mathcal{F}_{\pi}^{i}$.

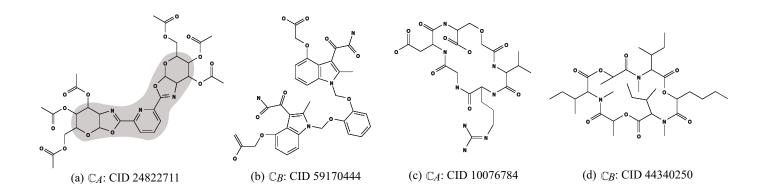


Figure 7: An illustration of chemical compounds for instances I_c and I_d : (a) \mathbb{C}_A : CID 24822711; (b) \mathbb{C}_B : CID 59170444; (c) \mathbb{C}_A : CID 10076784; (d) \mathbb{C}_B : CID 44340250, where hydrogens are omitted.

Instance $I_{\rm b}^1$ is given by the rank-1 seed graph $G_{\rm C}^1$ in Figure 6(i) and Instances $I_{\rm b}^i$, i=2,3,4 are given by the rank-2 seed graph $G_{\rm C}^i$, i=2,3,4 in Figure 6(ii)-(iv).

- (i) For instance $I_{\rm b}^1$, select as a seed graph the monocyclic graph $G_{\rm C}^1=(V_{\rm C},E_{\rm C}=E_{(\geq 2)}\cup E_{(\geq 1)})$ in Figure 6(i), where $V_{\rm C}=\{u_1,u_2\},\,E_{(\geq 2)}=\{a_1\}$ and $E_{(\geq 1)}=\{a_2\}$. Set $n_{\rm LB}^{\rm int}:=5,\,n_{\rm UB}^{\rm int}:=15,\,n_{\rm LB}:=35$ and $n^*:=38$. We include a linear constraint $\ell(a_1)\leq \ell(a_2)$ and $1\leq \ell(a_1)+\ell(a_2)\leq 15$ as part of the side constraint.
- (ii) For instance $I_{\rm b}^2$, select as a seed graph the graph $G_{\rm C}^2 = (V_{\rm C}, E_{\rm C} = E_{(\geq 2)} \cup E_{(\geq 1)} \cup E_{(=1)})$ in Figure 6(ii), where $V_{\rm C} = \{u_1, u_2, u_3, u_4\}$, $E_{(\geq 2)} = \{a_1, a_2\}$, $E_{(\geq 1)} = \{a_3\}$ and $E_{(=1)} = \{a_4, a_5\}$. Set $n_{\rm LB}^{\rm int} := 25, n_{\rm UB}^{\rm int} := 30, n_{\rm LB} := 45$ and $n^* := 50$. We include a linear constraint $\ell(a_1) \leq \ell(a_2)$ and $\ell(a_1) + \ell(a_2) + \ell(a_3) \leq 15$.
- (iii) For instance $I_{\rm b}^3$, select as a seed graph the graph $G_{\rm C}^3 = (V_{\rm C}, E_{\rm C} = E_{(\geq 2)} \cup E_{(\geq 1)} \cup E_{(=1)})$ in Figure 6(iii), where $V_{\rm C} = \{u_1, u_2, u_3, u_4\}$, $E_{(\geq 2)} = \{a_1\}$, $E_{(\geq 1)} = \{a_2, a_3\}$ and $E_{(=1)} = \{a_4, a_5\}$. Set $n_{\rm LB}^{\rm int} := 25$, $n_{\rm UB}^{\rm int} := 30$, $n_{\rm LB} := 45$ and $n^* := 50$. We include linear constraints $\ell(a_1) \leq \ell(a_2) + \ell(a_3)$, $\ell(a_2) \leq \ell(a_3)$ and $\ell(a_1) + \ell(a_2) + \ell(a_3) \leq 15$.
- (iv) For instance $I_{\rm b}^4$, select as a seed graph the graph $G_{\rm C}^4 = (V_{\rm C}, E_{\rm C} = E_{(\geq 2)} \cup E_{(\geq 1)} \cup E_{(=1)})$ in Figure 6(iv), where $V_{\rm C} = \{u_1, u_2, u_3, u_4\}$, $E_{(\geq 1)} = \{a_1, a_2, a_3\}$ and $E_{(=1)} = \{a_4, a_5\}$. Set $n_{\rm LB}^{\rm int} := 25, n_{\rm UB}^{\rm int} := 30, n_{\rm LB} := 45$ and $n^* := 50$. We include linear constraints $\ell(a_2) \leq \ell(a_1) + 1$, $\ell(a_2) \leq \ell(a_3) + 1$, $\ell(a_1) \leq \ell(a_3)$ and $\ell(a_1) + \ell(a_2) + \ell(a_3) \leq 15$.

We define instances in (c) and (d) in order to find chemical graphs that have an intermediate structure of given two chemical cyclic graphs $G_A = (H_A = (V_A, E_A), \alpha_A, \beta_A)$ and $G_B = (H_B = (V_B, E_B), \alpha_B, \beta_B)$. Let Λ_A^{int} and $\Lambda_{\text{dg},A}^{\text{int}}$ denote the sets of chemical elements and chemical symbols of the interior-vertices in G_A , Γ_A^{int} denote the sets of edge-configurations of the interior-edges in G_A , and \mathcal{F}_A denote the set of 2-fringe-trees in G_A . Analogously define sets Λ_B^{int} , $\Lambda_{\text{dg},B}^{\text{int}}$, Γ_B^{int} and \mathcal{F}_B in G_B .

(c) $I_c = (G_C, \sigma_{int}, \sigma_{ce})$: An instance aimed to infer a chemical graph G^{\dagger} such that the core of G^{\dagger} is equal to the core of G_A and the frequency of each edge-configuration in the non-core of G^{\dagger} is equal to that of G_B . We use chemical compounds CID 24822711 and CID 59170444 in Figure 7(a) and (b) for G_A and G_B , respectively.

Set a seed graph $G_{\rm C}=(V_{\rm C},E_{\rm C}=E_{(=1)})$ to be the core of G_A . Set $\Lambda:=\{{\tt H},{\tt C},{\tt N},{\tt O}\}$, and set $\Lambda_{\rm dg}^{\rm int}$ to be the set of all possible chemical symbols in $\Lambda\times[1,4]$.

```
Set \Gamma^{\text{int}} := \Gamma_A^{\text{int}} \cup \Gamma_B^{\text{int}} and \Lambda^*(v) := \{\alpha_A(v)\}, v \in V_C.

Set n_{\text{LB}}^{\text{int}} := \min\{n^{\text{int}}(G_A), n^{\text{int}}(G_B)\}, n_{\text{UB}}^{\text{int}} := \max\{n^{\text{int}}(G_A), n^{\text{int}}(G_B)\},
n_{\text{LB}} := \min\{n(G_A), n(G_B)\} - 10 \text{ and } n^* := \max\{n(G_A), n(G_B)\} + 5.
Set lower bounds \ell_{\text{LB}}, \text{bl}_{\text{LB}}, \text{ch}_{\text{LB}}, \text{bd}_{2,\text{LB}}, \text{bd}_{3,\text{LB}}, \text{na}_{\text{LB}}, \text{na}_{\text{LB}}^{\text{int}}, \text{ns}_{\text{LB}}^{\text{int}}, \text{ac}_{\text{LB}}^{\text{int}} and \text{ac}_{\text{LB}}^{\text{lf}} to be 0.

Set upper bounds \ell_{\text{UB}}, \text{bl}_{\text{UB}}, \text{ch}_{\text{UB}}, \text{bd}_{2,\text{UB}}, \text{bd}_{3,\text{UB}}, \text{na}_{\text{UB}}, \text{na}_{\text{UB}}^{\text{int}}, \text{ns}_{\text{UB}}^{\text{int}}, \text{ac}_{\text{UB}}^{\text{int}} and \text{ac}_{\text{UB}}^{\text{lf}} to be n^*.

Set \text{ec}_{\text{LB}}^{\text{int}}(\gamma) to be the number of core-edges in G_A with \gamma \in \Gamma^{\text{int}} and \text{ec}_{\text{UB}}^{\text{int}}(\gamma) to be the number interior-edges in G_A and G_B with edge-configuration \gamma.

Let \mathcal{F}_B^{(p)}, p \in [1, 2] denote the set of chemical rooted trees r-isomorphic p-fringe-trees in G_B; Set \mathcal{F}_E := \mathcal{F}(v) := \mathcal{F}_B^{(1)} \cup \mathcal{F}_B^{(2)}, v \in V_C and \text{fc}_{\text{LB}}(\psi) := 0, \text{fc}_{\text{UB}}(\psi) := 10, \psi \in \mathcal{F}_B^{(1)} \cup \mathcal{F}_B^{(2)}.
```

(d) $I_{\rm d} = (G_{\rm C}^1, \sigma_{\rm int}, \sigma_{\rm ce})$: An instance aimed to infer a chemical monocyclic graph G^{\dagger} such that the frequency vector of edge-configurations in G^{\dagger} is a vector obtained by merging those of G_A and G_B . We use chemical monocyclic compounds CID 10076784 and CID 44340250 in Figure 7(c) and (d) for G_A and G_B , respectively. Set a seed graph to be the monocyclic seed graph $G_{\mathcal{C}}^1 = (V_{\mathcal{C}}, E_{\mathcal{C}} = E_{(\geq 2)} \cup E_{(\geq 1)})$ with $V_{\rm C} = \{u_1, u_2\}, E_{(>2)} = \{a_1\} \text{ and } E_{(>1)} = \{a_2\} \text{ in Figure 6(i)}.$ Set $\Lambda := \{\mathtt{H},\mathtt{C},\mathtt{N},\mathtt{O}\}, \ \Lambda_{\mathrm{dg}}^{\mathrm{int}} := \Lambda_{\mathrm{dg},A}^{\mathrm{int}} \cup \Lambda_{\mathrm{dg},B}^{\mathrm{int}} \ \mathrm{and} \ \Gamma^{\mathrm{int}} := \Gamma_A^{\mathrm{int}} \cup \Gamma_B^{\mathrm{int}}.$ Set $n_{LB}^{int} := \min\{n^{int}(G_A), n^{int}(G_B)\}, n_{UB}^{int} := \max\{n^{int}(G_A), n^{int}(G_B)\},$ $n_{LB} := \min\{n(G_A), n(G_B)\}\$ and $n^* := \max\{n(G_A), n(G_B)\}.$ Set lower bounds ℓ_{LB} , bl_{LB} , ch_{LB} , $bd_{2,LB}$, $bd_{3,LB}$, na_{LB} , na_{LB}^{int} , ns_{LB}^{int} , ac_{LB}^{int} and ac_{LB}^{lf} to be 0. Set upper bounds ℓ_{UB} , $\mathrm{bl}_{\mathrm{UB}}$, $\mathrm{ch}_{\mathrm{UB}}$, $\mathrm{bd}_{\mathrm{2,UB}}$, $\mathrm{bd}_{\mathrm{3,UB}}$, $\mathrm{na}_{\mathrm{UB}}$, $\mathrm{na}_{\mathrm{UB}}^{\mathrm{int}}$, $\mathrm{ns}_{\mathrm{UB}}^{\mathrm{int}}$, $\mathrm{ac}_{\mathrm{UB}}^{\mathrm{int}}$ and $\mathrm{ac}_{\mathrm{UB}}^{\mathrm{lf}}$ to be n^* . For each edge-configuration $\gamma \in \Gamma^{\text{int}}$, let $x_A^*(\gamma^{\text{int}})$ (resp., $x_B^*(\gamma^{\text{int}})$) denote the number of interior-edges with γ in G_A (resp., G_B), $\gamma \in \Gamma^{\text{int}}$ and set $x_{\min}^*(\gamma) := \min\{x_A^*(\gamma), x_B^*(\gamma)\}, \ x_{\max}^*(\gamma) := \max\{x_A^*(\gamma), x_B^*(\gamma)\},$ $\operatorname{ec_{LB}^{int}}(\gamma) := \lfloor (3/4) x_{\min}^*(\gamma) + (1/4) x_{\max}^*(\gamma) \rfloor$ and $\operatorname{ec_{\mathrm{UB}}^{\mathrm{int}}}(\gamma) := \lceil (1/4) x_{\min}^*(\gamma) + (3/4) x_{\max}^*(\gamma) \rceil.$ Set $\mathcal{F}_E := \mathcal{F}(v) := \mathcal{F}_A \cup \mathcal{F}_B$, $v \in V_C$ and $fc_{LB}(\psi) := 0$, $fc_{UB}(\psi) := 10$, $\psi \in \mathcal{F}_A \cup \mathcal{F}_B$. We include a linear constraint $\ell(a_1) \leq \ell(a_2)$ and $5 \leq \ell(a_1) + \ell(a_2) \leq 15$ as part of the side constraint.

4 All Constraints in an MILP Formulation for Chemical Graphs

We define a standard encoding of a finite set A of elements to be a bijection $\sigma: A \to [1, |A|]$, where we denote by [A] the set [1, |A|] of integers and by [e] the encoded element $\sigma(e)$. Let ϵ denote null, a fictitious chemical element that does not belong to any set of chemical elements, chemical symbols, adjacency-configurations and edge-configurations in the following formulation. Given a finite set A, let A_{ϵ} denote the set $A \cup \{\epsilon\}$ and define a standard encoding of A_{ϵ} to be a bijection $\sigma: A \to [0, |A|]$ such that $\sigma(\epsilon) = 0$, where we denote by $[A_{\epsilon}]$ the set [0, |A|] of integers and by [e] the encoded element $\sigma(e)$, where $[\epsilon] = 0$.

Let $\sigma = (G_{\rm C}, \sigma_{\rm int}, \sigma_{\rm ce})$ be a target specification, ρ denote the branch-parameter in the specification σ and \mathbb{C} denote a chemical graph in $\mathcal{G}(G_{\rm C}, \sigma_{\rm int}, \sigma_{\rm ce})$.

4.1 Selecting a Cyclical-base

Recall that

$$\begin{split} E_{(=1)} &= \{e \in E_{\mathcal{C}} \mid \ell_{\mathsf{LB}}(e) = \ell_{\mathsf{UB}}(e) = 1\}; \qquad E_{(0/1)} = \{e \in E_{\mathcal{C}} \mid \ell_{\mathsf{LB}}(e) = 0, \ell_{\mathsf{UB}}(e) = 1\}; \\ E_{(\geq 1)} &= \{e \in E_{\mathcal{C}} \mid \ell_{\mathsf{LB}}(e) = 1, \ell_{\mathsf{UB}}(e) \geq 2\}; \qquad E_{(\geq 2)} = \{e \in E_{\mathcal{C}} \mid \ell_{\mathsf{LB}}(e) \geq 2\}; \end{split}$$

- Every edge $a_i \in E_{(=1)}$ is included in $\langle \mathbb{C} \rangle$;
- Each edge $a_i \in E_{(0/1)}$ is included in $\langle \mathbb{C} \rangle$ if necessary;
- For each edge $a_i \in E_{(>2)}$, edge a_i is not included in $\langle \mathbb{C} \rangle$ and instead a path

$$P_i = (v^{C}_{\text{tail}(i)}, v^{T}_{j-1}, v^{T}_{j}, \dots, v^{T}_{j+t}, v^{C}_{\text{head}(i)})$$

of length at least 2 from vertex $v^{C}_{\text{tail}(i)}$ to vertex $v^{C}_{\text{head}(i)}$ visiting some vertices in V_{T} is constructed in $\langle \mathbb{C} \rangle$; and

- For each edge $a_i \in E_{(\geq 1)}$, either edge a_i is directly used in $\langle \mathbb{C} \rangle$ or the above path P_i of length at least 2 is constructed in $\langle \mathbb{C} \rangle$.

Let $t_{\rm C} \triangleq |V_{\rm C}|$ and denote $V_{\rm C}$ by $\{v^{\rm C}_i \mid i \in [1, t_{\rm C}]\}$. Regard the seed graph $G_{\rm C}$ as a digraph such that each edge a_i with end-vertices $v^{\rm C}_j$ and $v^{\rm C}_{j'}$ is directed from $v^{\rm C}_j$ to $v^{\rm C}_{j'}$ when j < j'. For each directed edge $a_i \in E_{\rm C}$, let head(i) and tail(i) denote the head and tail of $e^{\rm C}(i)$; i.e., $a_i = (v^{\rm C}_{{\rm tail}(i)}, v^{\rm C}_{{\rm head}(i)})$.

Define

$$k_{\mathcal{C}} \triangleq |E_{(\geq 2)} \cup E_{(\geq 1)}|, \quad \widetilde{k_{\mathcal{C}}} \triangleq |E_{(\geq 2)}|,$$

and denote $E_{\mathcal{C}} = \{a_i \mid i \in [1, m_{\mathcal{C}}]\}, \ E_{(\geq 2)} = \{a_k \mid k \in [1, \widetilde{K_{\mathcal{C}}}]\}, \ E_{(\geq 1)} = \{a_k \mid k \in [\widetilde{K_{\mathcal{C}}} + 1, k_{\mathcal{C}}]\}, \ E_{(0/1)} = \{a_i \mid i \in [k_{\mathcal{C}} + 1, k_{\mathcal{C}} + 1, k_{\mathcal{C}}]\}, \ E_{(0/1)} = \{a_i \mid i \in [k_{\mathcal{C}} + 1, k_{\mathcal{C}}]\}.$ Let $I_{(=1)}$ denote the set of indices i of edges $a_i \in E_{(=1)}$. Similarly for $I_{(0/1)}, \ I_{(\geq 1)}$ and $I_{(\geq 2)}$.

To control the construction of such a path P_i for each edge $a_k \in E_{(\geq 2)} \cup E_{(\geq 1)}$, we regard the index $k \in [1, k_{\rm C}]$ of each edge $a_k \in E_{(\geq 2)} \cup E_{(\geq 1)}$ as the "color" of the edge. To introduce necessary linear constraints that can construct such a path P_k properly in our MILP, we assign the color k to the vertices $v^{\rm T}_{j-1}, v^{\rm T}_{j}, \ldots, v^{\rm T}_{j+t}$ in $V_{\rm T}$ when the above path P_k is used in $\langle \mathbb{C} \rangle$.

For each index $s \in [1, t_{\rm C}]$, let $I_{\rm C}(s)$ denote the set of edges $e \in E_{\rm C}$ incident to vertex $v^{\rm C}_s$, and $E^+_{(=1)}(s)$ (resp., $E^-_{(=1)}(s)$) denote the set of edges $a_i \in E_{(=1)}$ such that the tail (resp., head) of a_i is vertex $v^{\rm C}_s$. Similarly for $E^+_{(0/1)}(s)$, $E^-_{(0/1)}(s)$, $E^+_{(\geq 1)}(s)$, $E^+_{(\geq 2)}(s)$ and $E^-_{(\geq 2)}(s)$. Let $I_{\rm C}(s)$ denote the set of indices i of edges $a_i \in I_{\rm C}(s)$. Similarly for $I^+_{(=1)}(s)$, $I^-_{(=1)}(s)$, $I^+_{(0/1)}(s)$, $I^+_{(0/1)}(s)$, $I^+_{(\geq 1)}(s)$, $I^+_{(\geq 2)}(s)$ and $I^-_{(\geq 2)}(s)$. Note that $[1, k_{\rm C}] = I_{(\geq 2)} \cup I_{(\geq 1)}$ and $[k_{\rm C} + 1, m_{\rm C}] = I_{(\geq 1)} \cup I_{(0/1)} \cup I_{(=1)}$.

constants:

- $t_{\rm C} = |V_{\rm C}|$, $\widetilde{k_{\rm C}} = |E_{(\geq 2)}|$, $k_{\rm C} = |E_{(\geq 2)} \cup E_{(\geq 1)}|$, $t_{\rm T} = {\rm n_{UB}^{int}} |V_{\rm C}|$, $m_{\rm C} = |E_{\rm C}|$. Note that $a_i \in E_{\rm C} \setminus (E_{(\geq 2)} \cup E_{(\geq 1)})$ holds $i \in [k_{\rm C} + 1, m_{\rm C}]$;
- $\ell_{LB}(k)$, $\ell_{UB}(k) \in [1, t_T]$, $k \in [1, k_C]$: lower and upper bounds on the length of path P_k ;
- $r_{G_{\mathbf{C}}} \in [1, m_{\mathbf{C}}]$: the rank $\mathbf{r}(G_{\mathbf{C}})$ of seed graph $G_{\mathbf{C}}$;

variables:

- $e^{C}(i)$ ∈ [0,1], i ∈ [1, m_{C}]: $e^{C}(i)$ represents edge a_{i} ∈ E_{C} , i ∈ [1, m_{C}] ($e^{C}(i)$ = 1, i ∈ $I_{(=1)}$; $e^{C}(i)$ = 0, i ∈ $I_{(\geq 2)}$) ($e^{C}(i)$ = 1 \Leftrightarrow edge a_{i} is used in $\langle \mathbb{C} \rangle$);
- $v^{\mathrm{T}}(i) \in [0,1], i \in [1,t_{\mathrm{T}}]: v^{\mathrm{T}}(i) = 1 \Leftrightarrow \text{vertex } v^{\mathrm{T}}{}_{i} \text{ is used in } \langle \mathbb{C} \rangle;$
- $e^{\mathrm{T}}(i) \in [0,1], i \in [1,t_{\mathrm{T}}+1]$: $e^{\mathrm{T}}(i)$ represents edge $e^{\mathrm{T}}_{i} = (v^{\mathrm{T}}_{i-1},v^{\mathrm{T}}_{i}) \in E_{\mathrm{T}}$, where e^{T}_{1} and $e^{\mathrm{T}}_{t_{\mathrm{T}}+1}$ are fictitious edges $(e^{\mathrm{T}}(i) = 1 \Leftrightarrow \mathrm{edge}\ e^{\mathrm{T}}_{i}$ is used in $\langle \mathbb{C} \rangle$);

- $\chi^{\mathrm{T}}(i) \in [0, k_{\mathrm{C}}], i \in [1, t_{\mathrm{T}}]: \chi^{\mathrm{T}}(i)$ represents the color assigned to vertex v^{T}_{i} ($\chi^{\mathrm{T}}(i) = k > 0 \Leftrightarrow \text{vertex } v^{\mathrm{T}}_{i}$ is assigned color k; $\chi^{\mathrm{T}}(i) = 0$ means that vertex v^{T}_{i} is not used in $\langle \mathbb{C} \rangle$);
- $\operatorname{clr}^{\operatorname{T}}(k) \in [\ell_{\operatorname{LB}}(k) 1, \ell_{\operatorname{UB}}(k) 1], k \in [1, k_{\operatorname{C}}], \operatorname{clr}^{\operatorname{T}}(0) \in [0, t_{\operatorname{T}}]:$ the number of vertices $v^{\operatorname{T}}{}_i \in V_{\operatorname{T}}$ with color c;
- $\delta_{\chi}^{\mathrm{T}}(k) \in [0, 1], k \in [0, k_{\mathrm{C}}]: \delta_{\chi}^{\mathrm{T}}(k) = 1 \Leftrightarrow \chi^{\mathrm{T}}(i) = k \text{ for some } i \in [1, t_{\mathrm{T}}];$
- $\chi^{\mathrm{T}}(i,k) \in [0,1], i \in [1,t_{\mathrm{T}}], k \in [0,k_{\mathrm{C}}] \ (\chi^{\mathrm{T}}(i,k) = 1 \Leftrightarrow \chi^{\mathrm{T}}(i) = k);$
- $\widetilde{\deg}_{\mathbf{C}}^+(i) \in [0, 4], i \in [1, t_{\mathbf{C}}]$: the out-degree of vertex $v^{\mathbf{C}}_i$ with the used edges $e^{\mathbf{C}}$ in $E_{\mathbf{C}}$;
- $\widetilde{\deg}_{\mathbf{C}}(i) \in [0, 4], i \in [1, t_{\mathbf{C}}]$: the in-degree of vertex $v^{\mathbf{C}}_{i}$ with the used edges $e^{\mathbf{C}}$ in $E_{\mathbf{C}}$;
- rank: the rank $r(\mathbb{C})$ of a target chemical graph \mathbb{C} ;

constraints:

$$rank = r_{G_{\mathcal{C}}} - \sum_{i \in I_{(0/1)}} (1 - e^{\mathcal{C}}(i)), \tag{1}$$

$$e^{C}(i) = 1, \quad i \in I_{(=1)},$$
 (2)

$$e^{C}(i) = 0, \quad \text{clr}^{T}(i) \ge 1, \quad i \in I_{(>2)},$$
 (3)

$$e^{C}(i) + \operatorname{clr}^{T}(i) \ge 1, \quad \operatorname{clr}^{T}(i) \le t_{T} \cdot (1 - e^{C}(i)), \quad i \in I_{(\ge 1)},$$
 (4)

$$\sum_{c \in I_{(\geq 1)}^{-}(i) \cup I_{(0/1)}^{-}(i) \cup I_{(=1)}^{-}(i)} e^{\mathbf{C}}(c) = \widetilde{\operatorname{deg}}_{\mathbf{C}}^{-}(i), \qquad \sum_{c \in I_{(\geq 1)}^{+}(i) \cup I_{(0/1)}^{+}(i) \cup I_{(=1)}^{+}(i)} e^{\mathbf{C}}(c) = \widetilde{\operatorname{deg}}_{\mathbf{C}}^{+}(i), \qquad i \in [1, t_{\mathbf{C}}],$$

$$(5)$$

$$\chi^{\mathrm{T}}(i,0) = 1 - v^{\mathrm{T}}(i), \quad \sum_{k \in [0,k_{\mathrm{C}}]} \chi^{\mathrm{T}}(i,k) = 1, \quad \sum_{k \in [0,k_{\mathrm{C}}]} k \cdot \chi^{\mathrm{T}}(i,k) = \chi^{\mathrm{T}}(i), \qquad i \in [1,t_{\mathrm{T}}], \tag{6}$$

$$\sum_{i \in [1, t_{\mathrm{T}}]} \chi^{\mathrm{T}}(i, k) = \mathrm{clr}^{\mathrm{T}}(k), \quad t_{\mathrm{T}} \cdot \delta_{\chi}^{\mathrm{T}}(k) \ge \sum_{i \in [1, t_{\mathrm{T}}]} \chi^{\mathrm{T}}(i, k) \ge \delta_{\chi}^{\mathrm{T}}(k), \qquad k \in [0, k_{\mathrm{C}}],$$
 (7)

$$v^{\mathrm{T}}(i-1) \ge v^{\mathrm{T}}(i),$$

$$k_{\mathrm{C}} \cdot (v^{\mathrm{T}}(i-1) - e^{\mathrm{T}}(i)) \ge \chi^{\mathrm{T}}(i-1) - \chi^{\mathrm{T}}(i) \ge v^{\mathrm{T}}(i-1) - e^{\mathrm{T}}(i), \qquad i \in [2, t_{\mathrm{T}}].$$
(8)

4.2 Constraints for Including Leaf Paths

Let $\widetilde{t_C}$ denote the number of vertices $u \in V_C$ such that $\mathrm{bl_{UB}}(u) = 1$ and assume that $V_C = \{u_1, u_2, \dots, u_p\}$ so that

$$\mathrm{bl}_{\mathrm{UB}}(u_i) = 1, \ i \in [1, \widetilde{t_{\mathrm{C}}}] \text{ and } \mathrm{bl}_{\mathrm{UB}}(u_i) = 0, \ i \in [\widetilde{t_{\mathrm{C}}} + 1, t_{\mathrm{C}}].$$

Define the set of colors for the vertex set $\{u_i \mid i \in [1, \widetilde{t_C}]\} \cup V_T$ to be $[1, c_F]$ with

$$c_{\mathrm{F}} \triangleq \widetilde{t_{\mathrm{C}}} + t_{\mathrm{T}} = |\{u_i \mid i \in [1, \widetilde{t_{\mathrm{C}}}]\} \cup V_{\mathrm{T}}|.$$

Let each vertex v^{C}_{i} , $i \in [1, \widetilde{t_{C}}]$ (resp., $v^{T}_{i} \in V_{T}$) correspond to a color $i \in [1, c_{F}]$ (resp., $i + \widetilde{t_{C}} \in [1, c_{F}]$). When a path $P = (u, v^{F}_{j}, v^{F}_{j+1}, \dots, v^{F}_{j+t})$ from a vertex $u \in V_{C} \cup V_{T}$ is used in $\langle \mathbb{C} \rangle$, we assign the color $i \in [1, c_{F}]$ of the vertex u to the vertices $v^{F}_{j}, v^{F}_{j+1}, \dots, v^{F}_{j+t} \in V_{F}$.

- $c_{\rm F}$: the maximum number of different colors assigned to the vertices in $V_{\rm F}$;
- n^* : an upper bound on the number $n(\mathbb{C})$ of non-hydrogen atoms in \mathbb{C} ;
- n_{LB}^{int} , $n_{UB}^{int} \in [2, n^*]$: lower and upper bounds on the number of interior-vertices in \mathbb{C} ;
- bl_{LB} $(i) \in [0, 1], i \in [1, \widetilde{t_{\rm C}}]$: a lower bound on the number of leaf ρ -branches in the leaf path rooted at a vertex $v^{\rm C}_i$;
- $\mathrm{bl}_{\mathrm{LB}}(k)$, $\mathrm{bl}_{\mathrm{UB}}(k) \in [0, \ell_{\mathrm{UB}}(k) 1]$, $k \in [1, k_{\mathrm{C}}] = I_{(\geq 2)} \cup I_{(\geq 1)}$: lower and upper bounds on the number of leaf ρ -branches in the trees rooted at internal vertices of a pure path P_k for an edge $a_k \in E_{(\geq 1)} \cup E_{(\geq 2)}$;

variables:

- $\mathbf{n}_{G}^{\mathrm{int}} \in [\mathbf{n}_{\mathrm{LB}}^{\mathrm{int}}, \mathbf{n}_{\mathrm{UB}}^{\mathrm{int}}]$: the number of interior-vertices in \mathbb{C} ;
- $v^{\mathrm{F}}(i) \in [0, 1], i \in [1, t_{\mathrm{F}}]: v^{\mathrm{F}}(i) = 1 \Leftrightarrow \text{vertex } v^{\mathrm{F}}_{i} \text{ is used in } \mathbb{C};$
- $e^{\mathcal{F}}(i) \in [0,1], i \in [1, t_{\mathcal{F}} + 1]$: $e^{\mathcal{F}}(i)$ represents edge $e^{\mathcal{F}}_i = v^{\mathcal{F}}_{i-1}v^{\mathcal{F}}_i$, where $e^{\mathcal{F}}_1$ and $e^{\mathcal{F}}_{t_{\mathcal{F}}+1}$ are fictitious edges $(e^{\mathcal{F}}(i) = 1 \Leftrightarrow \text{edge } e^{\mathcal{F}}_i$ is used in \mathbb{C});
- $\chi^{F}(i) \in [0, c_{F}], i \in [1, t_{F}]: \chi^{F}(i)$ represents the color assigned to vertex v^{F}_{i} ($\chi^{F}(i) = c \Leftrightarrow \text{vertex } v^{F}_{i}$ is assigned color c);
- $\operatorname{clr}^{\mathrm{F}}(c) \in [0, t_{\mathrm{F}}], c \in [0, c_{\mathrm{F}}]$: the number of vertices v^{F}_{i} with color c;
- $\delta_{\chi}^{\mathrm{F}}(c) \in [\mathrm{bl}_{\mathrm{LB}}(c), 1], c \in [1, \widetilde{t_{\mathrm{C}}}]: \delta_{\chi}^{\mathrm{F}}(c) = 1 \Leftrightarrow \chi^{\mathrm{F}}(i) = c \text{ for some } i \in [1, t_{\mathrm{F}}];$
- $\delta_{\chi}^{\mathrm{F}}(c) \in [0,1], c \in [\widetilde{t_{\mathrm{C}}}+1, c_{\mathrm{F}}]: \delta_{\chi}^{\mathrm{F}}(c) = 1 \Leftrightarrow \chi^{\mathrm{F}}(i) = c \text{ for some } i \in [1, t_{\mathrm{F}}];$
- $\chi^{F}(i,c) \in [0,1], i \in [1,t_{F}], c \in [0,c_{F}]: \chi^{F}(i,c) = 1 \Leftrightarrow \chi^{F}(i) = c;$
- $\mathrm{bl}(k,i) \in [0,1], \ k \in [1,k_{\mathrm{C}}] = I_{(\geq 2)} \cup I_{(\geq 1)}, \ i \in [1,t_{\mathrm{T}}]: \ \mathrm{bl}(k,i) = 1 \Leftrightarrow \mathrm{path} \ P_k \ \mathrm{contains} \ \mathrm{vertex} \ v^{\mathrm{T}}_i \ \mathrm{as} \ \mathrm{an} \ \mathrm{internal} \ \mathrm{vertex} \ \mathrm{and} \ \mathrm{the} \ \rho\text{-fringe-tree} \ \mathrm{rooted} \ \mathrm{at} \ v^{\mathrm{T}}_i \ \mathrm{contains} \ \mathrm{a} \ \mathrm{leaf} \ \rho\text{-branch};$

$$\chi^{F}(i,0) = 1 - v^{F}(i), \quad \sum_{c \in [0,c_{F}]} \chi^{F}(i,c) = 1, \quad \sum_{c \in [0,c_{F}]} c \cdot \chi^{F}(i,c) = \chi^{F}(i), \qquad i \in [1,t_{F}],$$
 (9)

$$\sum_{i \in [1, t_{\mathrm{F}}]} \chi^{\mathrm{F}}(i, c) = \mathrm{clr}^{\mathrm{F}}(c), \quad t_{\mathrm{F}} \cdot \delta_{\chi}^{\mathrm{F}}(c) \ge \sum_{i \in [1, t_{\mathrm{F}}]} \chi^{\mathrm{F}}(i, c) \ge \delta_{\chi}^{\mathrm{F}}(c), \qquad c \in [0, c_{\mathrm{F}}], \tag{10}$$

$$e^{F}(1) = e^{F}(t_{F} + 1) = 0,$$
 (11)

$$v^{F}(i-1) \ge v^{F}(i),$$

$$c_{F} \cdot (v^{F}(i-1) - e^{F}(i)) \ge \chi^{F}(i-1) - \chi^{F}(i) \ge v^{F}(i-1) - e^{F}(i), \qquad i \in [2, t_{F}],$$
(12)

$$bl(k,i) \ge \delta_{\chi}^{F}(\widetilde{t_{C}} + i) + \chi^{T}(i,k) - 1, \qquad k \in [1, k_{C}], i \in [1, t_{T}],$$
(13)

$$\sum_{k \in [1, k_{\rm C}], i \in [1, t_{\rm T}]} \text{bl}(k, i) \le \sum_{i \in [1, t_{\rm T}]} \delta_{\chi}^{\rm F}(\widetilde{t_{\rm C}} + i), \tag{14}$$

$$\mathrm{bl}_{\mathrm{LB}}(k) \le \sum_{i \in [1, t_{\mathrm{T}}]} \mathrm{bl}(k, i) \le \mathrm{bl}_{\mathrm{UB}}(k), \qquad k \in [1, k_{\mathrm{C}}],$$
 (15)

$$t_{\rm C} + \sum_{i \in [1, t_{\rm T}]} v^{\rm T}(i) + \sum_{i \in [1, t_{\rm F}]} v^{\rm F}(i) = n_G^{\rm int}.$$
 (16)

4.3 Constraints for Including Fringe-trees

Recall that $\mathcal{F}(D_{\pi})$ denotes the set of chemical rooted trees ψ r-isomorphic to a chemical rooted tree in $\mathcal{T}(\mathbb{C})$ over all chemical graphs $\mathbb{C} \in D_{\pi}$, where possibly a chemical rooted tree $\psi \in \mathcal{F}(D_{\pi})$ consists of a single chemical element $\mathbf{a} \in \Lambda \setminus \{\mathbf{H}\}$.

To express the condition that the ρ -fringe-tree is chosen from a rooted tree C_i , T_i or F_i , we introduce the following set of variables and constraints.

- n_{LB} : a lower bound on the number $n(\mathbb{C})$ of non-hydrogen atoms in \mathbb{C} , where n_{LB} , $n^* \geq n_{LB}^{int}$;
- $\operatorname{ch}_{\operatorname{LB}}(i), \operatorname{ch}_{\operatorname{UB}}(i) \in [0, n^*], i \in [1, t_{\operatorname{T}}]$: lower and upper bounds on $\operatorname{ht}(\langle T_i \rangle)$ of the tree T_i rooted at a vertex v^{C}_i ;
- $\operatorname{ch}_{LB}(k), \operatorname{ch}_{UB}(k) \in [0, n^*], k \in [1, k_{\mathbb{C}}] = I_{(\geq 2)} \cup I_{(\geq 1)}$: lower and upper bounds on the maximum height $\operatorname{ht}(\langle T \rangle)$ of the tree $T \in \mathcal{F}(P_k)$ rooted at an internal vertex of a path P_k for an edge $a_k \in E_{(\geq 1)} \cup E_{(\geq 2)}$;
- Prepare a coding of the set $\mathcal{F}(D_{\pi})$ and let $[\psi]$ denote the coded integer of an element ψ in $\mathcal{F}(D_{\pi})$;
- Sets $\mathcal{F}(v) \subseteq \mathcal{F}(D_{\pi}), v \in V_{\mathcal{C}}$ and $\mathcal{F}_E \subseteq \mathcal{F}(D_{\pi})$ of chemical rooted trees T with $\operatorname{ht}(T) \in [1, \rho]$;
- Define $\mathcal{F}^* := \bigcup_{v \in V_{\mathcal{C}}} \mathcal{F}(v) \cup \mathcal{F}_E, \, \mathcal{F}_i^{\mathcal{C}} := \mathcal{F}(v^{\mathcal{C}}_i), \, i \in [1, t_{\mathcal{C}}], \, \mathcal{F}_i^{\mathcal{T}} := \mathcal{F}_E, \, i \in [1, t_{\mathcal{T}}] \text{ and } \mathcal{F}_i^{\mathcal{F}} := \mathcal{F}_E, \, i \in [1, t_{\mathcal{F}}];$
- $fc_{LB}(\psi)$, $fc_{UB}(\psi) \in [0, n^*]$, $\psi \in \mathcal{F}^*$: lower and upper bound functions on the number of interior-vertices v such that $\mathbb{C}[v]$ is r-isomorphic to ψ in \mathbb{C} ;
- $\mathcal{F}_i^{\mathbf{X}}[p], p \in [1, \rho], \mathbf{X} \in \{\mathbf{C}, \mathbf{T}, \mathbf{F}\}$: the set of chemical rooted trees $T \in \mathcal{F}_i^{\mathbf{X}}$ with $\operatorname{ht}(\langle T \rangle) = p$;
- $n_{\overline{H}}([\psi]) \in [0, 3^{\rho}], \psi \in \mathcal{F}^*$: the number $n(\langle \psi \rangle)$ of non-root hydrogen vertices in a chemical rooted tree ψ ;
- $\operatorname{ht}_{\overline{H}}([\psi]) \in [0, \rho], \psi \in \mathcal{F}^*$: the height $\operatorname{ht}(\langle \psi \rangle)$ of the hydrogen-suppressed chemical rooted tree $\langle \psi \rangle$;
- $\deg_{\mathbf{r}}^{\overline{\mathbf{H}}}([\psi]) \in [0,3], \psi \in \mathcal{F}^*$: the number $\deg_{\mathbf{r}}(\langle \psi \rangle)$ of non-hydrogen children of the root r of a chemical rooted tree ψ ;
- $\deg_{\mathbf{r}}^{\mathrm{hyd}}([\psi]) \in [0,3], \psi \in \mathcal{F}^*$: the number $\deg_{\mathbf{r}}(\psi) \deg_{\mathbf{r}}(\langle \psi \rangle)$ of hydrogen children of the root r of a chemical rooted tree ψ ;
- $v_{ion}(\psi) \in [-3, +3], \psi \in \mathcal{F}^*$: the ion-valence of the root in ψ ;

- $ac_{\nu}^{lf}(\psi), \nu \in \Gamma_{ac}^{lf}$: the frequency of leaf-edges with adjacency-configuration ν in ψ ;
- $\operatorname{ac_{LB}^{lf}}$, $\operatorname{ac_{UB}^{lf}}:\Gamma_{\operatorname{ac}}^{\operatorname{lf}}\to[0,n^*]$: lower and upper bound functions on the number of leaf-edges uv in $\operatorname{ac_C}$ with adjacency-configuration ν ;

variables:

- $n_G \in [n_{LB}, n^*]$: the number $n(\mathbb{C})$ of non-hydrogen atoms in \mathbb{C} ;
- $v^{X}(i) \in [0, 1], i \in [1, t_{X}], X \in \{T, F\}: v^{X}(i) = 1 \Leftrightarrow \text{vertex } v^{X}_{i} \text{ is used in } \mathbb{C};$
- $\delta_{\text{fr}}^{\mathbf{X}}(i, [\psi]) \in [0, 1], i \in [1, t_{\mathbf{X}}], \psi \in \mathcal{F}_{i}^{\mathbf{X}}, \mathbf{X} \in \{\mathbf{C}, \mathbf{T}, \mathbf{F}\}: \delta_{\text{fr}}^{\mathbf{X}}(i, [\psi]) = 1 \Leftrightarrow \psi \text{ is the } \rho\text{-fringe-tree rooted at vertex } v^{\mathbf{X}}_{i} \text{ in } \mathbb{C}$;
- $fc([\psi]) \in [fc_{LB}(\psi), fc_{UB}(\psi)], \psi \in \mathcal{F}^*$: the number of interior-vertices v such that $\mathbb{C}[v]$ is r-isomorphic to ψ in \mathbb{C} ;
- $\operatorname{ac}^{\operatorname{lf}}([\nu]) \in [\operatorname{ac}^{\operatorname{lf}}_{\operatorname{LB}}(\nu), \operatorname{ac}^{\operatorname{lf}}_{\operatorname{UB}}(\nu)], \nu \in \Gamma^{\operatorname{lf}}_{\operatorname{ac}}$: the number of leaf-edge with adjacency-configuration ν in \mathbb{C} ;
- $\deg_{\mathbf{X}}^{\mathbf{ex}}(i) \in [0,3], i \in [1,t_{\mathbf{X}}], \mathbf{X} \in \{\mathbf{C},\mathbf{T},\mathbf{F}\}:$ the number of non-hydrogen children of the root of the ρ -fringe-tree rooted at vertex $v^{\mathbf{X}}_{i}$ in \mathbb{C} ;
- hyddeg^X(i) \in [0, 4], $i \in$ [1, t_X], X \in {C, T, F}: the number of hydrogen atoms adjacent to vertex v^X_i (i.e., hyddeg(v^X_i)) in $\mathbb{C} = (H, \alpha, \beta)$;
- eledeg_X $(i) \in [-3, +3], i \in [1, t_X], X \in \{C, T, F\}$: the ion-valence $v_{ion}(\psi)$ of vertex v_i^X (i.e., eledeg_X $(i) = v_{ion}(\psi)$ for the ρ -fringe-tree ψ rooted at v_i^X) in $\mathbb{C} = (H, \alpha, \beta)$;
- $h^{\mathbf{X}}(i) \in [0, \rho], i \in [1, t_{\mathbf{X}}], \mathbf{X} \in \{\mathbf{C}, \mathbf{T}, \mathbf{F}\}$: the height $\mathrm{ht}(\langle T \rangle)$ of the hydrogen-suppressed chemical rooted tree $\langle T \rangle$ of the ρ -fringe-tree T rooted at vertex $v^{\mathbf{X}}_i$ in \mathbb{C} ;
- $\sigma(k,i) \in [0,1], \ k \in [1,k_{\rm C}] = I_{(\geq 2)} \cup I_{(\geq 1)}, i \in [1,t_{\rm T}]: \ \sigma(k,i) = 1 \Leftrightarrow \text{the } \rho\text{-fringe-tree } T_v \text{ rooted at vertex } v = v^{\rm T}_i \text{ with color } k \text{ has the largest height } \operatorname{ht}(\langle \mathcal{T}_v \rangle) \text{ among such trees } T_v, v \in V_{\rm T};$

$$\sum_{\psi \in \mathcal{F}_{i}^{\mathcal{C}}} \delta_{\text{fr}}^{\mathcal{C}}(i, [\psi]) = 1, \qquad i \in [1, t_{\mathcal{C}}],$$

$$\sum_{\psi \in \mathcal{F}_{i}^{\mathcal{X}}} \delta_{\text{fr}}^{\mathcal{X}}(i, [\psi]) = v^{\mathcal{X}}(i), \qquad i \in [1, t_{\mathcal{X}}], \mathcal{X} \in \{\mathcal{T}, \mathcal{F}\}, \qquad (17)$$

$$\sum_{\psi \in \mathcal{F}_i^{\mathbf{X}}} \!\! \deg^{\overline{\mathbf{H}}}_{\mathbf{r}}([\psi]) \cdot \delta^{\mathbf{X}}_{\mathbf{fr}}(i, [\psi]) = \deg^{\mathrm{ex}}_{\mathbf{X}}(i),$$

$$\sum_{\psi \in \mathcal{F}_{i}^{X}} \deg_{\mathbf{r}}^{\mathrm{hyd}}([\psi]) \cdot \delta_{\mathrm{fr}}^{X}(i, [\psi]) = \mathrm{hyddeg}^{X}(i),$$

$$\sum_{\psi \in \mathcal{F}_{i}^{X}} v_{ion}([\psi]) \cdot \delta_{fr}^{X}(i, [\psi]) = eledeg_{X}(i), \qquad i \in [1, t_{X}], X \in \{C, T, F\},$$
(18)

$$\sum_{\psi \in \mathcal{F}_{i}^{F}[\rho]} \delta_{fr}^{F}(i, [\psi]) \ge v^{F}(i) - e^{F}(i+1), \qquad i \in [1, t_{F}] \ (e^{F}(t_{F}+1) = 0), \tag{19}$$

$$\sum_{\psi \in \mathcal{F}_i^{\mathcal{X}}} \operatorname{ht}_{\overline{\mathbf{H}}}([\psi]) \cdot \delta_{\operatorname{fr}}^{\mathcal{X}}(i, [\psi]) = h^{\mathcal{X}}(i), \qquad i \in [1, t_{\mathcal{X}}], \mathcal{X} \in \{\mathcal{C}, \mathcal{T}, \mathcal{F}\},$$
(20)

$$\sum_{\substack{\psi \in \mathcal{F}_{i}^{X} \\ i \in [1, t_{X}], X \in \{C, T, F\}}} n_{\overline{H}}([\psi]) \cdot \delta_{fr}^{X}(i, [\psi]) + \sum_{i \in [1, t_{X}], X \in \{T, F\}} v^{X}(i) + t_{C} = n_{G},$$
(21)

$$\sum_{i \in [1, t_{\mathbf{X}}], \mathbf{X} \in \{\mathbf{C}, \mathbf{T}, \mathbf{F}\}} \delta_{\mathrm{fr}}^{\mathbf{X}}(i, [\psi]) = \mathrm{fc}([\psi]), \qquad \qquad \psi \in \mathcal{F}^*, \tag{22}$$

$$\sum_{\psi \in \mathcal{F}_{i}^{\mathbf{X}}, i \in [1, t_{\mathbf{X}}], \mathbf{X} \in \{\mathbf{C}, \mathbf{T}, \mathbf{F}\}} \operatorname{ac}_{\nu}^{\mathbf{lf}}(\psi) \cdot \delta_{\mathbf{fr}}^{\mathbf{X}}(i, [\psi]) = \operatorname{ac}^{\mathbf{lf}}([\nu]), \qquad \nu \in \Gamma_{\mathrm{ac}}^{\mathbf{lf}},$$
(23)

$$h^{\mathcal{C}}(i) \ge \operatorname{ch}_{\mathcal{L}\mathcal{B}}(i) - n^* \cdot \delta_{\chi}^{\mathcal{F}}(i), \quad \operatorname{clr}^{\mathcal{F}}(i) + \rho \ge \operatorname{ch}_{\mathcal{L}\mathcal{B}}(i),$$

$$h^{\mathcal{C}}(i) \le \operatorname{ch}_{\mathcal{U}\mathcal{B}}(i), \quad \operatorname{clr}^{\mathcal{F}}(i) + \rho \le \operatorname{ch}_{\mathcal{U}\mathcal{B}}(i) + n^* \cdot (1 - \delta_{\chi}^{\mathcal{F}}(i)), \qquad i \in [1, \widetilde{t_{\mathcal{C}}}],$$

$$(24)$$

$$\operatorname{ch}_{\operatorname{LB}}(i) \le h^{\operatorname{C}}(i) \le \operatorname{ch}_{\operatorname{UB}}(i), \qquad i \in [\widetilde{t_{\operatorname{C}}} + 1, t_{\operatorname{C}}], \tag{25}$$

$$h^{T}(i) \leq \operatorname{ch}_{UB}(k) + n^{*} \cdot (\delta_{\chi}^{F}(\widetilde{t_{C}} + i) + 1 - \chi^{T}(i, k)),$$

$$\operatorname{clr}^{F}(\widetilde{t_{C}} + i) + \rho \leq \operatorname{ch}_{UB}(k) + n^{*} \cdot (2 - \delta_{\chi}^{F}(\widetilde{t_{C}} + i) - \chi^{T}(i, k)), \qquad k \in [1, k_{C}], i \in [1, t_{T}],$$
(26)

$$\sum_{i \in [1, t_{\mathrm{T}}]} \sigma(k, i) = \delta_{\chi}^{\mathrm{T}}(k), \qquad k \in [1, k_{\mathrm{C}}], \tag{27}$$

$$\chi^{\mathrm{T}}(i,k) \geq \sigma(k,i),$$

$$h^{\mathrm{T}}(i) \geq \mathrm{ch}_{\mathrm{LB}}(k) - n^* \cdot (\delta_{\chi}^{\mathrm{F}}(\widetilde{t_{\mathrm{C}}} + i) + 1 - \sigma(k,i)),$$

$$\mathrm{chr}^{\mathrm{F}}(\widetilde{t_{\mathrm{C}}} + i) + \rho \geq \mathrm{ch}_{\mathrm{LB}}(k) - n^* \cdot (2 - \delta_{\chi}^{\mathrm{F}}(\widetilde{t_{\mathrm{C}}} + i) - \sigma(k,i)), \qquad k \in [1, k_{\mathrm{C}}], i \in [1, t_{\mathrm{T}}]. \tag{28}$$

4.4 Descriptor for the Number of Specified Degree

We include constraints to compute descriptors for degrees in \mathbb{C} .

variables:

- $\deg^{\mathbf{X}}(i) \in [0, 4], i \in [1, t_{\mathbf{X}}], \mathbf{X} \in \{\mathbf{C}, \mathbf{T}, \mathbf{F}\}:$ the number of non-hydrogen atoms adjacent to vertex $v = v^{\mathbf{X}}_{i}$ (i.e., $\deg_{(\mathbb{C})}(v) = \deg_{H}(v) \operatorname{hyddeg}_{\mathbb{C}}(v)$) in $\mathbb{C} = (H, \alpha, \beta)$;
- $\deg_{\mathrm{CT}}(i) \in [0,4], i \in [1,t_{\mathrm{C}}]$: the number of edges from vertex $v^{\mathrm{C}}{}_i$ to vertices $v^{\mathrm{T}}{}_j, j \in [1,t_{\mathrm{T}}]$;

- $\deg_{TC}(i) \in [0, 4], i \in [1, t_C]$: the number of edges from vertices $v^T_j, j \in [1, t_T]$ to vertex v^C_i ;
- $\delta_{\text{dg}}^{\text{C}}(i,d) \in [0,1], i \in [1,t_{\text{C}}], d \in [1,4], \delta_{\text{dg}}^{\text{X}}(i,d) \in [0,1], i \in [1,t_{\text{X}}], d \in [0,4], \text{X} \in \{\text{T},\text{F}\}: \delta_{\text{dg}}^{\text{X}}(i,d) = 1 \Leftrightarrow \text{deg}^{\text{X}}(i) + \text{hyddeg}^{\text{X}}(i) = d;$
- $dg(d) \in [dg_{LB}(d), dg_{UB}(d)], d \in [1, 4]$: the number of interior-vertices v with $deg_H(v^X_i) = d$ in $\mathbb{C} = (H, \alpha, \beta)$;
- $\deg^{\rm int}_{\rm C}(i) \in [1,4], i \in [1,t_{\rm C}], \deg^{\rm int}_{\rm X}(i) \in [0,4], i \in [1,t_{\rm X}], {\rm X} \in \{{\rm T,F}\}:$ the interior-degree $\deg_{H^{\rm int}}(v^{\rm X}_i)$ in the interior $H^{\rm int} = (V^{\rm int}(\mathbb{C}), E^{\rm int}(\mathbb{C}))$ of \mathbb{C} ; i.e., the number of interior-edges incident to vertex $v^{\rm X}_i$;
- $\delta_{\mathrm{dg,C}}^{\mathrm{int}}(i,d) \in [0,1], i \in [1,t_{\mathrm{C}}], d \in [1,4], \delta_{\mathrm{dg,X}}^{\mathrm{int}}(i,d) \in [0,1], i \in [1,t_{\mathrm{X}}], d \in [0,4], X \in \{\mathrm{T,F}\}: \delta_{\mathrm{dg,X}}^{\mathrm{int}}(i,d) = 1 \Leftrightarrow \mathrm{deg_{X}^{\mathrm{int}}}(i) = d;$
- $dg^{int}(d) \in [dg_{LB}(d), dg_{UB}(d)], d \in [1, 4]$: the number of interior-vertices v with the interior-degree $dg_{H^{int}}(v) = d$ in the interior $H^{int} = (V^{int}(\mathbb{C}), E^{int}(\mathbb{C}))$ of $\mathbb{C} = (H, \alpha, \beta)$.

$$\sum_{k \in I_{(\geq 2)}^+(i) \cup I_{(\geq 1)}^+(i)} \delta_{\chi}^{\mathrm{T}}(k) = \deg_{\mathrm{CT}}(i), \qquad \sum_{k \in I_{(\geq 2)}^-(i) \cup I_{(\geq 1)}^-(i)} \delta_{\chi}^{\mathrm{T}}(k) = \deg_{\mathrm{TC}}(i), \qquad i \in [1, t_{\mathrm{C}}],$$
(29)

$$\widetilde{\operatorname{deg}}_{\mathbf{C}}^{-}(i) + \widetilde{\operatorname{deg}}_{\mathbf{C}}^{+}(i) + \operatorname{deg}_{\mathbf{CT}}(i) + \operatorname{deg}_{\mathbf{TC}}(i) + \delta_{\chi}^{\mathbf{F}}(i) = \operatorname{deg}_{\mathbf{C}}^{\mathrm{int}}(i), \qquad i \in [1, \widetilde{t_{\mathbf{C}}}],$$
(30)

$$\widetilde{\operatorname{deg}_{\operatorname{C}}}(i) + \widetilde{\operatorname{deg}_{\operatorname{C}}}(i) + \operatorname{deg}_{\operatorname{CT}}(i) + \operatorname{deg}_{\operatorname{TC}}(i) = \operatorname{deg}_{\operatorname{C}}^{\operatorname{int}}(i), \qquad i \in [\widetilde{t_{\operatorname{C}}} + 1, t_{\operatorname{C}}],$$
(31)

$$\deg_{\mathcal{C}}^{\operatorname{int}}(i) + \deg_{\mathcal{C}}^{\operatorname{ex}}(i) = \deg^{\mathcal{C}}(i), \qquad i \in [1, t_{\mathcal{C}}], \tag{32}$$

$$\sum_{\psi \in \mathcal{F}_i^{\mathcal{C}}[\rho]} \delta_{\text{fr}}^{\mathcal{C}}(i, [\psi]) \ge 2 - \deg_{\mathcal{C}}^{\text{int}}(i) \qquad i \in [1, t_{\mathcal{C}}], \tag{33}$$

$$2v^{T}(i) + \delta_{\chi}^{F}(\widetilde{t_{C}} + i) = \deg_{T}^{int}(i),$$

$$\deg_{T}^{int}(i) + \deg_{T}^{ex}(i) = \deg_{T}^{T}(i),$$

$$i \in [1, t_{T}] \ (e^{T}(1) = e^{T}(t_{T} + 1) = 0),$$
(34)

$$v^{F}(i) + e^{F}(i+1) = \deg_{F}^{int}(i),$$

$$\deg_{F}^{int}(i) + \deg_{F}^{ex}(i) = \deg^{F}(i),$$

$$i \in [1, t_{F}] \ (e^{F}(1) = e^{F}(t_{F} + 1) = 0),$$
(35)

$$\sum_{d \in [0,4]} \delta_{\text{dg}}^{X}(i,d) = 1, \quad \sum_{d \in [1,4]} d \cdot \delta_{\text{dg}}^{X}(i,d) = \text{deg}^{X}(i) + \text{hyddeg}^{X}(i),$$

$$\sum_{d \in [0,4]} \delta_{\text{dg},X}^{\text{int}}(i,d) = 1, \quad \sum_{d \in [1,4]} d \cdot \delta_{\text{dg},X}^{\text{int}}(i,d) = \text{deg}_{X}^{\text{int}}(i), \qquad i \in [1, t_{X}], X \in \{T, C, F\}, \quad (36)$$

$$\sum_{i \in [1, t_{\rm C}]} \delta_{\rm dg}^{\rm C}(i, d) + \sum_{i \in [1, t_{\rm T}]} \delta_{\rm dg}^{\rm T}(i, d) + \sum_{i \in [1, t_{\rm F}]} \delta_{\rm dg}^{\rm F}(i, d) = dg(d),$$

$$\sum_{i \in [1, t_{\rm C}]} \delta_{\rm dg, C}^{\rm int}(i, d) + \sum_{i \in [1, t_{\rm T}]} \delta_{\rm dg, T}^{\rm int}(i, d) + \sum_{i \in [1, t_{\rm F}]} \delta_{\rm dg, F}^{\rm int}(i, d) = dg^{\rm int}(d), \qquad d \in [1, 4]. \tag{37}$$

4.5 Assigning Multiplicity

We prepare an integer variable $\beta(e)$ for each edge e in the scheme graph SG to denote the bond-multiplicity of e in a selected graph H and include necessary constraints for the variables to satisfy in H.

constants:

- $\beta_{\mathbf{r}}([\psi])$: the sum $\beta_{\psi}(r)$ of bond-multiplicities of edges incident to the root r of a chemical rooted tree $\psi \in \mathcal{F}^*$;

variables:

- $\beta^{X}(i) \in [0,3], i \in [2,t_X], X \in \{T,F\}$: the bond-multiplicity of edge e^{X}_i in \mathbb{C} ;
- $\beta^{C}(i) \in [0,3], i \in [\widetilde{k_{C}}+1, m_{C}] = I_{(\geq 1)} \cup I_{(0/1)} \cup I_{(=1)}$: the bond-multiplicity of edge $a_{i} \in E_{(\geq 1)} \cup E_{(0/1)} \cup E_{(=1)}$ in \mathbb{C} :
- $\beta^{\text{CT}}(k)$, $\beta^{\text{TC}}(k) \in [0,3]$, $k \in [1, k_{\text{C}}] = I_{(\geq 2)} \cup I_{(\geq 1)}$: the bond-multiplicity of the first (resp., last) edge of the pure path P_k in \mathbb{C} ;
- $\beta^{*F}(c) \in [0,3], c \in [1, c_F = \widetilde{t_C} + t_T]$: the bond-multiplicity of the first edge of the leaf path Q_c rooted at vertex $v^C_{c}, c \leq \widetilde{t_C}$ or $v^T_{c-\widetilde{t_C}}, c > \widetilde{t_C}$ in \mathbb{C} ;
- $\beta_{\text{ex}}^{\text{X}}(i) \in [0,4], i \in [1,t_{\text{X}}], \text{X} \in \{\text{C},\text{T},\text{F}\}: \text{ the sum } \beta_{\mathbb{C}[v]}(v) \text{ of bond-multiplicities of edges in the } \rho\text{-fringe-tree}$ $\mathbb{C}[v] \text{ rooted at interior-vertex } v = v^{\text{X}}_{i};$
- $\delta_{\beta}^{X}(i,m) \in [0,1], i \in [2,t_{X}], m \in [0,3], X \in \{T,F\}: \delta_{\beta}^{X}(i,m) = 1 \Leftrightarrow \beta^{X}(i) = m;$
- $-\ \delta_{\beta}^{\rm C}(i,m) \in [0,1], \ i \in [\widetilde{k_{\rm C}},m_{\rm C}] = I_{(\geq 1)} \cup I_{(0/1)} \cup I_{(=1)}, \ m \in [0,3]: \ \delta_{\beta}^{\rm C}(i,m) = 1 \Leftrightarrow \beta^{\rm C}(i) = m;$
- $\delta_{\beta}^{\text{CT}}(k,m), \delta_{\beta}^{\text{TC}}(k,m) \in [0,1], k \in [1,k_{\text{C}}] = I_{(\geq 2)} \cup I_{(\geq 1)}, m \in [0,3]: \delta_{\beta}^{\text{CT}}(k,m) = 1 \text{ (resp., } \delta_{\beta}^{\text{TC}}(k,m) = 1) \Leftrightarrow \beta^{\text{CT}}(k) = m \text{ (resp., } \beta^{\text{TC}}(k) = m);$
- $-\ \delta_{\beta}^{*\mathcal{F}}(c,m) \in [0,1], \ c \in [1,c_{\mathcal{F}}], \ m \in [0,3], \\ \mathbf{X} \in \{\mathcal{C},\mathcal{T}\} \colon \ \delta_{\beta}^{*\mathcal{F}}(c,m) = 1 \Leftrightarrow \beta^{*\mathcal{F}}(c) = m;$
- $\mathrm{bd}^{\mathrm{int}}(m) \in [0, 2\mathrm{n}_{\mathrm{UB}}^{\mathrm{int}}], \ m \in [1, 3]$: the number of interior-edges with bond-multiplicity m in \mathbb{C} ;
- $\mathrm{bd_X}(m) \in [0, 2\mathrm{n_{UB}^{int}}], \mathrm{X} \in \{\mathrm{C}, \mathrm{T}, \mathrm{CT}, \mathrm{TC}\}, \ \mathrm{bd_X}(m) \in [0, 2\mathrm{n_{UB}^{int}}], \mathrm{X} \in \{\mathrm{F}, \mathrm{CF}, \mathrm{TF}\}, \ m \in [1, 3]:$ the number of interior-edges $e \in E_{\mathrm{X}}$ with bond-multiplicity m in \mathbb{C} ;

$$e^{\mathcal{C}}(i) \le \beta^{\mathcal{C}}(i) \le 3e^{\mathcal{C}}(i), i \in [\widetilde{k_{\mathcal{C}}} + 1, m_{\mathcal{C}}] = I_{(\ge 1)} \cup I_{(0/1)} \cup I_{(=1)},$$
 (38)

$$e^{X}(i) \le \beta^{X}(i) \le 3e^{X}(i),$$
 $i \in [2, t_X], X \in \{T, F\},$ (39)

$$\delta_{\chi}^{\mathrm{T}}(k) \le \beta^{\mathrm{CT}}(k) \le 3\delta_{\chi}^{\mathrm{T}}(k), \quad \delta_{\chi}^{\mathrm{T}}(k) \le \beta^{\mathrm{TC}}(k) \le 3\delta_{\chi}^{\mathrm{T}}(k), \qquad k \in [1, k_{\mathrm{C}}], \tag{40}$$

$$\delta_{\gamma}^{F}(c) \le \beta^{XF}(c) \le 3\delta_{\gamma}^{F}(c), \qquad c \in [1, c_{F}], \tag{41}$$

$$\sum_{m \in [0,3]} \delta_{\beta}^{X}(i,m) = 1, \quad \sum_{m \in [0,3]} m \cdot \delta_{\beta}^{X}(i,m) = \beta^{X}(i), \qquad i \in [2, t_{X}], X \in \{T, F\},$$
(42)

$$\sum_{m \in [0,3]} \delta_{\beta}^{C}(i,m) = 1, \quad \sum_{m \in [0,3]} m \cdot \delta_{\beta}^{C}(i,m) = \beta^{C}(i), \qquad i \in [\widetilde{k}_{C} + 1, m_{C}], \tag{43}$$

$$\sum_{m \in [0,3]} \delta_{\beta}^{\text{CT}}(k,m) = 1, \quad \sum_{m \in [0,3]} m \cdot \delta_{\beta}^{\text{CT}}(k,m) = \beta^{\text{CT}}(k), \qquad k \in [1, k_{\text{C}}],
\sum_{m \in [0,3]} \delta_{\beta}^{\text{TC}}(k,m) = 1, \quad \sum_{m \in [0,3]} m \cdot \delta_{\beta}^{\text{TC}}(k,m) = \beta^{\text{TC}}(k), \qquad k \in [1, k_{\text{C}}],
\sum_{m \in [0,3]} \delta_{\beta}^{*\text{F}}(c,m) = 1, \quad \sum_{m \in [0,3]} m \cdot \delta_{\beta}^{*\text{F}}(c,m) = \beta^{*\text{F}}(c), \qquad c \in [1, c_{\text{F}}], \tag{44}$$

$$\sum_{\psi \in \mathcal{F}_{i}^{X}} \beta_{r}([\psi]) \cdot \delta_{fr}^{X}(i, [\psi]) = \beta_{ex}^{X}(i), \qquad i \in [1, t_{X}], X \in \{C, T, F\},$$

$$(45)$$

$$\sum_{i \in [\widetilde{k_{\mathrm{C}}}+1,m_{\mathrm{C}}]} \delta_{\beta}^{\mathrm{C}}(i,m) = \mathrm{bd}_{\mathrm{C}}(m), \quad \sum_{i \in [2,t_{\mathrm{T}}]} \delta_{\beta}^{\mathrm{T}}(i,m) = \mathrm{bd}_{\mathrm{T}}(m),$$

$$\sum_{k \in [1,k_{\mathrm{C}}]} \delta_{\beta}^{\mathrm{CT}}(k,m) = \mathrm{bd}_{\mathrm{CT}}(m), \quad \sum_{k \in [1,k_{\mathrm{C}}]} \delta_{\beta}^{\mathrm{TC}}(k,m) = \mathrm{bd}_{\mathrm{TC}}(m),$$

$$\sum_{i \in [2,t_{\mathrm{F}}]} \delta_{\beta}^{\mathrm{F}}(i,m) = \mathrm{bd}_{\mathrm{F}}(m), \quad \sum_{c \in [1,\widetilde{t_{\mathrm{C}}}]} \delta_{\beta}^{*\mathrm{F}}(c,m) = \mathrm{bd}_{\mathrm{CF}}(m),$$

$$\sum_{c \in [\widetilde{t_{\mathrm{C}}}+1,c_{\mathrm{F}}]} \delta_{\beta}^{*\mathrm{F}}(c,m) = \mathrm{bd}_{\mathrm{TF}}(m),$$

$$\mathrm{d}_{\mathrm{C}}(m) + \mathrm{bd}_{\mathrm{F}}(m) + \mathrm{bd}_{\mathrm{F}}(m) + \mathrm{bd}_{\mathrm{FF}}(m) + \mathrm{bd}_{\mathrm{FF}}(m) + \mathrm{bd}_{\mathrm{FF}}(m) = \mathrm{bd}_{\mathrm{TF}}(m),$$

$$\mathrm{bd}_{\mathrm{C}}(m) + \mathrm{bd}_{\mathrm{T}}(m) + \mathrm{bd}_{\mathrm{T}}(m) + \mathrm{bd}_{\mathrm{TC}}(m) + \mathrm{bd}_{\mathrm{TF}}(m) + \mathrm{bd}_{\mathrm{CF}}(m) = \mathrm{bd}^{\mathrm{int}}(m),$$

$$m \in [1, 3]. \tag{46}$$

4.6 Assigning Chemical Elements and Valence Condition

We include constraints so that each vertex v in a selected graph H satisfies the valence condition; i.e., $\beta_{\mathbb{C}}(v) = \text{val}(\alpha(v)) + \text{eledeg}_{\mathbb{C}}(v)$, where $\text{eledeg}_{\mathbb{C}}(v) = \text{v}_{\text{ion}}(\psi)$ for the ρ -fringe-tree $\mathbb{C}[v]$ r-isomorphic to ψ . With these constraints, a chemical graph $\mathbb{C} = (H, \alpha, \beta)$ on a selected subgraph H will be constructed.

- Subsets $\Lambda^{\text{int}} \subseteq \Lambda \setminus \{H\}, \Lambda^{\text{ex}} \subseteq \Lambda$ of chemical elements, where we denote by [e] (resp., [e]^{int} and [e]^{ex}) of a standard encoding of an element e in the set Λ (resp., $\Lambda^{\text{int}}_{\epsilon}$ and $\Lambda^{\text{ex}}_{\epsilon}$);
- A valence function: val : $\Lambda \to [1, 6]$;
- A function mass*: $\Lambda \to \mathbb{Z}$ (we let mass(a) denote the observed mass of a chemical element $a \in \Lambda$, and define mass*(a) $\triangleq \lfloor 10 \cdot \text{mass}(a) \rfloor$);
- Subsets $\Lambda^*(i) \subseteq \Lambda^{\text{int}}, i \in [1, t_{\text{C}}];$
- $na_{LB}(a)$, $na_{UB}(a) \in [0, n^*]$, $a \in \Lambda$: lower and upper bounds on the number of vertices v with $\alpha(v) = a$;
- $\operatorname{na_{LB}^{int}}(\mathbf{a}), \operatorname{na_{UB}^{int}}(\mathbf{a}) \in [0, n^*], \mathbf{a} \in \Lambda^{int}$: lower and upper bounds on the number of interior-vertices v with $\alpha(v) = \mathbf{a}$;

- $\alpha_{\rm r}([\psi]) \in [\Lambda^{\rm ex}], \in \mathcal{F}^*$: the chemical element $\alpha(r)$ of the root r of ψ ;
- $\operatorname{na}_{\mathtt{a}}^{\operatorname{ex}}([\psi]) \in [0, n^*]$, $\mathtt{a} \in \Lambda^{\operatorname{ex}}, \psi \in \mathcal{F}^*$: the frequency of chemical element \mathtt{a} in the set of non-rooted vertices in ψ , where possibly $\mathtt{a} = \mathtt{H}$;
- M: an upper bound for the average $\overline{\mathrm{ms}}(\mathbb{C})$ of mass* over all atoms in \mathbb{C} ;

variables:

- $\beta^{\text{CT}}(i), \beta^{\text{TC}}(i) \in [0, 3], i \in [1, t_{\text{T}}]$: the bond-multiplicity of edge $e^{\text{CT}}_{j,i}$ (resp., $e^{\text{TC}}_{j,i}$) if one exists;
- $\beta^{\text{CF}}(i), \beta^{\text{TF}}(i) \in [0, 3], i \in [1, t_{\text{F}}]$: the bond-multiplicity of $e^{\text{CF}}_{j,i}$ (resp., $e^{\text{TF}}_{j,i}$) if one exists;
- $\alpha^{\mathbf{X}}(i) \in [\Lambda_{\epsilon}^{\mathrm{int}}], \delta_{\alpha}^{\mathbf{X}}(i, [\mathbf{a}]^{\mathrm{int}}) \in [0, 1], \mathbf{a} \in \Lambda_{\epsilon}^{\mathrm{int}}, i \in [1, t_{\mathbf{X}}], \mathbf{X} \in \{\mathbf{C}, \mathbf{T}, \mathbf{F}\}: \alpha^{\mathbf{X}}(i) = [\mathbf{a}]^{\mathrm{int}} \geq 1 \text{ (resp., } \alpha^{\mathbf{X}}(i) = 0) \Leftrightarrow \delta_{\alpha}^{\mathbf{X}}(i, [\mathbf{a}]^{\mathrm{int}}) = 1 \text{ (resp., } \delta_{\alpha}^{\mathbf{X}}(i, 0) = 0) \Leftrightarrow \alpha(v^{\mathbf{X}}_{i}) = \mathbf{a} \in \Lambda \text{ (resp., vertex } v^{\mathbf{X}}_{i} \text{ is not used in } \mathbb{C});$
- $-\ \delta^{\mathbf{X}}_{\alpha}(i,[\mathbf{a}]^{\mathrm{int}}) \in [0,1], i \in [1,t_{\mathbf{X}}], \mathbf{a} \in \Lambda^{\mathrm{int}}, \mathbf{X} \in \{\mathbf{C},\mathbf{T},\mathbf{F}\} \colon \delta^{\mathbf{X}}_{\alpha}(i,[\mathbf{a}]^{\mathbf{t}}) = 1 \Leftrightarrow \alpha(v^{\mathbf{X}}_{i}) = \mathbf{a};$
- Mass $\in \mathbb{Z}_+$: $\sum_{v \in V(H)} \text{mass}^*(\alpha(v))$;
- $\overline{\mathrm{ms}} \in \mathbb{R}_+$: $\sum_{v \in V(H)} \mathrm{mass}^*(\alpha(v))/|V(H)|$;
- $\delta_{\text{atm}}(i) \in [0, 1], i \in [n_{\text{LB}} + \text{na}_{\text{LB}}(\mathtt{H}), n^* + \text{na}_{\text{UB}}(\mathtt{H})]: \delta_{\text{atm}}(i) = 1 \Leftrightarrow |V(H)| = i;$
- $\operatorname{na}([\mathtt{a}]) \in [\operatorname{na}_{\operatorname{LB}}(\mathtt{a}), \operatorname{na}_{\operatorname{UB}}(\mathtt{a})], \ \mathtt{a} \in \Lambda$: the number of vertices $v \in V(H)$ with $\alpha(v) = \mathtt{a}$, where possibly $\mathtt{a} = \mathtt{H}$;
- $\operatorname{na}^{\operatorname{int}}([\mathtt{a}]^{\operatorname{int}}) \in [\operatorname{na}^{\operatorname{int}}_{\operatorname{LB}}(\mathtt{a}), \operatorname{na}^{\operatorname{int}}_{\operatorname{UB}}(\mathtt{a})], \ \mathtt{a} \in \Lambda, \mathbf{X} \in \{\mathbf{C}, \mathbf{T}, \mathbf{F}\}: \ \text{the number of interior-vertices} \ v \in V(\mathbb{C}) \ \text{with} \ \alpha(v) = \mathtt{a};$
- $na_X^{ex}([a]^{ex})$, $na^{ex}([a]^{ex}) \in [0, na_{UB}(a)]$, $a \in \Lambda$, $X \in \{C, T, F\}$: the number of exterior-vertices rooted at vertices $v \in V_X$ and the number of exterior-vertices v such that $\alpha(v) = a$;

$$\beta^{\text{CT}}(k) - 3(e^{\text{T}}(i) - \chi^{\text{T}}(i,k) + 1) \le \beta^{\text{CT}}(i) \le \beta^{\text{CT}}(k) + 3(e^{\text{T}}(i) - \chi^{\text{T}}(i,k) + 1), i \in [1, t_{\text{T}}],$$

$$\beta^{\text{TC}}(k) - 3(e^{\text{T}}(i+1) - \chi^{\text{T}}(i,k) + 1) \le \beta^{\text{TC}}(i) \le \beta^{\text{TC}}(k) + 3(e^{\text{T}}(i+1) - \chi^{\text{T}}(i,k) + 1), i \in [1, t_{\text{T}}],$$

$$k \in [1, k_{\text{C}}], \tag{47}$$

$$\beta^{*F}(c) - 3(e^{F}(i) - \chi^{F}(i,c) + 1) \leq \beta^{CF}(i) \leq \beta^{*F}(c) + 3(e^{F}(i) - \chi^{F}(i,c) + 1), i \in [1, t_{F}], \qquad c \in [1, \widetilde{t_{C}}],$$

$$\beta^{*F}(c) - 3(e^{F}(i) - \chi^{F}(i,c) + 1) \leq \beta^{TF}(i) \leq \beta^{*F}(c) + 3(e^{F}(i) - \chi^{F}(i,c) + 1), i \in [1, t_{F}], \qquad c \in [\widetilde{t_{C}} + 1, c_{F}],$$

$$(48)$$

$$\sum_{\mathbf{a} \in \Lambda^{\text{int}}} \delta_{\alpha}^{\mathcal{C}}(i, [\mathbf{a}]^{\text{int}}) = 1, \quad \sum_{\mathbf{a} \in \Lambda^{\text{int}}} [\mathbf{a}]^{\text{int}} \cdot \delta_{\alpha}^{\mathcal{X}}(i, [\mathbf{a}]^{\text{int}}) = \alpha^{\mathcal{C}}(i), \qquad i \in [1, t_{\mathcal{C}}],$$

$$\sum_{\mathbf{a} \in \Lambda^{\text{int}}} \delta_{\alpha}^{\mathcal{X}}(i, [\mathbf{a}]^{\text{int}}) = v^{\mathcal{X}}(i), \quad \sum_{\mathbf{a} \in \Lambda^{\text{int}}} [\mathbf{a}]^{\text{int}} \cdot \delta_{\alpha}^{\mathcal{X}}(i, [\mathbf{a}]^{\text{int}}) = \alpha^{\mathcal{X}}(i), \qquad i \in [1, t_{\mathcal{X}}], \mathcal{X} \in \{\mathcal{T}, \mathcal{F}\}, \tag{49}$$

$$\sum_{\psi \in \mathcal{F}_i^{\mathcal{X}}} \alpha_{\mathbf{r}}([\psi]) \cdot \delta_{fr}^{\mathcal{X}}(i, [\psi]) = \alpha^{\mathcal{X}}(i), \qquad i \in [1, t_{\mathcal{X}}], \mathcal{X} \in \{\mathcal{C}, \mathcal{T}, \mathcal{F}\},$$

$$(50)$$

$$\sum_{j \in I_{\mathcal{C}}(i)} \beta^{\mathcal{C}}(j) + \sum_{k \in I_{(\geq 2)}^{+}(i) \cup I_{(\geq 1)}^{+}(i)} \beta^{\mathcal{C}\mathcal{T}}(k) + \sum_{k \in I_{(\geq 2)}^{-}(i) \cup I_{(\geq 1)}^{-}(i)} \beta^{\mathcal{T}\mathcal{C}}(k)
+ \beta^{*\mathcal{F}}(i) + \beta_{\mathrm{ex}}^{\mathcal{C}}(i) - \mathrm{eledeg}_{\mathcal{C}}(i) = \sum_{\mathbf{a} \in \Lambda^{\mathrm{int}}} \mathrm{val}(\mathbf{a}) \delta_{\alpha}^{\mathcal{C}}(i, [\mathbf{a}]^{\mathrm{int}}), \qquad i \in [1, \widetilde{t_{\mathcal{C}}}],$$
(51)

$$\sum_{j \in I_{\mathcal{C}}(i)} \beta^{\mathcal{C}}(j) + \sum_{k \in I_{(\geq 2)}^{+}(i) \cup I_{(\geq 1)}^{+}(i)} \beta^{\mathcal{C}\mathcal{T}}(k) + \sum_{k \in I_{(\geq 2)}^{-}(i) \cup I_{(\geq 1)}^{-}(i)} \beta^{\mathcal{T}\mathcal{C}}(k)
+ \beta_{\mathrm{ex}}^{\mathcal{C}}(i) - \mathrm{eledeg}_{\mathcal{C}}(i) = \sum_{\mathbf{a} \in \Lambda^{\mathrm{int}}} \mathrm{val}(\mathbf{a}) \delta_{\alpha}^{\mathcal{C}}(i, [\mathbf{a}]^{\mathrm{int}}), \qquad i \in [\widetilde{t_{\mathcal{C}}} + 1, t_{\mathcal{C}}], \tag{52}$$

$$\beta^{\mathrm{T}}(i) + \beta^{\mathrm{T}}(i+1) + \beta_{\mathrm{ex}}^{\mathrm{T}}(i) + \beta^{\mathrm{CT}}(i) + \beta^{\mathrm{TC}}(i) + \beta^{\mathrm{TC}}(i) + \beta^{\mathrm{*F}}(\tilde{t}_{\mathrm{C}} + i) - \mathrm{eledeg}_{\mathrm{T}}(i) = \sum_{\mathbf{a} \in \Lambda^{\mathrm{int}}} \mathrm{val}(\mathbf{a}) \delta_{\alpha}^{\mathrm{T}}(i, [\mathbf{a}]^{\mathrm{int}}),$$

$$i \in [1, t_{\mathrm{T}}] \ (\beta^{\mathrm{T}}(1) = \beta^{\mathrm{T}}(t_{\mathrm{T}} + 1) = 0), \tag{53}$$

$$\beta^{F}(i) + \beta^{F}(i+1) + \beta^{CF}(i) + \beta^{TF}(i)$$

$$+\beta_{ex}^{F}(i) - eledeg_{F}(i) = \sum_{\mathbf{a} \in \Lambda^{int}} val(\mathbf{a}) \delta_{\alpha}^{F}(i, [\mathbf{a}]^{int}),$$

$$i \in [1, t_{F}] \ (\beta^{F}(1) = \beta^{F}(t_{F} + 1) = 0),$$

$$(54)$$

$$\sum_{i \in [1, t_{\mathbf{X}}]} \delta_{\alpha}^{\mathbf{X}}(i, [\mathbf{a}]^{\mathrm{int}}) = \mathrm{na}_{\mathbf{X}}([\mathbf{a}]^{\mathrm{int}}), \qquad \qquad \mathbf{a} \in \Lambda^{\mathrm{int}}, \mathbf{X} \in \{\mathbf{C}, \mathbf{T}, \mathbf{F}\},$$
(55)

$$\sum_{\psi \in \mathcal{F}_i^{\mathbf{X}}, i \in [1, t_{\mathbf{X}}]} \operatorname{na}_{\mathbf{a}}^{\operatorname{ex}}([\psi]) \cdot \delta_{\operatorname{fr}}^{\mathbf{X}}(i, [\psi]) = \operatorname{na}_{\mathbf{X}}^{\operatorname{ex}}([\mathbf{a}]^{\operatorname{ex}}), \qquad \mathbf{a} \in \Lambda^{\operatorname{ex}}, \mathbf{X} \in \{\mathbf{C}, \mathbf{T}, \mathbf{F}\},$$
(56)

$$\begin{split} \operatorname{na}_{C}([\mathtt{a}]^{\operatorname{int}}) + \operatorname{na}_{T}([\mathtt{a}]^{\operatorname{int}}) &= \operatorname{na}^{\operatorname{int}}([\mathtt{a}]^{\operatorname{int}}), & \mathtt{a} \in \Lambda^{\operatorname{int}}, \\ \sum_{X \in \{C,T,F\}} \operatorname{na}_{X}^{\operatorname{ex}}([\mathtt{a}]^{\operatorname{ex}}) &= \operatorname{na}^{\operatorname{ex}}([\mathtt{a}]^{\operatorname{ex}}), & \mathtt{a} \in \Lambda^{\operatorname{ex}}, \\ \operatorname{na}^{\operatorname{int}}([\mathtt{a}]^{\operatorname{int}}) + \operatorname{na}^{\operatorname{ex}}([\mathtt{a}]^{\operatorname{ex}}) &= \operatorname{na}([\mathtt{a}]), & \mathtt{a} \in \Lambda^{\operatorname{int}} \cap \Lambda^{\operatorname{ex}}, \\ \operatorname{na}^{\operatorname{int}}([\mathtt{a}]^{\operatorname{int}}) &= \operatorname{na}([\mathtt{a}]), & \mathtt{a} \in \Lambda^{\operatorname{int}} \setminus \Lambda^{\operatorname{ex}}, \\ \operatorname{na}^{\operatorname{ex}}([\mathtt{a}]^{\operatorname{ex}}) &= \operatorname{na}([\mathtt{a}]), & \mathtt{a} \in \Lambda^{\operatorname{ex}} \setminus \Lambda^{\operatorname{int}}, \end{split}$$

$$\sum_{\mathbf{a} \in \Lambda^*(i)} \delta_{\alpha}^{\mathbf{C}}(i, [\mathbf{a}]^{\text{int}}) = 1, \qquad i \in [1, t_{\mathbf{C}}],$$

$$(58)$$

$$\sum_{\mathbf{a} \in \Lambda} \operatorname{mass}^*(\mathbf{a}) \cdot \operatorname{na}([\mathbf{a}]) = \operatorname{Mass}, \tag{59}$$

$$\sum_{i \in [n_{\text{LB}} + \text{na}_{\text{LB}}(\mathsf{H}), n^* + \text{na}_{\text{UB}}(\mathsf{H})]} \delta_{\text{atm}}(i) = 1, \tag{60}$$

$$\sum_{i \in [n_{\text{LB}} + \text{na}_{\text{LB}}(\mathtt{H}), n^* + \text{na}_{\text{UB}}(\mathtt{H})]} i \cdot \delta_{\text{atm}}(i) = n_G + \text{na}^{\text{ex}}([\mathtt{H}]^{\text{ex}}), \tag{61}$$

$$\operatorname{Mass}/i - \operatorname{M} \cdot (1 - \delta_{\operatorname{atm}}(i)) \le \overline{\operatorname{ms}} \le \operatorname{Mass}/i + \operatorname{M} \cdot (1 - \delta_{\operatorname{atm}}(i)), \quad i \in [n_{\operatorname{LB}} + \operatorname{na}_{\operatorname{LB}}(\mathtt{H}), n^* + \operatorname{na}_{\operatorname{UB}}(\mathtt{H})]. \quad (62)$$

Constraints for Bounds on the Number of Bonds 4.7

We include constraints for specification of lower and upper bounds bd_{LB} and bd_{UB} .

constants:

- $\mathrm{bd}_{m,\mathrm{LB}}(i),\mathrm{bd}_{m,\mathrm{UB}}(i)\in[0,\mathrm{n_{\mathrm{UB}}^{\mathrm{int}}}],\ i\in[1,m_{\mathrm{C}}],\ m\in[2,3]$: lower and upper bounds on the number of edges $e \in E(P_i)$ with bond-multiplicity $\beta(e) = m$ in the pure path P_i for edge $e_i \in E_C$;

variables:

- $\mathrm{bd_T}(k,i,m) \in [0,1], \ k \in [1,k_{\mathrm{C}}], \ i \in [2,t_{\mathrm{T}}], \ m \in [2,3]: \ \mathrm{bd_T}(k,i,m) = 1 \Leftrightarrow \text{the pure path } P_k \text{ for edge } e_k \in E_{\mathrm{C}}$ contains edge e^{T}_{i} with $\beta(e^{T}_{i}) = m$;

constraints:

$$\mathrm{bd}_{m,\mathrm{LB}}(i) \le \delta_{\beta}^{\mathrm{C}}(i,m) \le \mathrm{bd}_{m,\mathrm{UB}}(i), i \in I_{(=1)} \cup I_{(0/1)}, m \in [2,3],$$
 (63)

$$\mathrm{bd}_{\mathrm{T}}(k, i, m) \ge \delta_{\beta}^{\mathrm{T}}(i, m) + \chi^{\mathrm{T}}(i, k) - 1, \quad k \in [1, k_{\mathrm{C}}], i \in [2, t_{\mathrm{T}}], m \in [2, 3], \tag{64}$$

$$\sum_{j \in [2, t_{\mathrm{T}}]} \delta_{\beta}^{\mathrm{T}}(j, m) \ge \sum_{k \in [1, k_{\mathrm{C}}], i \in [2, t_{\mathrm{T}}]} \mathrm{bd}_{\mathrm{T}}(k, i, m), \quad m \in [2, 3], \tag{65}$$

$$\mathrm{bd}_{m,\mathrm{LB}}(k) \leq \sum_{i \in [2,t_{\mathrm{T}}]} \mathrm{bd}_{\mathrm{T}}(k,i,m) + \delta_{\beta}^{\mathrm{CT}}(k,m) + \delta_{\beta}^{\mathrm{TC}}(k,m) \leq \mathrm{bd}_{m,\mathrm{UB}}(k),$$

$$k \in [1,k_{\mathrm{C}}], m \in [2,3]. \tag{66}$$

Descriptor for the Number of Adjacency-configurations

We call a tuple $(a, b, m) \in (\Lambda \setminus \{H\}) \times (\Lambda \setminus \{H\}) \times [1, 3]$ an adjacency-configuration. The adjacency-configuration of an edge-configuration $(\mu = ad, \mu' = bd', m)$ is defined to be (a, b, m). We include constraints to compute the frequency of each adjacency-configuration in an inferred chemical graph \mathbb{C} .

constants:

- A set Γ^{int} of edge-configurations $\gamma = (\mu, \mu', m)$ with $\mu \leq \mu'$;

- Let $\overline{\gamma}$ of an edge-configuration $\gamma = (\mu, \mu', m)$ denote the edge-configuration (μ', μ, m) ;
- Let $\Gamma^{\text{int}}_{<} = \{(\mu, \mu', m) \in \Gamma^{\text{int}} \mid \mu < \mu'\}, \Gamma^{\text{int}}_{=} = \{(\mu, \mu', m) \in \Gamma^{\text{int}} \mid \mu = \mu'\} \text{ and } \Gamma^{\text{int}}_{>} = \{\overline{\gamma} \mid \gamma \in \Gamma^{\text{int}}_{<}\};$
- Let $\Gamma_{ac,<}^{int}$, $\Gamma_{ac,=}^{int}$ and $\Gamma_{ac,>}^{int}$ denote the sets of the adjacency-configurations of edge-configurations in the sets $\Gamma_{<}^{int}$, $\Gamma_{=}^{int}$ and $\Gamma_{>}^{int}$, respectively;
- Let $\overline{\nu}$ of an adjacency-configuration $\nu = (\mathtt{a}, \mathtt{b}, m)$ denote the adjacency-configuration $(\mathtt{b}, \mathtt{a}, m)$;
- Prepare a coding of the set $\Gamma^{\rm int}_{\rm ac} \cup \Gamma^{\rm int}_{\rm ac,>}$ and let $[\nu]^{\rm int}$ denote the coded integer of an element ν in $\Gamma^{\rm int}_{\rm ac} \cup \Gamma^{\rm int}_{\rm ac,>}$;
- Choose subsets $\widetilde{\Gamma}_{ac}^{C}$, $\widetilde{\Gamma}_{ac}^{T}$, $\widetilde{\Gamma}_{ac}^{CT}$, $\widetilde{\Gamma}_{ac}^{TC}$, $\widetilde{\Gamma}_{ac}^{F}$, $\widetilde{\Gamma}_{ac}^{CF}$, $\widetilde{\Gamma}_{ac}^{TF}$ $\subseteq \Gamma_{ac}^{int} \cup \Gamma_{ac,>}^{int}$; To compute the frequency of adjacency-configurations exactly, set $\widetilde{\Gamma}_{ac}^{C} := \widetilde{\Gamma}_{ac}^{TC} := \widetilde{\Gamma}_{ac}^{TC} := \widetilde{\Gamma}_{ac}^{TC} := \widetilde{\Gamma}_{ac}^{TC} := \widetilde{\Gamma}_{ac}^{TF} := \widetilde{\Gamma}_{ac}^{int} \cup \Gamma_{ac,>}^{int}$;
- $\operatorname{ac_{LB}^{int}}(\nu)$, $\operatorname{ac_{UB}^{int}}(\nu) \in [0, 2n_{UB}^{int}]$, $\nu = (\mathtt{a}, \mathtt{b}, m) \in \Gamma_{\mathrm{ac}}^{\mathrm{int}}$: lower and upper bounds on the number of interior-edges e = uv with $\alpha(u) = \mathtt{a}$, $\alpha(v) = \mathtt{b}$ and $\beta(e) = m$;

variables:

- $ac^{int}([\nu]^{int}) \in [ac^{int}_{LB}(\nu), ac^{int}_{UB}(\nu)], \nu \in \Gamma^{int}_{ac}$: the number of interior-edges with adjacency-configuration ν ;
- $\operatorname{ac}_{\mathbf{C}}([\nu]^{\operatorname{int}}) \in [0, m_{\mathbf{C}}], \nu \in \widetilde{\Gamma}_{\operatorname{ac}}^{\mathbf{C}}, \operatorname{ac}_{\mathbf{T}}([\nu]^{\operatorname{int}}) \in [0, t_{\mathbf{T}}], \nu \in \widetilde{\Gamma}_{\operatorname{ac}}^{\mathbf{T}}, \operatorname{ac}_{\mathbf{F}}([\nu]^{\operatorname{int}}) \in [0, t_{\mathbf{F}}], \nu \in \widetilde{\Gamma}_{\operatorname{ac}}^{\mathbf{F}}$: the number of edges $e^{\mathbf{C}} \in E_{\mathbf{C}}$ (resp., edges $e^{\mathbf{T}} \in E_{\mathbf{T}}$ and edges $e^{\mathbf{F}} \in E_{\mathbf{F}}$) with adjacency-configuration ν ;
- $\operatorname{ac}_{\operatorname{CT}}([\nu]^{\operatorname{int}}) \in [0, \min\{k_{\operatorname{C}}, t_{\operatorname{T}}\}], \nu \in \widetilde{\Gamma}_{\operatorname{ac}}^{\operatorname{CT}}, \operatorname{ac}_{\operatorname{TC}}([\nu]^{\operatorname{int}}) \in [0, \min\{k_{\operatorname{C}}, t_{\operatorname{T}}\}], \nu \in \widetilde{\Gamma}_{\operatorname{ac}}^{\operatorname{CT}}, \operatorname{ac}_{\operatorname{CF}}([\nu]^{\operatorname{int}}) \in [0, t_{\operatorname{C}}], \nu \in \widetilde{\Gamma}_{\operatorname{ac}}^{\operatorname{CT}}, \operatorname{ac}_{\operatorname{TF}}([\nu]^{\operatorname{int}}) \in [0, t_{\operatorname{T}}], \nu \in \widetilde{\Gamma}_{\operatorname{ac}}^{\operatorname{TF}}: \text{ the number of edges } e^{\operatorname{CT}} \in E_{\operatorname{CT}} \text{ (resp., edges } e^{\operatorname{TC}} \in E_{\operatorname{TC}} \text{ and edges } e^{\operatorname{CF}} \in E_{\operatorname{CF}} \text{ and } e^{\operatorname{TF}} \in E_{\operatorname{TF}}) \text{ with adjacency-configuration } \nu;$
- $\delta_{\mathrm{ac}}^{\mathrm{C}}(i,[\nu]^{\mathrm{int}}) \in [0,1], i \in [\widetilde{k}_{\mathrm{C}}+1,m_{\mathrm{C}}] = I_{(\geq 1)} \cup I_{(0/1)} \cup I_{(=1)}, \nu \in \widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{C}}, \ \delta_{\mathrm{ac}}^{\mathrm{T}}(i,[\nu]^{\mathrm{int}}) \in [0,1], i \in [2,t_{\mathrm{T}}], \nu \in \widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{T}}, \delta_{\mathrm{ac}}^{\mathrm{T}}(i,[\nu]^{\mathrm{int}}) = 1 \Leftrightarrow \mathrm{edge}\ e^{\mathrm{X}}_{i} \ \mathrm{has}\ \mathrm{adjacency\text{-configuration}}\ \nu;$
- $\delta_{\mathrm{ac}}^{\mathrm{CT}}(k,[\nu]^{\mathrm{int}}), \delta_{\mathrm{ac}}^{\mathrm{TC}}(k,[\nu]^{\mathrm{int}}) \in [0,1], k \in [1,k_{\mathrm{C}}] = I_{(\geq 2)} \cup I_{(\geq 1)}, \nu \in \widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{CT}}: \delta_{\mathrm{ac}}^{\mathrm{CT}}(k,[\nu]^{\mathrm{int}}) = 1 \text{ (resp., } \delta_{\mathrm{ac}}^{\mathrm{TC}}(k,[\nu]^{\mathrm{int}}) = 1) \Leftrightarrow \mathrm{edge} \ e^{\mathrm{CT}}_{\mathrm{tail}(k),j} \ (\mathrm{resp.,} \ e^{\mathrm{TC}}_{\mathrm{head}(k),j}) \ \text{for some} \ j \in [1,t_{\mathrm{T}}] \ \text{has adjacency-configuration} \ \nu;$
- $\delta_{\text{ac}}^{\text{CF}}(c, [\nu]^{\text{int}}) \in [0, 1], c \in [1, \widetilde{t_{\text{C}}}], \nu \in \widetilde{\Gamma}_{\text{ac}}^{\text{CF}}: \delta_{\text{ac}}^{\text{CF}}(c, [\nu]^{\text{int}}) = 1 \Leftrightarrow \text{edge } e^{\text{CF}}_{c, i} \text{ for some } i \in [1, t_{\text{F}}] \text{ has adjacency-configuration } \nu;$
- $\delta_{\text{ac}}^{\text{TF}}(i, [\nu]^{\text{int}}) \in [0, 1], i \in [1, t_{\text{T}}], \nu \in \widetilde{\Gamma}_{\text{ac}}^{\text{TF}}$: $\delta_{\text{ac}}^{\text{TF}}(i, [\nu]^{\text{int}}) = 1 \Leftrightarrow \text{edge } e^{\text{TF}}_{i,j} \text{ for some } j \in [1, t_{\text{F}}] \text{ has adjacency-configuration } \nu$;
- $\alpha^{\text{CT}}(k)$, $\alpha^{\text{TC}}(k) \in [0, |\Lambda^{\text{int}}|]$, $k \in [1, k_{\text{C}}]$: $\alpha(v)$ of the edge $(v^{\text{C}}_{\text{tail}(k)}, v) \in E_{\text{CT}}$ (resp., $(v, v^{\text{C}}_{\text{head}(k)}) \in E_{\text{TC}}$) if any;
- $\alpha^{\text{CF}}(c) \in [0, |\Lambda^{\text{int}}|], c \in [1, \widetilde{t_{\text{C}}}]: \alpha(v) \text{ of the edge } (v^{\text{C}}_{c}, v) \in E_{\text{CF}} \text{ if any;}$
- $\alpha^{\mathrm{TF}}(i) \in [0, |\Lambda^{\mathrm{int}}|], i \in [1, t_{\mathrm{T}}]: \alpha(v)$ of the edge $(v^{\mathrm{T}}_{i}, v) \in E_{\mathrm{TF}}$ if any;
- $\Delta_{\text{ac}}^{\text{C+}}(i), \Delta_{\text{ac}}^{\text{C-}}(i), \in [0, |\Lambda^{\text{int}}|], i \in [\widetilde{k}_{\text{C}} + 1, m_{\text{C}}], \ \Delta_{\text{ac}}^{\text{T+}}(i), \Delta_{\text{ac}}^{\text{T-}}(i) \in [0, |\Lambda^{\text{int}}|], i \in [2, t_{\text{T}}], \ \Delta_{\text{ac}}^{\text{F+}}(i), \Delta_{\text{ac}}^{\text{F-}}(i) \in [0, |\Lambda^{\text{int}}|], i \in [2, t_{\text{F}}]; \ \Delta_{\text{ac}}^{\text{X+}}(i) = \Delta_{\text{ac}}^{\text{X-}}(i) = 0 \text{ (resp., } \Delta_{\text{ac}}^{\text{X+}}(i) = \alpha(u) \text{ and } \Delta_{\text{ac}}^{\text{X-}}(i) = \alpha(v)) \Leftrightarrow \text{edge } e^{X}_{i} = (u, v) \in E_{X} \text{ is used in } \mathbb{C} \text{ (resp., } e^{X}_{i} \notin E(G));$
- $\Delta_{\mathrm{ac}}^{\mathrm{CT+}}(k)$, $\Delta_{\mathrm{ac}}^{\mathrm{CT-}}(k) \in [0, |\Lambda^{\mathrm{int}}|]$, $k \in [1, k_{\mathrm{C}}] = I_{(\geq 2)} \cup I_{(\geq 1)}$: $\Delta_{\mathrm{ac}}^{\mathrm{CT+}}(k) = \Delta_{\mathrm{ac}}^{\mathrm{CT-}}(k) = 0$ (resp., $\Delta_{\mathrm{ac}}^{\mathrm{CT+}}(k) = \alpha(u)$ and $\Delta_{\mathrm{ac}}^{\mathrm{CT-}}(k) = \alpha(v)$) \Leftrightarrow edge $e^{\mathrm{CT}}_{\mathrm{tail}(k), j} = (u, v) \in E_{\mathrm{CT}}$ for some $j \in [1, t_{\mathrm{T}}]$ is used in \mathbb{C} (resp., otherwise);

- $\Delta_{\text{ac}}^{\text{TC+}}(k), \Delta_{\text{ac}}^{\text{TC-}}(k) \in [0, |\Lambda^{\text{int}}|], k \in [1, k_{\text{C}}] = I_{(>2)} \cup I_{(>1)}$: Analogous with $\Delta_{\text{ac}}^{\text{CT+}}(k)$ and $\Delta_{\text{ac}}^{\text{CT-}}(k)$;
- $\Delta_{\mathrm{ac}}^{\mathrm{CF}+}(c) \in [0, |\Lambda^{\mathrm{int}}|], \Delta_{\mathrm{ac}}^{\mathrm{CF}-}(c) \in [0, |\Lambda^{\mathrm{int}}|], c \in [1, \widetilde{t_{\mathrm{C}}}]: \Delta_{\mathrm{ac}}^{\mathrm{CF}+}(c) = \Delta_{\mathrm{ac}}^{\mathrm{CF}-}(c) = 0 \text{ (resp., } \Delta_{\mathrm{ac}}^{\mathrm{CF}+}(c) = \alpha(u) \text{ and } \Delta_{\mathrm{ac}}^{\mathrm{CF}-}(c) = \alpha(v)) \Leftrightarrow \mathrm{edge} \ e^{\mathrm{CF}}_{c,i} = (u, v) \in E_{\mathrm{CF}} \text{ for some } i \in [1, t_{\mathrm{F}}] \text{ is used in } \mathbb{C} \text{ (resp., otherwise)};$
- $\Delta_{\mathrm{ac}}^{\mathrm{TF}+}(i) \in [0, |\Lambda^{\mathrm{int}}|], \Delta_{\mathrm{ac}}^{\mathrm{TF}-}(i) \in [0, |\Lambda^{\mathrm{int}}|], i \in [1, t_{\mathrm{T}}]:$ Analogous with $\Delta_{\mathrm{ac}}^{\mathrm{CF}+}(c)$ and $\Delta_{\mathrm{ac}}^{\mathrm{CF}-}(c)$;

constraints:

$$\begin{aligned} \operatorname{ac}_{\mathrm{C}}([\nu]^{\mathrm{int}}) &= 0, & \nu \in \Gamma_{\mathrm{ac}}^{\mathrm{int}} \setminus \widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{C}}, \\ \operatorname{ac}_{\mathrm{T}}([\nu]^{\mathrm{int}}) &= 0, & \nu \in \Gamma_{\mathrm{ac}}^{\mathrm{int}} \setminus \widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{T}}, \\ \operatorname{ac}_{\mathrm{F}}([\nu]^{\mathrm{int}}) &= 0, & \nu \in \Gamma_{\mathrm{ac}}^{\mathrm{int}} \setminus \widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{CT}}, \\ \operatorname{ac}_{\mathrm{CT}}([\nu]^{\mathrm{int}}) &= 0, & \nu \in \Gamma_{\mathrm{ac}}^{\mathrm{int}} \setminus \widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{TC}}, \\ \operatorname{ac}_{\mathrm{TC}}([\nu]^{\mathrm{int}}) &= 0, & \nu \in \Gamma_{\mathrm{ac}}^{\mathrm{int}} \setminus \widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{TC}}, \\ \operatorname{ac}_{\mathrm{CF}}([\nu]^{\mathrm{int}}) &= 0, & \nu \in \Gamma_{\mathrm{ac}}^{\mathrm{int}} \setminus \widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{CF}}, \\ \operatorname{ac}_{\mathrm{TF}}([\nu]^{\mathrm{int}}) &= 0, & \nu \in \Gamma_{\mathrm{ac}}^{\mathrm{int}} \setminus \widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{TF}}, \end{aligned}$$

$$\begin{split} \sum_{(\mathbf{a},\mathbf{b},m)=\nu\in\Gamma_{\mathrm{ac}}^{\mathrm{int}}} \mathrm{ac}_{\mathrm{C}}([\nu]^{\mathrm{int}}) &= \sum_{i\in[\widehat{k_{\mathrm{C}}}+1,m_{\mathrm{C}}]} \delta_{\beta}^{\mathrm{C}}(i,m), & m\in[1,3], \\ \sum_{(\mathbf{a},\mathbf{b},m)=\nu\in\Gamma_{\mathrm{ac}}^{\mathrm{int}}} \mathrm{ac}_{\mathrm{T}}([\nu]^{\mathrm{int}}) &= \sum_{i\in[2,t_{\mathrm{T}}]} \delta_{\beta}^{\mathrm{T}}(i,m), & m\in[1,3], \\ \sum_{(\mathbf{a},\mathbf{b},m)=\nu\in\Gamma_{\mathrm{ac}}^{\mathrm{int}}} \mathrm{ac}_{\mathrm{T}}([\nu]^{\mathrm{int}}) &= \sum_{i\in[2,t_{\mathrm{F}}]} \delta_{\beta}^{\mathrm{F}}(i,m), & m\in[1,3], \\ \sum_{(\mathbf{a},\mathbf{b},m)=\nu\in\Gamma_{\mathrm{ac}}^{\mathrm{int}}} \mathrm{ac}_{\mathrm{TC}}([\nu]^{\mathrm{int}}) &= \sum_{k\in[1,k_{\mathrm{C}}]} \delta_{\beta}^{\mathrm{TC}}(k,m), & m\in[1,3], \\ \sum_{(\mathbf{a},\mathbf{b},m)=\nu\in\Gamma_{\mathrm{ac}}^{\mathrm{int}}} \mathrm{ac}_{\mathrm{TC}}([\nu]^{\mathrm{int}}) &= \sum_{c\in[1,\widetilde{k_{\mathrm{C}}}]} \delta_{\beta}^{\mathrm{TC}}(k,m), & m\in[1,3], \\ \sum_{(\mathbf{a},\mathbf{b},m)=\nu\in\Gamma_{\mathrm{ac}}^{\mathrm{int}}} \mathrm{ac}_{\mathrm{TF}}([\nu]^{\mathrm{int}}) &= \sum_{c\in[1,\widetilde{k_{\mathrm{C}}}]} \delta_{\beta}^{\mathrm{*F}}(c,m), & m\in[1,3], \\ \sum_{(\mathbf{a},\mathbf{b},m)=\nu\in\Gamma_{\mathrm{ac}}^{\mathrm{int}}} \mathrm{ac}_{\mathrm{TF}}([\nu]^{\mathrm{int}}) &= \sum_{c\in[1,\widetilde{k_{\mathrm{C}}}]} \delta_{\beta}^{\mathrm{*F}}(c,m), & m\in[1,3], \end{split}$$

(68)

$$\begin{split} \sum_{\nu=(\mathbf{a},\mathbf{b},m)\in \widetilde{\Gamma}_{cc}^{\Sigma}} m \cdot \delta_{cc}^{C}(i,|\nu|^{\mathrm{int}}) &= \beta^{C}(i), \\ \Delta_{ac}^{C+}(i) + \sum_{\nu=(\mathbf{a},\mathbf{b},m)\in \widetilde{\Gamma}_{cc}^{\Sigma}} |\mathbf{b}|^{\mathrm{int}} \delta_{ac}^{C}(i,|\nu|^{\mathrm{int}}) &= \alpha^{C}(\mathrm{tnil}(i)), \\ \Delta_{ac}^{C}(i) + \sum_{\nu=(\mathbf{a},\mathbf{b},m)\in \widetilde{\Gamma}_{cc}^{\Sigma}} |\mathbf{b}|^{\mathrm{int}} \delta_{ac}^{C}(i,|\nu|^{\mathrm{int}}) &= \alpha^{C}(\mathrm{head}(i)), \\ \Delta_{ac}^{C+}(i) + \Delta_{ac}^{C-}(i) &\leq 2|\Lambda^{\mathrm{int}}|(1-e^{C}(i)), & i \in [\widetilde{K}_{C}+1,m_{C}], \\ \sum_{i \in [\widetilde{K}_{C}+1,m_{C}]} m \cdot \delta_{ac}^{C}(i,|\nu|^{\mathrm{int}}) &= \alpha_{C}(|\nu|^{\mathrm{int}}), & \nu \in \widetilde{\Gamma}_{ac}^{C}, \\ \Delta_{ac}^{T+}(i) + \sum_{\nu=(\mathbf{a},\mathbf{b},m)\in \widetilde{\Gamma}_{ac}^{\Sigma}} |\mathbf{b}|^{\mathrm{int}} \delta_{ac}^{C}(i,|\nu|^{\mathrm{int}}) &= \alpha^{T}(i-1), \\ \Delta_{ac}^{T-}(i) + \sum_{\nu=(\mathbf{a},\mathbf{b},m)\in \widetilde{\Gamma}_{ac}^{\Sigma}} |\mathbf{b}|^{\mathrm{int}} \delta_{ac}^{C}(i,|\nu|^{\mathrm{int}}) &= \alpha^{T}(i), \\ \Delta_{ac}^{T+}(i) + \Delta_{ac}^{T-}(i) &\leq 2|\Lambda^{\mathrm{int}}|(1-e^{T}(i)), & i \in [2,t_{T}], \\ \sum_{i \in [2,t_{T}]} \delta_{ac}^{C}(i,|\nu|^{\mathrm{int}}) &= \alpha_{C}^{T}(|\nu|^{\mathrm{int}}), & \nu \in \widetilde{\Gamma}_{ac}^{T}, \\ \Delta_{ac}^{C+}(i) + \sum_{\nu=(\mathbf{a},\mathbf{b},m)\in \widetilde{\Gamma}_{ac}^{\Sigma}} |\mathbf{b}|^{\mathrm{int}} \delta_{ac}^{C}(i,|\nu|^{\mathrm{int}}) &= \alpha^{F}(i), \\ \Delta_{ac}^{C+}(i) + \sum_{\nu=(\mathbf{a},\mathbf{b},m)\in \widetilde{\Gamma}_{ac}^{\Sigma}} |\mathbf{b}|^{\mathrm{int}} \delta_{ac}^{C}(i,|\nu|^{\mathrm{int}}) &= \alpha^{F}(i), \\ \Delta_{ac}^{C+}(i) + \Delta_{ac}^{C-}(i) &\leq 2|\Lambda^{\mathrm{cx}}|(1-e^{F}(i)), & i \in [2,t_{T}], \\ \lambda_{ac}^{C+}(i) + \Delta_{ac}^{C-}(i) &\leq 2|\Lambda^{\mathrm{cx}}|(1-e^{F}(i)), & i \in [2,t_{T}], \\ \lambda_{ac}^{C+}(i) + \Delta_{ac}^{C-}(i) &\leq 2|\Lambda^{\mathrm{cx}}|(1-e^{F}(i)), & i \in [2,t_{T}], \\ \lambda_{ac}^{C+}(i) + \Delta_{ac}^{C-}(i) &\leq \alpha^{C}(i,|\nu|^{\mathrm{int}}) &= \alpha^{C}(i,|\nu|^{\mathrm{int}}), & i \in [1,t_{T}], \\ \lambda_{ac}^{C+}(i) + \sum_{\nu=(\mathbf{a},\mathbf{b},m)\in \widetilde{\Gamma}_{ac}^{\Sigma}} &m \delta_{ac}^{C}(i,|\nu|^{\mathrm{int}}) &= \alpha^{C}(t,|\nu|^{\mathrm{int}}), & i \in [1,t_{T}], \\ \lambda_{ac}^{CT+}(k) + \sum_{\nu=(\mathbf{a},\mathbf{b},m)\in \widetilde{\Gamma}_{ac}^{\Sigma}} &b^{\mathrm{int}}(i,|\nu|^{\mathrm{int}}) &= \alpha^{C}(t,|\nu|^{\mathrm{int}}), & k \in [1,k_{C}], \\ \lambda_{ac}^{CT+}(k) + \Delta_{ac}^{CT-}(k) &\leq 2|\Lambda^{\mathrm{cx}}(k,|\nu|^{\mathrm{int}}) &= \alpha^{C}(t,|\nu|^{\mathrm{int}}), & k \in [1,k_{C}], \\ \lambda_{ac}^{CT+}(k) + \Delta_{ac}^{CT-}(k) &\leq 2|\Lambda^{\mathrm{cx}}(k,|\nu|^{\mathrm{int}}) &= \alpha^{C}(t,|\nu|^{\mathrm{int}}), & k \in [1,k_{C}], \\ \lambda_{ac}^{CT+}(k) + \Delta_{ac}^{CT-}(k) &\leq 2|\Lambda^{\mathrm{cx}}(k,|\nu|^{\mathrm{int}}) &= \alpha^{C}(t,|\nu|^{\mathrm{int}}), & \nu$$

$$\alpha^{\mathsf{T}}(i) + |\Lambda^{\mathsf{int}}|(1 - \chi^{\mathsf{T}}(i, k) + e^{\mathsf{T}}(i + 1)) \geq \alpha^{\mathsf{TC}}(k),$$

$$\alpha^{\mathsf{TC}}(k) \geq \alpha^{\mathsf{T}}(i) - |\Lambda^{\mathsf{int}}|(1 - \chi^{\mathsf{T}}(i, k) + e^{\mathsf{T}}(i + 1)),$$

$$\sum_{\nu = (a,b,m) \in \widetilde{\Gamma}_{\Sigma}^{\mathsf{CC}}} m \cdot \delta_{ac}^{\mathsf{TC}}(k, [\nu]^{\mathsf{int}}) = \beta^{\mathsf{TC}}(k),$$

$$\Delta_{ac}^{\mathsf{TC}+}(k) + \sum_{\nu = (a,b,m) \in \widetilde{\Gamma}_{\Sigma}^{\mathsf{TC}}} |b|^{\mathsf{int}} \delta_{ac}^{\mathsf{TC}}(k, [\nu]^{\mathsf{int}}) = \alpha^{\mathsf{TC}}(k),$$

$$\Delta_{ac}^{\mathsf{TC}-}(k) + \sum_{\nu = (a,b,m) \in \widetilde{\Gamma}_{\Sigma}^{\mathsf{TC}}} |b|^{\mathsf{int}} \delta_{ac}^{\mathsf{TC}}(k, [\nu]^{\mathsf{int}}) = \alpha^{\mathsf{C}}(\mathsf{head}(k)),$$

$$\Delta_{ac}^{\mathsf{TC}-}(k) + \sum_{\nu = (a,b,m) \in \widetilde{\Gamma}_{\Sigma}^{\mathsf{TC}}} |b|^{\mathsf{int}} \delta_{ac}^{\mathsf{TC}}(k, [\nu]^{\mathsf{int}}) = \alpha^{\mathsf{C}}(\mathsf{head}(k)),$$

$$\Delta_{ac}^{\mathsf{TC}-}(k) + \Delta_{ac}^{\mathsf{TC}-}(k) \leq 2|\Lambda^{\mathsf{int}}|(1 - \delta_{\lambda}^{\mathsf{T}}(k)),$$

$$\lambda \in [1, k_{\mathsf{C}}],$$

$$\Delta_{ac}^{\mathsf{TC}+}(k) + \Delta_{ac}^{\mathsf{TC}-}(k) \leq 2|\Lambda^{\mathsf{int}}|(1 - \delta_{\lambda}^{\mathsf{T}}(k)),$$

$$\lambda \in [1, k_{\mathsf{C}}],$$

$$\Delta_{ac}^{\mathsf{CF}+}(k) + |\Lambda^{\mathsf{int}}|(1 - \chi^{\mathsf{F}}(i, c) + e^{\mathsf{F}}(i)) \geq \alpha^{\mathsf{CF}}(c),$$

$$\alpha^{\mathsf{CF}}(c) \geq \alpha^{\mathsf{F}}(i) - |\Lambda^{\mathsf{int}}|(1 - \chi^{\mathsf{F}}(i, c) + e^{\mathsf{F}}(i)),$$

$$\lambda \in [1, k_{\mathsf{C}}],$$

$$\Delta_{ac}^{\mathsf{CF}+}(c) + \Delta_{ac}^{\mathsf{CF}-}(e) \leq 2|\Lambda^{\mathsf{int}}|(1 - \chi^{\mathsf{F}}(i, c) + e^{\mathsf{F}}(i)),$$

$$\lambda \in [1, k_{\mathsf{C}}],$$

$$\lambda_{ac}^{\mathsf{CF}+}(c) + \Delta_{ac}^{\mathsf{CF}-}(c) \leq 2|\Lambda^{\mathsf{int}}|(1 - \chi^{\mathsf{F}}(i, c) + e^{\mathsf{F}}(i)) \geq \alpha^{\mathsf{CF}}(c),$$

$$\lambda_{ac}^{\mathsf{CF}+}(c) + \Delta_{ac}^{\mathsf{CF}-}(c) \leq 2|\Lambda^{\mathsf{int}}|(1 - \chi^{\mathsf{F}}(i, e) + e^{\mathsf{F}}(i)) \geq \alpha^{\mathsf{CF}}(i),$$

$$\lambda_{ac}^{\mathsf{CF}+}(e) + \Delta_{ac}^{\mathsf{CF}-}(e) \leq 2|\Lambda^{\mathsf{int}}|(1 - \chi^{\mathsf{F}}(i, e) + e^{\mathsf{F}}(i)) \geq \alpha^{\mathsf{TF}}(i),$$

$$\lambda_{ac}^{\mathsf{CF}+}(i) \geq \alpha^{\mathsf{F}}(i, e)^{\mathsf{Int}}(1 - \chi^{\mathsf{F}}(i, e) + e^{\mathsf{F}}(i)) \geq \alpha^{\mathsf{TF}}(i),$$

$$\lambda_{ac}^{\mathsf{TF}+}(i) \geq \alpha^{\mathsf{F}}(i, e)^{\mathsf{Int}}(1 - \chi^{\mathsf{F}}(i, e) + e^{\mathsf{F}}(i)) \geq \alpha^{\mathsf{TF}}(i),$$

$$\lambda_{ac}^{\mathsf{TF}+}(i) + \sum_{\nu = (a,b,m) \in \widetilde{\Gamma}_{\mathsf{CF}}^{\mathsf{TF}}} |b|^{\mathsf{Int}}(i, e)^{\mathsf{Int}}(i, e)^{\mathsf$$

4.9 Descriptor for the Number of Chemical Symbols

We include constraints for computing the frequency of each chemical symbol in $\Lambda_{\rm dg}$. Let ${\rm cs}(v)$ denote the chemical symbol of an interior-vertex v in a chemical graph $\mathbb C$ to be inferred; i.e., ${\rm cs}(v)={\tt ad}\in\Lambda_{\rm dg}$ such that $\alpha(v)={\tt a}$ and ${\rm deg}_{\langle\mathbb C\rangle}(v)={\rm deg}_H(v)-{\rm deg}_{\mathbb C}^{\rm hyd}(v)=d$ in $\mathbb C=(H,\alpha,\beta)$.

constants:

- A set $\Lambda_{\rm dg}^{\rm int}$ of chemical symbols;
- Prepare a coding of each of the two sets Λ_{dg}^{int} and let $[\mu]^{int}$ denote the coded integer of an element $\mu \in \Lambda_{dg}^{int}$;
- Choose subsets $\widetilde{\Lambda}_{dg}^{C}$, $\widetilde{\Lambda}_{dg}^{T}$, $\widetilde{\Lambda}_{dg}^{F} \subseteq \Lambda_{dg}^{int}$: To compute the frequency of chemical symbols exactly, set $\widetilde{\Lambda}_{dg}^{C} := \widetilde{\Lambda}_{dg}^{T} := \widetilde{\Lambda}_{dg}^{F} := \Lambda_{dg}^{int}$;

variables:

- $\operatorname{ns}^{\operatorname{int}}([\mu]^{\operatorname{int}}) \in [0, \operatorname{n}_{\operatorname{UB}}^{\operatorname{int}}], \ \mu \in \Lambda_{\operatorname{dg}}^{\operatorname{int}}$: the number of interior-vertices v with $\operatorname{cs}(v) = \mu$;
- $-\ \delta^{\rm X}_{\rm ns}(i,[\mu]^{\rm int}) \in [0,1], \, i \in [1,t_{\rm X}], \mu \in \Lambda^{\rm int}_{\rm dg}, \, {\rm X} \in \{{\rm C,T,F}\};$

constraints:

$$\sum_{\mu \in \widetilde{\Lambda}_{dg}^{X} \cup \{\epsilon\}} \delta_{ns}^{X}(i, [\mu]^{int}) = 1, \quad \sum_{\mu = ad \in \widetilde{\Lambda}_{dg}^{X}} [a]^{int} \cdot \delta_{ns}^{X}(i, [\mu]^{int}) = \alpha^{X}(i),$$

$$\sum_{\mu = ad \in \widetilde{\Lambda}_{dg}^{X}} d \cdot \delta_{ns}^{X}(i, [\mu]^{int}) = \deg^{X}(i),$$

$$i \in [1, t_{X}], X \in \{C, T, F\}, \tag{77}$$

$$\sum_{i \in [1, t_{\rm C}]} \delta_{\rm ns}^{\rm C}(i, [\mu]^{\rm int}) + \sum_{i \in [1, t_{\rm T}]} \delta_{\rm ns}^{\rm T}(i, [\mu]^{\rm int}) + \sum_{i \in [1, t_{\rm F}]} \delta_{\rm ns}^{\rm F}(i, [\mu]^{\rm int}) = \operatorname{ns}^{\rm int}([\mu]^{\rm int}), \qquad \mu \in \Lambda_{\rm dg}^{\rm int}.$$
 (78)

4.10 Descriptor for the Number of Edge-configurations

We include constraints to compute the frequency of each edge-configuration in an inferred chemical graph \mathbb{C} . constants:

- A set Γ^{int} of edge-configurations $\gamma = (\mu, \mu', m)$ with $\mu \leq \mu'$;
- Let $\Gamma^{\text{int}}_{<} = \{(\mu, \mu', m) \in \Gamma^{\text{int}} \mid \mu < \mu'\}, \ \Gamma^{\text{int}}_{=} = \{(\mu, \mu', m) \in \Gamma^{\text{int}} \mid \mu = \mu'\} \ \text{and} \ \Gamma^{\text{int}}_{>} = \{(\mu', \mu, m) \mid (\mu, \mu', m) \in \Gamma^{\text{int}}_{<}\};$
- Prepare a coding of the set $\Gamma^{\rm int} \cup \Gamma^{\rm int}_{>}$ and let $[\gamma]^{\rm int}$ denote the coded integer of an element γ in $\Gamma^{\rm int} \cup \Gamma^{\rm int}_{>}$;
- Choose subsets $\widetilde{\Gamma}_{ec}^{C}$, $\widetilde{\Gamma}_{ec}^{T}$, $\widetilde{\Gamma}_{ec}^{CT}$, $\widetilde{\Gamma}_{ec}^{TC}$, $\widetilde{\Gamma}_{ec}^{F}$, $\widetilde{\Gamma}_{ec}^{CF}$, $\widetilde{\Gamma}_{ec}^{TF}$ $\subseteq \Gamma^{int} \cup \Gamma_{>}^{int}$; To compute the frequency of edge-configurations exactly, set $\widetilde{\Gamma}_{ec}^{C} := \widetilde{\Gamma}_{ec}^{TC} := \widetilde{\Gamma}_{ec}^{TC} := \widetilde{\Gamma}_{ec}^{TC} := \widetilde{\Gamma}_{ec}^{TF} := \widetilde{\Gamma}_{ec}^{TF} := \Gamma^{int} \cup \Gamma_{>}^{int}$;
- $\operatorname{ec_{LB}^{int}}(\gamma), \operatorname{ec_{UB}^{int}}(\gamma) \in [0, 2n_{UB}^{int}], \gamma = (\mu, \mu', m) \in \Gamma^{int}$: lower and upper bounds on the number of interior-edges e = uv with $\operatorname{cs}(u) = \mu, \operatorname{cs}(v) = \mu'$ and $\beta(e) = m$;

variables:

- $ec^{int}([\gamma]^{int}) \in [ec^{int}_{LB}(\gamma), ec^{int}_{UB}(\gamma)], \gamma \in \Gamma^{int}$: the number of interior-edges with edge-configuration γ ;
- $\operatorname{ec}_{\mathbf{C}}([\gamma]^{\operatorname{int}}) \in [0, m_{\mathbf{C}}], \gamma \in \widetilde{\Gamma}_{\operatorname{ec}}^{\mathbf{C}}, \operatorname{ec}_{\mathbf{T}}([\gamma]^{\operatorname{int}}) \in [0, t_{\mathbf{T}}], \gamma \in \widetilde{\Gamma}_{\operatorname{ec}}^{\mathbf{T}}, \operatorname{ec}_{\mathbf{F}}([\gamma]^{\operatorname{int}}) \in [0, t_{\mathbf{F}}], \gamma \in \widetilde{\Gamma}_{\operatorname{ec}}^{\mathbf{F}}$: the number of edges $e^{\mathbf{C}} \in E_{\mathbf{C}}$ (resp., edges $e^{\mathbf{T}} \in E_{\mathbf{T}}$ and edges $e^{\mathbf{F}} \in E_{\mathbf{F}}$) with edge-configuration γ ;
- $\operatorname{ec}_{\operatorname{CT}}([\gamma]^{\operatorname{int}}) \in [0, \min\{k_{\operatorname{C}}, t_{\operatorname{T}}\}], \gamma \in \widetilde{\Gamma}_{\operatorname{ec}}^{\operatorname{CT}}, \operatorname{ec}_{\operatorname{TC}}([\gamma]^{\operatorname{int}}) \in [0, \min\{k_{\operatorname{C}}, t_{\operatorname{T}}\}], \gamma \in \widetilde{\Gamma}_{\operatorname{ec}}^{\operatorname{CT}}, \operatorname{ec}_{\operatorname{CF}}([\gamma]^{\operatorname{int}}) \in [0, t_{\operatorname{C}}], \gamma \in \widetilde{\Gamma}_{\operatorname{ec}}^{\operatorname{CT}}, \operatorname{ec}_{\operatorname{TF}}([\gamma]^{\operatorname{int}}) \in [0, t_{\operatorname{T}}], \gamma \in \widetilde{\Gamma}_{\operatorname{ec}}^{\operatorname{TF}}: \text{ the number of edges } e^{\operatorname{CT}} \in E_{\operatorname{CT}} \text{ (resp., edges } e^{\operatorname{TC}} \in E_{\operatorname{TC}} \text{ and edges } e^{\operatorname{CF}} \in E_{\operatorname{CF}} \text{ and } e^{\operatorname{TF}} \in E_{\operatorname{TF}}) \text{ with edge-configuration } \gamma;$
- $\delta_{\text{ec}}^{\text{C}}(i, [\gamma]^{\text{int}}) \in [0, 1], i \in [\widetilde{k}_{\text{C}} + 1, m_{\text{C}}] = I_{(\geq 1)} \cup I_{(0/1)} \cup I_{(=1)}, \gamma \in \widetilde{\Gamma}_{\text{ec}}^{\text{C}}, \ \delta_{\text{ec}}^{\text{T}}(i, [\gamma]^{\text{int}}) \in [0, 1], i \in [2, t_{\text{T}}], \gamma \in \widetilde{\Gamma}_{\text{ec}}^{\text{T}}, \delta_{\text{ec}}^{\text{T}}(i, [\gamma]^{\text{int}}) \in [0, 1], i \in [2, t_{\text{F}}], \gamma \in \widetilde{\Gamma}_{\text{ec}}^{\text{F}}: \ \delta_{\text{ec}}^{\text{X}}(i, [\gamma]^{\text{t}}) = 1 \Leftrightarrow \text{edge } e^{X}_{i} \text{ has edge-configuration } \gamma;$
- $\delta_{\text{ec,C}}^{\text{CT}}(k, [\gamma]^{\text{int}}), \delta_{\text{ec,C}}^{\text{TC}}(k, [\gamma]^{\text{int}}) \in [0, 1], k \in [1, k_{\text{C}}] = I_{(\geq 2)} \cup I_{(\geq 1)}, \gamma \in \widetilde{\Gamma}_{\text{ec}}^{\text{CT}}: \delta_{\text{ec,C}}^{\text{CT}}(k, [\gamma]^{\text{int}}) = 1 \text{ (resp., } \delta_{\text{ec,C}}^{\text{TC}}(k, [\gamma]^{\text{int}}) = 1) \Leftrightarrow \text{edge } e^{\text{CT}}_{\text{tail}(k), j} \text{ (resp., } e^{\text{TC}}_{\text{head}(k), j}) \text{ for some } j \in [1, t_{\text{T}}] \text{ has edge-configuration } \gamma;$
- $\delta_{\text{ec,C}}^{\text{CF}}(c, [\gamma]^{\text{int}}) \in [0, 1], c \in [1, \widetilde{t_{\text{C}}}], \gamma \in \widetilde{\Gamma}_{\text{ec}}^{\text{CF}}$: $\delta_{\text{ec,C}}^{\text{CF}}(c, [\gamma]^{\text{int}}) = 1 \Leftrightarrow \text{edge } e^{\text{CF}}_{c,i} \text{ for some } i \in [1, t_{\text{F}}] \text{ has edge-configuration } \gamma;$
- $\delta_{\mathrm{ec},\mathrm{T}}^{\mathrm{TF}}(i,[\gamma]^{\mathrm{int}}) \in [0,1], i \in [1,t_{\mathrm{T}}], \gamma \in \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{TF}}$: $\delta_{\mathrm{ec},\mathrm{T}}^{\mathrm{TF}}(i,[\gamma]^{\mathrm{int}}) = 1 \Leftrightarrow \mathrm{edge}\ e^{\mathrm{TF}}_{i,j}$ for some $j \in [1,t_{\mathrm{F}}]$ has edge-configuration γ ;
- $\deg^{\mathrm{CT}}_{\mathrm{T}}(k), \deg^{\mathrm{TC}}_{\mathrm{T}}(k) \in [0, 4], k \in [1, k_{\mathrm{C}}]: \deg_{\langle \mathbb{C} \rangle}(v)$ of an end-vertex $v \in V_{\mathrm{T}}$ of the edge $(v^{\mathrm{C}}_{\mathrm{tail}(k)}, v) \in E_{\mathrm{CT}}$ (resp., $(v, v^{\mathrm{C}}_{\mathrm{head}(k)}) \in E_{\mathrm{TC}}$) if any;
- $\deg^{\mathrm{CF}}_{\mathrm{F}}(c) \in [0,4], c \in [1,\widetilde{t_{\mathrm{C}}}]: \deg_{\langle \mathbb{C} \rangle}(v)$ of an end-vertex $v \in V_{\mathrm{F}}$ of the edge $(v^{\mathrm{C}}_{c},v) \in E_{\mathrm{CF}}$ if any;
- $\deg^{\mathrm{TF}}_{\mathrm{F}}(i) \in [0,4], i \in [1,t_{\mathrm{T}}]: \deg_{\langle \mathbb{C} \rangle}(v)$ of an end-vertex $v \in V_{\mathrm{F}}$ of the edge $(v^{\mathrm{T}}_{i},v) \in E_{\mathrm{TF}}$ if any;
- $\Delta_{\text{ec}}^{\text{C+}}(i), \Delta_{\text{ec}}^{\text{C-}}(i), \in [0, 4], i \in [\widetilde{k}_{\text{C}} + 1, m_{\text{C}}], \ \Delta_{\text{ec}}^{\text{T+}}(i), \Delta_{\text{ec}}^{\text{T-}}(i) \in [0, 4], i \in [2, t_{\text{T}}], \ \Delta_{\text{ec}}^{\text{F+}}(i), \Delta_{\text{ec}}^{\text{F-}}(i) \in [0, 4], i \in [2, t_{\text{T}}], \ \Delta_{\text{ec}}^{\text{F+}}(i), \Delta_{\text{ec}}^{\text{F-}}(i) \in [0, 4], i \in [2, t_{\text{T}}], \ \Delta_{\text{ec}}^{\text{F+}}(i), \Delta_{\text{ec}}^{\text{F-}}(i) \in [0, 4], i \in [2, t_{\text{T}}], \ \Delta_{\text{ec}}^{\text{F+}}(i), \Delta_{\text{ec}}^{\text{F-}}(i) \in [0, 4], i \in [2, t_{\text{T}}], \ \Delta_{\text{ec}}^{\text{F+}}(i), \Delta_{\text{ec}}^{\text{F-}}(i) \in [0, 4], i \in [2, t_{\text{T}}], \ \Delta_{\text{ec}}^{\text{F+}}(i), \Delta_{\text{ec}}^{\text{F-}}(i) \in [0, 4], i \in [2, t_{\text{T}}], \ \Delta_{\text{ec}}^{\text{F+}}(i), \Delta_{\text{ec}}^{\text{F-}}(i) \in [0, 4], i \in [2, t_{\text{T}}], \ \Delta_{\text{ec}}^{\text{F+}}(i), \Delta_{\text{ec}}^{\text{F-}}(i) \in [0, 4], i \in [2, t_{\text{T}}], \ \Delta_{\text{ec}}^{\text{F+}}(i), \Delta_{\text{ec}}^{\text{F-}}(i) \in [0, 4], i \in [2, t_{\text{T}}], \ \Delta_{\text{ec}}^{\text{F-}}(i), \Delta_{\text{ec}}^{\text{F-}}(i), \Delta_{\text{ec}}^{\text{F-}}(i) \in [0, 4], i \in [2, t_{\text{T}}], \ \Delta_{\text{ec}}^{\text{F-}}(i), \Delta_{\text{ec}}^{\text{F-}}(i), \Delta_{\text{ec}}^{\text{F-}}(i) \in [0, 4], i \in [2, t_{\text{T}}], \ \Delta_{\text{ec}}^{\text{F-}}(i), \Delta_{\text{ec}}$
- $\Delta_{\text{ec}}^{\text{CT+}}(k)$, $\Delta_{\text{ec}}^{\text{CT-}}(k) \in [0, 4]$, $k \in [1, k_{\text{C}}] = I_{(\geq 2)} \cup I_{(\geq 1)}$: $\Delta_{\text{ec}}^{\text{CT+}}(k) = \Delta_{\text{ec}}^{\text{CT-}}(k) = 0$ (resp., $\Delta_{\text{ec}}^{\text{CT+}}(k) = \deg_{\langle \mathbb{C} \rangle}(u)$ and $\Delta_{\text{ec}}^{\text{CT-}}(k) = \deg_{\langle \mathbb{C} \rangle}(v)$) \Leftrightarrow edge $e^{\text{CT}}_{\text{tail}(k),j} = (u,v) \in E_{\text{CT}}$ for some $j \in [1, t_{\text{T}}]$ is used in $\langle \mathbb{C} \rangle$ (resp., otherwise);
- $\Delta_{\mathrm{ec}}^{\mathrm{TC}+}(k), \Delta_{\mathrm{ec}}^{\mathrm{TC}-}(k) \in [0,4], k \in [1,k_{\mathrm{C}}] = I_{(\geq 2)} \cup I_{(\geq 1)}$: Analogous with $\Delta_{\mathrm{ec}}^{\mathrm{CT}+}(k)$ and $\Delta_{\mathrm{ec}}^{\mathrm{CT}-}(k)$;
- $\Delta_{\text{ac}}^{\text{CF+}}(c)$, $\Delta_{\text{ec}}^{\text{CF-}}(c) \in [0,4]$, $c \in [1,\widetilde{t_{\text{C}}}]$: $\Delta_{\text{ec}}^{\text{CF+}}(c) = \Delta_{\text{ec}}^{\text{CF-}}(c) = 0$ (resp., $\Delta_{\text{ec}}^{\text{CF+}}(c) = \deg_{\langle \mathbb{C} \rangle}(u)$ and $\Delta_{\text{ec}}^{\text{CF-}}(c) = \deg_{\langle \mathbb{C} \rangle}(v)$) \Leftrightarrow edge $e^{\text{CF}}_{c,j} = (u,v) \in E_{\text{CF}}$ for some $j \in [1,t_{\text{F}}]$ is used in $\langle \mathbb{C} \rangle$ (resp., otherwise);
- $\Delta_{\text{ec}}^{\text{TF+}}(i), \Delta_{\text{ec}}^{\text{TF-}}(i) \in [0, 4], i \in [1, t_{\text{T}}]$: Analogous with $\Delta_{\text{ec}}^{\text{CF+}}(c)$ and $\Delta_{\text{ec}}^{\text{CF-}}(c)$;

$$\begin{split} &\operatorname{ec}_{\mathrm{C}}([\gamma]^{\mathrm{int}}) = 0, & \gamma \in \Gamma^{\mathrm{int}} \setminus \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{C}}, \\ &\operatorname{ec}_{\mathrm{T}}([\gamma]^{\mathrm{int}}) = 0, & \gamma \in \Gamma^{\mathrm{int}} \setminus \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{F}}, \\ &\operatorname{ec}_{\mathrm{F}}([\gamma]^{\mathrm{int}}) = 0, & \gamma \in \Gamma^{\mathrm{int}} \setminus \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{F}}, \\ &\operatorname{ec}_{\mathrm{CT}}([\gamma]^{\mathrm{int}}) = 0, & \gamma \in \Gamma^{\mathrm{int}} \setminus \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{CT}}, \\ &\operatorname{ec}_{\mathrm{TC}}([\gamma]^{\mathrm{int}}) = 0, & \gamma \in \Gamma^{\mathrm{int}} \setminus \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{TC}}, \\ &\operatorname{ec}_{\mathrm{CF}}([\gamma]^{\mathrm{int}}) = 0, & \gamma \in \Gamma^{\mathrm{int}} \setminus \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{CF}}, \\ &\operatorname{ec}_{\mathrm{TF}}([\gamma]^{\mathrm{int}}) = 0, & \gamma \in \Gamma^{\mathrm{int}} \setminus \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{CF}}, \end{split}$$

(79)

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathbf{C}}([\gamma]^{\text{int}}) = \sum_{i\in[\widehat{k_{\mathbf{C}}}+1,m_{\mathbf{C}}]} \delta^{\mathbf{C}}_{\beta}(i,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathbf{T}}([\gamma]^{\text{int}}) = \sum_{i\in[2,t_{\mathbf{T}}]} \delta^{\mathbf{T}}_{\beta}(i,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathbf{C}\mathbf{T}}([\gamma]^{\text{int}}) = \sum_{i\in[2,t_{\mathbf{F}}]} \delta^{\mathbf{F}}_{\beta}(i,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathbf{T}\mathbf{C}}([\gamma]^{\text{int}}) = \sum_{k\in[1,k_{\mathbf{C}}]} \delta^{\mathbf{C}\mathbf{T}}_{\beta}(k,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathbf{T}\mathbf{C}}([\gamma]^{\text{int}}) = \sum_{k\in[1,k_{\mathbf{C}}]} \delta^{\mathbf{T}\mathbf{C}}_{\beta}(k,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathbf{C}\mathbf{F}}([\gamma]^{\text{int}}) = \sum_{k\in[1,k_{\mathbf{C}}]} \delta^{\mathbf{F}\mathbf{C}}_{\beta}(k,m), \qquad m \in [1,3],$$

 $\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\mathrm{int}}}\mathrm{ec}_{\mathrm{CF}}([\gamma]^{\mathrm{int}})=\sum_{c\in[1,\widetilde{t_{\mathrm{C}}}]}\delta_{\beta}^{*\mathrm{F}}(c,m),$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\mathrm{int}}}\mathrm{ec}_{\mathrm{TF}}([\gamma]^{\mathrm{int}})=\sum_{c\in[\widetilde{t_{\mathrm{C}}}+1,c_{\mathrm{F}}]}\delta_{\beta}^{*\mathrm{F}}(c,m), \qquad m\in[1,3],$$

(80)

$$\sum_{\gamma=(\mathsf{ad},\mathsf{bd}',m)\in\widetilde{\Gamma}_{\mathrm{ec}}^{\mathbf{C}}} [(\mathsf{a},\mathsf{b},m)]^{\mathrm{int}} \cdot \delta_{\mathrm{ec}}^{\mathbf{C}}(i,[\gamma]^{\mathrm{int}}) = \sum_{\nu\in\widetilde{\Gamma}_{\mathrm{ac}}^{\mathbf{C}}} [\nu]^{\mathrm{int}} \cdot \delta_{\mathrm{ac}}^{\mathbf{C}}(i,[\nu]^{\mathrm{int}}),$$

$$\Delta_{\mathrm{ec}}^{\mathbf{C}+}(i) + \sum_{\gamma=(\mathsf{ad},\mu',m)\in\widetilde{\Gamma}_{\mathrm{ec}}^{\mathbf{C}}} d \cdot \delta_{\mathrm{ec}}^{\mathbf{C}}(i,[\gamma]^{\mathrm{int}}) = \mathrm{deg}^{\mathbf{C}}(\mathrm{tail}(i)),$$

$$\Delta_{\mathrm{ec}}^{\mathbf{C}-}(i) + \sum_{\gamma=(\mu,\mathrm{bd},m)\in\widetilde{\Gamma}_{\mathrm{ec}}^{\mathbf{C}}} d \cdot \delta_{\mathrm{ec}}^{\mathbf{C}}(i,[\gamma]^{\mathrm{int}}) = \mathrm{deg}^{\mathbf{C}}(\mathrm{head}(i)),$$

$$\Delta_{\mathrm{ec}}^{\mathbf{C}-}(i) + \Delta_{\mathrm{ec}}^{\mathbf{C}-}(i) \leq 8(1 - e^{\mathbf{C}}(i)), \qquad i \in [\widetilde{k_{\mathbf{C}}} + 1, m_{\mathbf{C}}],$$

$$\sum_{\gamma=(\mu,\mathrm{bd},m)\in\widetilde{\Gamma}_{\mathrm{ec}}^{\mathbf{C}}} \delta_{\mathrm{ec}}^{\mathbf{C}}(i,[\gamma]^{\mathrm{int}}) = \mathrm{ec}_{\mathbf{C}}([\gamma]^{\mathrm{int}}), \qquad \gamma \in \widetilde{\Gamma}_{\mathrm{ec}}^{\mathbf{C}},$$
(81)

$$\begin{split} \sum_{\gamma = (\mathrm{ad}, \mathrm{bd}', m) \in \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{T}}} & [(\mathrm{a}, \mathrm{b}, m)]^{\mathrm{int}} \cdot \delta_{\mathrm{ec}}^{\mathrm{T}}(i, [\gamma]^{\mathrm{int}}) = \sum_{\nu \in \widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{T}}} [\nu]^{\mathrm{int}} \cdot \delta_{\mathrm{ac}}^{\mathrm{T}}(i, [\nu]^{\mathrm{int}}), \\ \Delta_{\mathrm{ec}}^{\mathrm{T}+}(i) + \sum_{\gamma = (\mathrm{ad}, \mu', m) \in \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{T}}} d \cdot \delta_{\mathrm{ec}}^{\mathrm{T}}(i, [\gamma]^{\mathrm{int}}) = \mathrm{deg}^{\mathrm{T}}(i - 1), \\ \Delta_{\mathrm{ec}}^{\mathrm{T}-}(i) + \sum_{\gamma = (\mu, \mathrm{bd}, m) \in \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{T}}} d \cdot \delta_{\mathrm{ec}}^{\mathrm{T}}(i, [\gamma]^{\mathrm{int}}) = \mathrm{deg}^{\mathrm{T}}(i), \\ \Delta_{\mathrm{ec}}^{\mathrm{T}+}(i) + \Delta_{\mathrm{ec}}^{\mathrm{T}-}(i) \leq 8(1 - e^{\mathrm{T}}(i)), & i \in [2, t_{\mathrm{T}}], \\ \sum_{i \in [2, t_{\mathrm{T}}]} \delta_{\mathrm{ec}}^{\mathrm{T}}(i, [\gamma]^{\mathrm{int}}) = \mathrm{ec}_{\mathrm{T}}([\gamma]^{\mathrm{int}}), & \gamma \in \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{T}}, \\ \sum_{i \in [2, t_{\mathrm{T}}]} \delta_{\mathrm{ec}}^{\mathrm{T}}(i, [\gamma]^{\mathrm{int}}) = \mathrm{ec}_{\mathrm{T}}([\gamma]^{\mathrm{int}}), & \gamma \in \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{T}}, \\ \Delta_{\mathrm{ec}}^{\mathrm{F}+}(i) + \sum_{\gamma = (\mathrm{ad}, \mu', m) \in \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{F}}} d \cdot \delta_{\mathrm{ec}}^{\mathrm{F}}(i, [\gamma]^{\mathrm{int}}) = \mathrm{deg}^{\mathrm{F}}(i - 1), \\ \Delta_{\mathrm{ec}}^{\mathrm{F}-}(i) + \sum_{\gamma = (\mu, \mathrm{bd}, m) \in \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{F}}} d \cdot \delta_{\mathrm{ec}}^{\mathrm{F}}(i, [\gamma]^{\mathrm{int}}) = \mathrm{deg}^{\mathrm{F}}(i, 0), \\ \Delta_{\mathrm{ec}}^{\mathrm{F}-}(i) + \Delta_{\mathrm{ec}}^{\mathrm{E}-}(i) \leq 8(1 - e^{\mathrm{F}}(i)), & i \in [2, t_{\mathrm{F}}], \end{split}$$

$$\deg^{\mathrm{T}}(i) + 4(1 - \chi^{\mathrm{T}}(i, k) + e^{\mathrm{T}}(i)) \ge \deg^{\mathrm{CT}}(k),$$

$$\deg^{\mathrm{CT}}(k) \ge \deg^{\mathrm{T}}(i) - 4(1 - \chi^{\mathrm{T}}(i, k) + e^{\mathrm{T}}(i)), \qquad i \in [1, t_{\mathrm{T}}],$$

$$\sum_{\gamma = (\mathrm{ad}, \mathrm{bd}', m) \in \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{CT}}} [(\mathrm{a}, \mathrm{b}, m)]^{\mathrm{int}} \cdot \delta_{\mathrm{ec}, \mathrm{C}}^{\mathrm{CT}}(k, [\gamma]^{\mathrm{int}}) = \sum_{\nu \in \widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{CT}}} [\nu]^{\mathrm{int}} \cdot \delta_{\mathrm{ac}}^{\mathrm{CT}}(k, [\nu]^{\mathrm{int}}),$$

$$\Delta_{\mathrm{ec}}^{\mathrm{CT}+}(k) + \sum_{\gamma = (\mathrm{ad}, \mu', m) \in \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{CT}}} d \cdot \delta_{\mathrm{ec}, \mathrm{C}}^{\mathrm{CT}}(k, [\gamma]^{\mathrm{int}}) = \deg^{\mathrm{C}}(\mathrm{tail}(k)),$$

$$\Delta_{\mathrm{ec}}^{\mathrm{CT}-}(k) + \sum_{\gamma = (\mu, \mathrm{bd}, m) \in \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{CT}}} d \cdot \delta_{\mathrm{ec}, \mathrm{C}}^{\mathrm{CT}}(k, [\gamma]^{\mathrm{int}}) = \deg^{\mathrm{CT}}(k),$$

$$\Delta_{\mathrm{ec}}^{\mathrm{CT}+}(k) + \Delta_{\mathrm{ec}}^{\mathrm{CT}-}(k) \le 8(1 - \delta_{\chi}^{\mathrm{T}}(k)), \qquad k \in [1, k_{\mathrm{C}}],$$

$$\sum_{k \in [1, k_{\mathrm{C}}]} \delta_{\mathrm{ec}, \mathrm{C}}^{\mathrm{CT}-}(k, [\gamma]^{\mathrm{int}}) = \mathrm{ec}_{\mathrm{CT}}([\gamma]^{\mathrm{int}}), \qquad \gamma \in \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{CT}}, \qquad (84)$$

 $\sum_{i \in [2, t_{\mathrm{F}}]} \delta_{\mathrm{ec}}^{\mathrm{F}}(i, [\gamma]^{\mathrm{int}}) = \mathrm{ec}_{\mathrm{F}}([\gamma]^{\mathrm{int}}),$

(83)

$$\begin{split} \deg^{\mathrm{T}}(i) + 4(1 - \chi^{\mathrm{T}}(i, k) + c^{\mathrm{T}}(i + 1)) &\geq \deg^{\mathrm{TC}}(k), \\ \deg^{\mathrm{TC}}(k) &\geq \deg^{\mathrm{TC}}(i) - 4(1 - \chi^{\mathrm{T}}(i, k) + c^{\mathrm{T}}(i + 1)), \qquad i \in [1, t_{\mathrm{T}}], \\ \sum_{\gamma = (\mathrm{ad}, \mathrm{bot}', m) \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} &= \sum_{\gamma = (\mathrm{ad}, \mathrm{bot}', m) \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} [\nu]^{\mathrm{bit}} \\ &\geq \sum_{\nu \in \Gamma_{\mathrm{CC}}^{\mathrm{TC}}} [\nu]^{\mathrm{bit}} \\ \sum_{\gamma = (\mathrm{ad}, \mathrm{bot}', m) \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} &\leq \sum_{\nu \in \Gamma_{\mathrm{CC}}^{\mathrm{TC}}} [\nu]^{\mathrm{bit}} \\ &\geq \sum_{\nu \in \Gamma_{\mathrm{CC}}^{\mathrm{TC}}} [\nu]^{\mathrm{bit}} \\ &\leq \sum_{\gamma = (\mathrm{ad}, \mathrm{bot}', m) \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\ &\leq \sum_{\gamma = (\mathrm{ad}, \mathrm{bot}', m) \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} &\leq \sum_{\gamma \in (\mathrm{cd}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\ &\leq \sum_{\gamma = (\mathrm{ad}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\ &\leq \sum_{\gamma = (\mathrm{ad}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} &\leq \sum_{\gamma \in (\mathrm{cd}, \mathrm{cd}') \in \mathrm{cd}} \\ &\leq \sum_{\gamma \in (\mathrm{cd}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\ &\leq \sum_{\gamma \in (\mathrm{cd}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\ &\leq \sum_{\gamma \in (\mathrm{cd}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\ &\leq \sum_{\gamma \in (\mathrm{cd}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\ &\leq \sum_{\gamma \in (\mathrm{cd}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\ &\leq \sum_{\gamma \in (\mathrm{cd}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\ &\leq \sum_{\gamma \in (\mathrm{cd}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\ &\leq \sum_{\gamma \in (\mathrm{cd}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\ &\leq \sum_{\gamma \in (\mathrm{cd}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\ &\leq \sum_{\gamma \in (\mathrm{cd}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\ &\leq \sum_{\gamma \in (\mathrm{cd}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\ &\leq \sum_{\gamma \in (\mathrm{cd}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\ &\leq \sum_{\gamma \in (\mathrm{cd}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\ &\leq \sum_{\gamma \in (\mathrm{cd}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\ &\leq \sum_{\gamma \in (\mathrm{cd}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\ &\leq \sum_{\gamma \in (\mathrm{cd}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\ &\leq \sum_{\gamma \in (\mathrm{cd}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\ &\leq \sum_{\gamma \in (\mathrm{cd}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\ &\leq \sum_{\gamma \in (\mathrm{cd}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\ &\leq \sum_{\gamma \in (\mathrm{cd}, \mathrm{bot}', \mathrm{bot}') \in \widetilde{\Gamma}_{\mathrm{CC}}^{\mathrm{TC}}} \\$$

4.11 Constraints for Normalization of Feature Vectors

By introducing a tolerance $\varepsilon > 0$ in the conversion between integers and reals, we include the following constraints for normalizing of a feature vector $f(\mathbb{C}) = (x_1, x_2, \dots, x_K)$:

$$\frac{(1-\varepsilon)(x_i - \min(\operatorname{dcp}_i; D_{\pi}))}{\max(\operatorname{dcp}_i; D_{\pi}) - \min(\operatorname{dcp}_i; D_{\pi})} \le \widehat{x}_i \le \frac{(1+\varepsilon)(x_i - \min(\operatorname{dcp}_i; D_{\pi}))}{\max(\operatorname{dcp}_i; D_{\pi}) - \min(\operatorname{dcp}_i; D_{\pi})}, \ i \in [1, K].$$
(89)

An example of a tolerance is $\varepsilon = 1 \times 10^{-5}$.