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Suppl. Figure 1: Multi-model machine learning utilized to predict functionality of protein
isoforms. A. Convolution Neural Network (CNN) with a threshold of 0.5 found a possible
transcription factor in 60% of the testing repetitions. This result was consistent as it was the same
sequence repeated in each of the positive repetitions B. CNN with a lower threshold: The
unequal balance of transcription factors to non-transcription factors led the research team to
lower the threshold to 0.1 to increase the sensitivity to the unbalanced nature of transcription
factors to non-transcription factors. This resulted in more potential transcription factors being
discovered in all repetitions of testing. C. A second model of machine learning was utilized in the
form of Biased-SVM models. The research team repeated the process of starting with a threshold
of 0.5 to predict any potential transcription factors and found multiple (n=8) in one testing
repetition. D. Following the same procedure as the CNN the threshold for the biased-svm model
had the threshold reduced to 0.1 to induce in-balance that is found in the protein-transcription

ratio found in nature.

Suppl. Figure 2: Multiple machine learning models found concurrent and unique proteins
predicted to be transcription factors in multiple repetitions. A Venn Diagram was utilized
to compare the sequences found between the two models. The CNN and biased SVM models
predicted 7 concurrent sequences to function as transcription factors, while each predicted their

own unique sequences to also function as transcription factors.



Suppl. Table 1: 5-Fold Cross Validations results of the CNN model used to test the sequence on a
unique training model of 4331 unique FASTA sequences. The research team set a standard for all
validations results to be at 95% to minimize all type 1 and type 2 errors. While the CNN did not
deliver the F1 score of 95% we compared the results to the Biased-SVM as a way to verify

findings.

Suppl. Table 2: 5-Fold Cross Validations results of the biased-SVM model used to test the
sequence on a unique training model of 4331 unique FASTA sequences. Where the CNN model
was lacking the 95% in all categories the biased-SVM model was able to accomplish this. We
used the CNN model as a secondary comparison to the primary results found by the biased-SVM

model to prevent any type 1 or type 2 errors.

Other Suppl. Table containing all raw data for ML calculation, and will be provide by PI

under the request.
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Suppl. Figure 1:
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Suppl. Figure 2
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Suppl. Table 1: 5 Fold Cross Validation Suppl. Table 2: 5 Fold Cross Validation
results of CNN model results of Biased-SVM model

F1 Score 0.940 F1 Score 0.950
Specificity 0.956 Specificity 0.962
Sensitivity 0.954 Sensitivity 0.966

Balanced Accuracy 0.955 Balanced Accuracy 0.964



