

Network properties:

Small-worldness is defined by clustering coefficient (C_p) and shortest path length (L_p).

C_p is defined as the ratio of the number of edges between "other nodes" directly connected to node i in the network to the maximum number of possible edges between these "other nodes".

The equation is as follows: $C_i = \frac{1}{2} \frac{E_i}{k_i(k_i-1)}$.

E_i means the number of edges between "other nodes" directly connected to node i , and K_i means the connectivity of node i . $\frac{1}{2}k_i(k_i-1)$ is the maximum number of edges of "other nodes". C_i measures the collective degree of this node.

L_p is defined as the shortest path length of node i .

The equation is as follows: $L_i = \frac{1}{N-1} * \sum_{i \neq j \in G} L_{i,j}$.

$L_{i,j}$ means the shortest path between node i and node j .

Global efficiency is defined as the reciprocal average of the shortest path length between each pair of nodes in the whole brain network.

The equation is as follows: $E_{global} = 1/N(N-1) * \sum_{i,j \neq i,j} (1/d_{i,j})$

N is the number of nodes, and $d_{i,j}$ means the distance between node i and node j .

Local efficiency is defined as the local efficiency of the whole brain network as each sub-network's global efficiency (G_i).

The equation is as follows: $E_{local}(i) = E_{global}(G_i)$.

Assortativity is used to examine whether nodes with similar values are connected.

Nodal Efficiency is defined as the global efficiency of Node i .

The equation is as follows: $E_{glob_i} = (1/N-1) * \sum (1/L_{i,j})$.

$L_{i,j}$ means the shortest path between node i and node j .

Nodal Local Efficiency is defined as the local efficiency of Node i .

The equation is as follows: $E_{loc_i} = 1/N_{G_i}(N_{G_i}-1) * \sum_{j,k \in G_i} (1/L_{i,j})$.

G_i is the sub-network composed of "other nodes" directly connected by node i ; N_{G_i} is the total number of nodes in the subnetwork; and $L_{j,k}$ means the shortest path between nodes j and k .

Degree centrality is defined as the number of edges shared by node i with other nodes in the network.

The equation is as follows: $K_i = 1/n \sum k_i$.

K_i is the centrality value of node i .

Betweenness centrality is the number of shortest paths through a particular node among all other node pairs in the network.

The equation is as follows: $N_{bc}(i) = \sum_{j \neq i \neq k \in G} \frac{d_{jk}(i)}{d_{jk}}$.

d_{jk} means the number of shortest paths between any two nodes in the connected network

except node i ; $\delta_{jk}(i)$ is the number of paths passing through node i in the shortest path between any two nodes.